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Abstract

Until today every compiler has been developed by the idea to modify source code
in such a way the hardware can understand it. Over the years this has resulted
in inefficient processors caused by backwards compatibility issues, strange as-
sembly code constructions caused by the lack of required instructions and nice
instructions supported by hardware, but never used by the software.

This research reverses the original design process. It starts by analyzing C
code and starts working from there to a processing unit, thus supporting a min-
imal amount of instructions required to run C and no backward compatibility
with other processing units.

To limit the design time, several existing retargetable C compilers are an-
alyzed whether they have a useful intermediate language which is completely
hardware independent. The LCC compilers LCC Bytecode was found to be the
most acceptable language, even though a few modifications must be made to be
able to efficiently run the code.

The next step is to convert the generated LCC Bytecode into a binary lan-
guage. This is done by a standard set of programs including an assembler and
a linker. This is the first time some input about the processing unit is required,
since neither C nor LCC Bytecode specifies anything about, for example, opcode
encoding, while this can make a big difference in execution performance. For
now the encoding is simply “guessed” and remains open for future modifications.

The last step in the chain is the actual processing unit. A software interpreter
programmed in C is build to extensively test compiled programs, and to compare
the results with other existing solutions, such as the MIPS R2000, the Intel 386
Architecture and the Intel 8051.

Test results show that LCC Bytecode is a fine language which covers C com-
pletely. However some modifications where necessary to execute the code effi-
ciently. The number of instructions required by LCC Bytecode is much smaller
than those supported by most current processors, and therefore, a less complex,
and thus cheaper and more reliable, processor design is possible. In terms of
speed it is found that on average more instructions per C program are required
than when using, for example, the MIPS instruction set, the processor will thus
probably be slower than most traditional processors.
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Chapter 1

Introduction

A few decennia ago, the first compiler was launched, while today, there are
thousands of compilers available for dozens of programming languages. Even
though a lot has changed since the first compiler, one thing is still the same.
The design process always started out from two different points. One group
started working on designing a programming language, and a complete other
group, often much later or earlier, started working on a processing unit. When
both where done, a bridge, in the form of a compiler, must be build between the
designed programming language and language supported by the processing unit.
This often resulted in strange inefficient code constructions to support various
aspects of the programming language, as well as completely unused processing
unit instructions.

This research takes another approach [3]. It’s starts with looking at C code,
and works towards the specifications of a not yet existing processing unit. The
processing unit will therefore be completely be based on C, will support no
instructions C does not support, and does not need any “tricks” to run any C
program. The reason for this new approach is the fact that nowadays, processors
are much easier to develop, and hardware limitations are no longer a real issue.
Therefore, it is now possible to base the hardware on the code it is supposed to
execute, instead of altering code in a way such that the hardware can execute
it. Finally, the new processing unit, which will be designed for this research
in the form of an interpreter, will be compared to existing processing units, to
find out if this will benefit the size, complexity and speed of the new processing
unit, compared to existing ones.

The second chapter of this report describes the search for a useful compiler.
It looks into a few different existing compilers and compares them between each
other, and a not yet existing but maybe required, newly developed compiler.
Chapter 3 documents the assembly language which is used, followed by Chapter
4 which gives a detailed description on how the executable files are generated,
and how the interpreter works and is created. Finally, in Chapter 5 and 6, the
test results and conclusions are given.
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Chapter 2

Generating assembly code

When designing a processing unit to execute C code, the extreme situation would
be feeding the processing unit directly with C source and header files. The C
language however has a few properties which makes it much easier to program,
but much harder to execute. A few examples of these properties are the support
for text labels, code placement in several files, and less obvious, redundancy in
C code. The for statement, for example, may just as well be programmed using
while or even if statements. A processing unit which can execute C code would
thus require a complicated text parser, a lot of memory and a label resolver.
Most of the work, such as label resolvement, can be done prior to executing
the code, and only has to be done once for each program. Traditionally this is
all done by compilers which generate simple assembly code, assemblers which
convert assembly code into binary files and linkers who combine several files into
one executable. Since simpler code will always result in a simpler processing
unit, it is wise to stick with the traditional use of a compiler. The conversion
process however, must be completely based on C code, and not be influenced
by any knowledge about the processing platform which is eventually going to
execute the code. The compiler must thus be completely independent of the
targeted platform.

Since building a new compiler is a lot of work, this chapter mostly deals
with looking for a useful existing compiler. Several compilers are examined in
the first section of this chapter, and finally a conclusion is given which, if any,
compiler would be the best choice for generating assembly code.

2.1 Compilers

Since there is a vast amount of compilers available, the search to a useful com-
piler must be narrowed a lot right at the start. Only a few compilers can be
examined thoroughly, and for most compilers it can be seen in a flash whether
they might be up to the task or absolutely not. The criteria for the compilers
to be examined further are given here:

• Open source: The compiler must be open source to be able to examine its
internals.

• Free: No money can be spent on the compiler.

7



CHAPTER 2. GENERATING ASSEMBLY CODE 8

• Portable: The compiler must be designed to be portable. This will ensure
the compiler can be used for different kind of processing units, and thus
(likely) be hardware independent1.

• Documented: The compiler (and its source code) must be very well doc-
umented.

• Reliable: The compiler must be reliable and work correctly.

These criteria immediately eliminate a large amount of compilers. Most small
“hobby” projects are not portable or very well documented, while most commer-
cial products are not open source, free or target a specific platform. However,
three existing compilers seem to hold up quit nice to these criteria, and will be
examined further, namely GCC, LCC and SDCC.

These compilers will be looked into in the following sections, to see if one
of them is able to generate valid hardware independent assembly code. The
GCC, LCC and SDCC compilers are further discussed in Sections 2.1.1 to 2.1.3
respectively, and a comparison is given in 2.2.

2.1.1 GCC

The GNU C Compiler is probably the most popular compiler today. It runs on
almost any system, and can create code for almost every system. Since it is so
widely used, a lot of information is available on how it works, and how to alter
it if necessary. However, Nilsson [12], states:

GCC is specifically aimed at CPU’s with several 32-bit general regis-
ters and byte-addressable memory. Deviations from this are possible.
In short, you can make a port of GCC for a target with 16-bit regis-
ters, but not a decent implementation for a processor with only one
general register.

This directly states that GCC is only partially hardware independent, since it
needs a register machine to operate efficiently. Internally, GCC uses a so called
“Register Transfer Language” or “RTL”. First, the C code is converted into
RTL code, in which an infinite amount of available registers exists. Second, the
RTL code is optimized to a specific processor, and finally, the code is converted
to processor specific assembly code. The last two steps can be stripped from
the compiler such that RTL code is being emitted from the compiler. This
RTL code is fairly hardware independent except for one assumption: the target
processing unit must be a register machine.

2.1.2 LCC

The second compiler which is tested, LCC, is designed to be a completely re-
targatable compiler, no more, no less. Since any code optimization falls out of
this project, this might be the perfect candidate. Just like GCC, LCC uses an
internal language to which C code is converted, and contains several backends
which convert the LCC bytecode to assembly code for a specific processor. Un-
like GCC RTL, LCC bytecode is based on a stack language. Since any (useful)

1This must be validated in further research
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processing unit will have some random access memory available, a stack based
language will not limit the design of the processing unit (apart from performance
perhaps).

A second advantage of LCC is that it’s internal bytecode can be emitted
without changing the source of LCC at all, but simply with a command line
option which selects the “bytecode” backend.

2.1.3 SDCC

The Small Device C Compiler is a C compiler developed specially for building
embedded applications, which run on small processors or microcontrollers. It is
completely open source but unfortunately not very well documented. According
to the SDCC programmers in [14] it is possible to build a new backend for their
processor, and point out a few changes on where to modify the existing compiler.
No real standard retargeting procedure exists, and nobody but the programmers
themselves seems ever to have done it. Another problem with SDCC, is the
original design concept: it was build to be specifically a compiler for embedded
systems, which means it had a “hardware assumption” right from the start.

2.2 Conclusion

To summarize the previous sections, a few important properties of all compilers
are given here, including a mark on how well they perform, from positive (++)
to negative (--).

Table 2.1: Compiler comparison
Property GCC LCC SDCC New custom compiler
Documentation ++ + -- ++
Retargetable ++ ++ - ++
Internal language + ++ ? ++
CPU dependency 0 + 0 ++
Work to retarget 0 ++ - --
Work to build CPU 0 + ? ++

From this table it can be seen that either LCC or a custom self build compiler
would be the best choice. The self build compiler wins it on every aspect because
it can be tuned to all of these specifications; however, the double minus on
work to build the compiler is a very important one. GCC loses from LCC mostly
because LCC bytecode files are generated much easier then GCC RTL files, and
because LCC bytecode files can be run on any processing unit without major
modifications, while when using GCC RTL, at some point, the register count must
be scaled down to an acceptable amount of registers. SDCC scores lowest on this
chart, mostly caused by the lack of good documentation about its internals.

From this information, LCC is chosen to be the compiler, and LCC bytecode
to be the new assembly language to work with. In the following chapter, the
specifications of the LCC bytecode language are fully documented.



Chapter 3

LCC bytecode

This chapter describes the layout of the bytecode files generated by LCC and
all assembler directives and instructions which may appear in the source files.
The information used to make this document is gathered from Hanson and
Fraser [5], [6], the Quake 3 implementation of LCC Bytecode [13] and the
comp.compilers.lcc newsgroup.

LCC Bytecode consists of a set of instructions and assembler directives.
All these instructions and directives are placed in a text file, one instruc-
tion/directive per line. The directives are printed in lower case, while the in-
structions are printed in upper case. Some directives and instructions have one
ore more parameters. These parameters are separated by spaces, and all nu-
merical parameters are printed in the decimal system. Note that this chapter is
completely based on what LCC will ever generate. When building an assembler,
it might be desirable to accept more then just what is described in this chapter,
for example comment in bytecode files.

All directives are described in Section 3.1, all instructions in 3.2 and finally,
in Section 3.3 some shortcommings of the LCC Bytecode language are discussed.

3.1 Directives

The following directives are generated by LCC:

code : segment information
lit : segment information
data : segment information
bss : segment information
align : segment information
byte : segment information
skip : segment information
address : segment information
export : procedure information
import : procedure information
proc : procedure information
endproc : procedure information
file : debug information
line : debug information

10
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All directives are printed in lower case, while all instructions are printed in
upper case. The different directives fall in three main categories. First, the
directives code, lit, data, bss, align, byte, skip and address directives all
control the different segments used by LCC. These are all discussed in Section
3.1.1. The export, import, proc, and endproc directives contain function spe-
cific information and are described in Section 3.1.2. Finally the file and line
directives contain debug information and are described in the last section.

3.1.1 Segments

LCC supports four different segments for code and variables:

• code: All instructions are placed inside the code segment. This segment
can be mapped onto read-only memory.

• lit: All constants (literals) are placed in the lit segment. This segment
can also be mapped onto read-only memory.

• data: All initialized variables are placed in the data segment. This seg-
ment must be mapped onto writable memory.

• bss: The BSS1 segment contains the uninitialized variables. This segment
must also be mapped onto writable memory. No data should be stored in
the bss segment prior to execution.

In a bytecode file, the start of a new segment is noted by a single line, with just
the name of the segment. Note that some directives which apply to an item
in a specific segment, may fall outside that segment. For example; the export
directive applies to a specific function, but it might be placed outside the code
segment.

While the code segment will merely consist of instructions, the lit and data
segment contain preset values and labels, while the bss segment contains only
labels. The labels themselves are generated as instructions and are therefore
handled in Section 3.2.1.

LCC uses three directives to fill a segment with data. The first is byte. The
byte directive has two decimal parameters containing the amount of bytes, and
its numerical value of the data which should be added to the segment. The
byte directive is mostly used to add constant strings. The second one is skip.
This directive does not add any data to a segment, but just allocates space.
The decimal parameter holds the number of bytes to be allocated. The skip
directive is used to allocate uninitialized data in the BSS space. Finally, the
address directive loads an address in a segment. A label name is passed as
parameter.

3.1.2 Functions

LCC does not create any function prologue or epilogue, instructions for building
a function stack frame do not exist. Instead, the start and end of a function is
noted by two assembler directives, optionally combined with an export direc-
tive, which denotes a function that may be called from other files;

1Block Started by Symbol, originally an opcode, nowadays used as segment name
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export <functionname>
proc <functionname> <localstack> <argumentstack>
...
endproc <functionname> <localstack> <argumentstack>

The three parameters functionname, localstack and argumentstack are the same
for both the proc, and the endproc directive, and no function nesting is allowed.
The functionname parameter is a string which contains the name of the func-
tion, exactly the same as it appears in the C code. The localstack parameter
is a decimal number which denotes the total number of bytes occupied by the
local variables (and thus the amount of space on the stack in bytes which needs
to be reserved for local variables). Finally, the argumentstack parameter, also
a decimal number, contains the maximum amount of space required for the ar-
guments to functions which are called from the current function (not the total
size of the arguments passed to this function). The LCC bytecode generator
assumes stack space for variables is reserved for these arguments at the top of
a function stack frame, and that arguments to functions called from within the
current function are placed here. For example;

int add(int a, int b) {
return a+b;

}
int main() {

int sum;
sum = add(3, 5);
return sum;

}

is compiled into:

export add
code
proc add 0 0
...
endproc add 0 0
export main
proc main 4 8
...
endproc main 4 8

The stack frames right after the entrances of the two functions, main (on the
left) and add (on the right), are shown in Figure 3.1.2. All stack frames in
this chapter grow downwards, and only relevant items are shown. In this case,
it is chosen to place the function arguments before the local arguments, this
is however not required by LCC Bytecode. Both the room for arguments and
local variables are suspected to be removed from the stack whenever the program
leaves the current function.

The procedure main needs four bytes for local variables in the example (LCC
defines an integer to be four bytes long), and eight bytes (two integers, for the
two parameters to procedure add) for arguments.

If a function is called but not defined in the source file (e.g. a call to a library
function), LCC adds the directive import to the bytecode file:
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. . .
undefined argument space
undefined of main (8 bytes)

sum (undefined) local space of main (4 bytes)
. . . function main

. . .
a (3) argument space
b (5) of main (8 bytes)

sum (undefined) local space of main (4 bytes)
. . . function main
. . . function add

Figure 3.1: Stack frames after function entrances

import putchar

When including header files, all functions which are declared in the header file
are imported. It might be desirable to check whether those functions are ever
called before including them in the final executable.

3.1.3 Debug information

When LCC is passed the ‘-g’ parameter, it starts adding debug information to
its output files. The amount of information written however is very small and
consists of only two extra directives: the file and the line directive. The file
directive has one parameter, containing the file from which the following code
is compiled, while the line directive denotes the line in the current file.

Unfortunately LCC does not generate any debug symbol information such as
function return value types, local variable names etcetera.

3.2 Instructions

The LCC Bytecode language is based on a stack language. All (arithmetic)
operators are executed on the top stack arguments. However, the stack is still
assumed to be fully accessible, since locals and arguments are stored higher on
the stack.

Each instruction consists of at least an opcode and a value type. Most
instructions are also appended with a value/parameter size (in bytes) and some
instructions have a parameter. The opcode, type and size are directly appended,
if a parameter is required for the instruction, the instruction and parameter are
separated by a space. The possible opcode types can be found in Table A.1. The
structure and void type both do not have a size (for structure, it is unknown, for
void it is zero). The addition instruction for two unsigned 32-bit integers thus
becomes: ADDU4. Returning a 32-bit pointer will be RETP4, while returning a
void will result in RETV. Not all instruction-type-size combinations are allowed,
for example, additions of characters is done by first converting them to integers,



CHAPTER 3. LCC BYTECODE 14

and do an integer addition. ADDI1 therefore will never occur, but also the
MULP4 will never be generated by LCC since the multiplication of pointers is not
supported by C.

In Appendix A a table is given with all possible combinations of opcode,
type and size.

3.2.1 Labels

Labels are generated by the compiler as instructions. While all other instruc-
tions will only ever appear in the code segment, the LABEL instruction can
occur in any of the four segments. An example of the declaration of global 32
bit integer i:

export i
align 4
LABELV i
skip 4

By default, the LCC aligns every variable, except for characters, by 4. The skip
directive is the directive which actually allocates the space for the variable.

3.2.2 Loading and storing variables

Within compiled programs, variables can be stored at three different locations:
in the local space of a function, in the argument space of a function, and in
the global space of a program. For each of these, different instructions exist for
loading and storing them.

A variable load consists of two instructions. The first one computes the
address of the variable and puts it on top of the stack, the second one reads
the location from the stack and copies the data from the location to the top of
the stack. The first instruction is different for variables from all three spaces:
ADDRG for global variables, ADDRL for local variables and ADDRF for parameters.
The variable offset is stored in the parameter of the instruction. The base offset
of local and global variables and parameters should always be known by the
execution unit (as it can not be computed in advance). When, for example,
three local variables are declared, i, j and k, the variable offset for i is zero,
the offset for j is the size of i, and the offset for k is the size of i plus the size of
j. The base offset in this case is the beginning of the local space of the function
in which i, j and k are defined. In case of a global variable, the parameter of
the instruction is not numeric, but instead a string containing the name of a
label created with the LABEL instruction. In any case, the parameter may be
extended by +x or -x where x is a decimal number containing an offset relative
to the first parameter:

ADDRGP variable+12

is valid bytecode, it should add the address of variable, plus 12, to the stack.
Fetching the second function argument (when the first argument is 4 bytes

long) is done with the following code:

ADDRFP4 4
INDIRI4



CHAPTER 3. LCC BYTECODE 15

The stack frames for this piece of code (right after the ADDRF and the INDIR
instructions) are shown in Figure 3.2.2 (which corresponds to fetching argument
b from the example used in Section 3.1.2). The ADDRF instruction computes the
absolute address of the argument, by adding 4 to the argument space offset (in
this case 0x10). The result (0x14) is stored on the stack. The INDIR instruction
pops the address, and replaces it with the actual value found on this address.

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x20: 0x14 address of second argument

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined)

. . .
0x20: 5 value of second argument

Figure 3.2: Stack frames for fetching variables

In the same way; fetching local variable sum inside the main procedure would
be done with the following code:

ADDRLP4 0
INDIRI4

Storing variables in the local or global space of a program is done the same way,
except that the INDIR instruction is replaced by the ASGN instruction, and the
value to store is placed on the stack right after the address. The code

ADDRLP4 0
CNSTI4 10
ASGNI4

assigns the value 10 to the first declared local variable (which should be a 32-bit
integer). The stack frames for assigning variables are shown in Figure 3.2.2.
This code corresponds to setting variable ret from the previous example to
constant 10.

Storing variables in the argument space is a bit different; instead of ASGN,
the ARG instruction is used. The ARG instruction denotes the top of the stack
should be moved to the argument space of the function. Unfortunately, the ARG
instruction does not have a parameter, instead, the assembler or execution unit
itself should hold a counter on where to store arguments. The first occurrence
of ARG should move the top of the stack to the top of the argument space of the
current function, the second occurrence should be placed right after the first.
The counter can be reset on a function call (after a call, parameters to that
function are no longer used). Again from the previous example:
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. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x28: 0x14 address of first local variable

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x28: 0x18 address of first local variable
0x2B: 10 value to store

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (10)

. . .

Figure 3.3: Stack frames for assigning variables

CNSTI4 5
ARGI4
CNSTI4 3
ARGI4

loads the constants five and three into the argument space of the procedure
main. The arguments are now ready for the function call to add (the stack
frames from before and after this piece of code are similar to Figure 3.1.2).

Finally, constants, as seen in the previous example, are loaded through the
CNST instruction. The parameter of this instruction will hold the constant.
Floating point values are first casted to integers (such that the binary repre-
sentation of the integer is the same as the binary representation of the floating
point number according to IEEE 754). Double precision floating point values
are placed in two four byte integers. String constants are placed in the lit
segment rather than the code segment, and are loaded using the ADDRG and
INDIR instruction.

3.2.3 Calling to and returning from functions

A function call is made with the CALL instruction. CALL does not take any
parameters, instead, the address of the function is assumed to be on top of the
stack. The type and size of the CALL instruction are the type and size of the
return value. The code
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sum = add(3, 5);

is translated into

ADDRLP4 0
ADDRGP4 add
CALLI4
ASGNI4

Because of the ASGN instruction, the top of the stack after the CALL instruction
should contain the address of sum, generated by the ADDRL instruction, and the
return value of add, generated by the CALL instruction. The four stack frames
taken right after the four instructions are shown in Figure 3.2.3.

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x28: 0x18 address of first local variable

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x28: 0x14 address of first local variable
0x2B: 0x80 address of add

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (undefined) local space of main
0x1B: . . .
0x28: 0x14 address of first local variable
0x2B: 8 result of add

. . .
0x10: 3 argument space of main
0x14: 5
0x18: sum (8)

. . .

Figure 3.4: Stack frames for calling functions

To return a value from a function, LCC uses the RET instruction. The type
and size of the RET instruction are those of the return value, and should be those
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of the CALL instruction which called the function. The RET instruction uses the
top of the stack as a return value. The RET instruction must make sure the stack
and processing unit control registers looks just like it was before the function
call, but with one extra value on the stack: the return value.

Returning a constant 32-bit integer with the value 10 simply looks like this:

CNSTI4 10
RETI4

Supplying a function with arguments is done by writing them to the argu-
ment space as is discussed in the previous section.

3.2.4 Arithmetic operators

LCC bytecode supports all arithmetic operations which are supported by C. Most
take two parameters and generate one result, meaning it takes two arguments
from the stack, and put the result back on. Some other instructions simply alter
one parameter, in this case the stack size remains the same. The arithmetic
operators supported by LCC bytecode are depicted in table 3.1 All arithmetic

Table 3.1: LCC Bytecode arithmetic operators

Instruction Number of parameters C operator
ADD 2 +
SUB 2 -
MUL 2 *
DIV 2 /
MOD 2 %
RSH 2 >>
LSH 2 <<
BAND 2 &
BOR 2 |
BXOR 2 ^
BCOM 1 !
NEG 1 -

instructions only work on the “larger” values, for integer values int, long and
long long. The smaller versions, for integer values short and char, the value
is first converted to a 32-bit integer. The stack frames right before, and right
after a SUB instruction, are shown in Figure 3.2.4.

. . .
20
5

. . .
15

Figure 3.5: Stack frames for arithmetic operations
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3.2.5 Program jumps

No program could exist without the help of (conditional) jumps. LCC bytecode
supports seven types of jumps, six conditional and one unconditional.

The unconditional jump, the JUMP instruction and has no parameter. The
address to which to jump is instead taken from the top of the stack. The six
conditional jumps are depicted in table 3.2 They all have one parameter which

Table 3.2: LCC Bytecode conditional jumps

Instruction C operator
EQ ==
GE >=
GT >
LE <=
LT <
NE !=

contains a label to jump through if the condition evaluates to positive. The two
parameters of the condition are taken from the top of the stack.

CNSTI4 3
CNSTI4 4
GE SOMELABEL

Will not jump to SOMELABEL. However:

CNSTI4 3
CNSTI4 4
NE SOMELABEL

will. All if statements, while loops, for loops, etc. will result in a bytecode
construction which uses one or more (conditional) jumps. LCC will, if necessary,
add extra labels named as a dollar sign followed by an unique number. For
example, the following code:

01: int max(int a, int b) {
02: int ret;
03: if (a > b) {
04: ret = a;
05: } else {
06: ret = b;
07: }
08: return ret;
09: }

will compile into:

proc max 4 0
line 1
line 3
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ADDRFP4 0
INDIRI4
ADDRFP4 4
INDIRI4
LEI4 $2
line 4
ADDRLP4 0
ADDRFP4 0
INDIRI4
ASGNI4
line 5
ADDRGP4 $3
JUMPV
LABELV $2
line 6
ADDRLP4 0
ADDRFP4 4
INDIRI4
ASGNI4
line 7
LABELV $3
line 8
ADDRLP4 0
INDIRI4
RETI4
LABELV $1
endproc max 4 0

3.2.6 Variable type conversions

The last set of instructions handles the conversions of different variable types.
These include the conversion from one type to a larger or smaller version of the
same type, or the conversion between types. Instructions generated by LCC to
convert types are called CV*, where * stands for the type it is being converted
from. This can be F for floating point, I for signed integer, P for pointer and
U for unsigned integer. The type and size of the instruction denote the type
and size of the value it needs to be converted to. The size of the value before
it is converted is stored in the instructions parameter. Conversion instructions
always convert the value placed on top of the stack.

Not all conversions are supported. Converting one type to another may re-
quire multiple conversions. The possible combinations can be found in Appendix
A.

Several conversions are displayed here:

signed char to int:
CVII4 1
signed char to float:
CVII4 1
CVIF4 4
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pointer to double:
CVPU4 4
CVUI4 4
CVIF8 4

(note that pointer to double conversion is not directly supported by C, however,
if it would, it would look like this)

3.2.7 Structures

Structures in LCC Bytecode are not separated in several primitives, but con-
sidered a special type. Only a few instructions can have the structure type, as
can be seen in Table A.2, these instructions are INDIR, ASGN, ARG, CALL and
RET. However, LCC supports not passing structures to, and not returning them
from functions. Instead, pointers to structures are passed. Since this option is
default turned on, the ARGB, CALLB and RETB instructions will never appear in
bytecode files.

The INDIR and ASGN instructions are only used to copy one structure to
another. Every occurrence of INDIR will be followed by an ASGN instruction.
Copying a 16 byte global structure a to another global structure named b looks
like this:

ADDRG b
ADDRG a
INDIRB
ASGNB 16

Note that the size of the structure is only given as parameter of the ASGN in-
struction.

LCC Requires that the first values within a structure also get the lowest
memory addresses, since LCC uses pointer additions to compute the addresses
of different values within structures.

3.3 Shortcommings

Unfortunately, LCC Bytecode has a few small shortcommings which makes it
impossible, hard or just inefficient to run on a processing unit. It’s very impor-
tant to keep track of these shortcommings when building a processing unit for
LCC Bytecode. Most of them can very simply be fixed by modifying the existing
LCC backend, or by modifying the bytecode files slightly after they are generated
by LCC. In the following paragraphs, each of these problems are discussed, as
well as one ore more methods to fix them.

3.3.1 The LABEL instruction

The LABEL instruction is for some reason implemented as an instruction instead
of a directive as it should be. No processing unit will ever do something when it
encounters a LABEL instruction, instead, the information the instruction holds
should be used by the assembler and or linker.
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3.3.2 The ARG instruction

The ARG instruction is used to place an argument in the argument block to
pass it to a function. However the ARG instruction has no argument denoting
the location (or parameter index). Therefore, any processing unit must have
an extra counter to keep track on where to place arguments, while this can
be solved a lot easier by giving the ARG instruction a parameter containing its
location.

3.3.3 Structures

LCC Bytecode has its own type for structures. Therefore, structures of infinite
large size are copied with only one instruction. This will be impossible to
implement on any hardware system, but it is the only possible way to keep
moving structures around hardware independent. This must most likely be
changed when hardware specifications are available.

The real problem with structures is the fact that a structure copy is done by
two instructions: INDIR, which fetches the structure and ASGN, which writes the
structure to another location. However the size of the structure is not known
(the B type never has a size). For the ASGN instruction, this is solved by adding
the size of the structure as a parameter, however this is not done for the INDIR
instruction. A structure copy of a 16 byte structure thus looks like this:

INDIRB
ASGNB 16

This is a problem since the size of the structure must be known when fetching
it from the memory (by the INDIR instruction). Since each INDIRB is followed
by a ASGNB instruction, the assembler should look ahead when it encounters the
INDIRB to find the size the INDIRB instruction should work on.

3.3.4 Debug information

Although LCC does support the ’-g’ parameter, hardly any debugging informa-
tion is generated. When debugging is turned on, two new directives are added
to the bytecode files: file and line, which are described in Section 3.1. To be
able to efficiently debug programs, much more information is required.

3.3.5 Not using the return value

There is one shortcomming of the LCC bytecode that can actually be considered
a bug in LCC. Consider the following peace of code:

int add(int a, int b) {
return a + b;

}
int main(int argc, char** argv) {

add(1,2);
return 0;

}

which is perfectly good C code. The bytecode generated for this peace of code
looks like this:
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proc add 0 0
...
RETI4
endproc add 0 0
proc main 0 8
...
ADDRGP4 add
CALLI4
CNSTI4 0
RETI4
endproc main 0 8

It can be seen that the return value, which is put on the stack by the CALLI4
instruction is not used in some subsequent instructions, and is therefore left on
the stack forever. In the previous example this wouldn’t be much of a problem,
but the code

while(1) add(1,2);

will eventually cause an out of stack error, while this code should keep running
forever.

This problem has been posted to the comp.compilers.lcc newsgroup, and
several LCC users have confirmed this is a bug in LCC, but no response from the
programmers has been posted to date (January 2006).



Chapter 4

Implementation

As stated earlier, C code has four important properties which are hard or in-
efficient for an execution unit to do: combining source files and libraries, label
resolving, parsing and redundancy. With the use of LCC as compiler, the last
property has vanished, and parsing is made a lot easier. Still any processing unit
will find it much easier to work with one binary file instead of multiple text file.
Therefore an assembler and linker are used to respectively convert the assembly
files into binary assemblies and combine multiple assemblies into one executable
file. This chapter contains a description on the modifications made to LCC, and
the new programs created to assemble, link and execute LCC bytecode in the
first seven sections. The last section contains several points which are not yet
implemented, but may need to in the future.

4.1 Overview

The total design path from C source file(s) to the executable file is shown in
Figure 4.1. All C sources are first compiled into LCC bytecode files by the LCC
compiler described in the previous chapter. A small number of minor modifi-
cations to the LCC bytecode files are made by the Bytecode converter, and
is described in Section 4.3. The assembling (converting the bytecode text into
a binary form), and linking (joining several sources into one executable file)
is done in two separate programs; the assembler and the linker. Therefore,
the process remains transparent, and a small change in one source file doesn’t
require the entire program to be recompiled/reassembled. The assembler and
linker are described in Sections 4.4 and 4.5.

4.2 The LCC bytecode generator

Unfortunately the LCC bytecode has to be slightly altered to be a good assembly
language. To stay compatible with new versions of LCC, the choice has been
made to make no critical changes to the LCC bytecode so LCC can be updated
without breaking the system. Most changes to the LCC bytecode which have to
be made are therefore moved to the next program in the code generation phase,
and will be discussed in the next section.

24
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Figure 4.1: Design path

The first problem with LCC bytecode, the ’return value left on stack’ prob-
lem discussed in the previous chapter, can only be solved inside LCC itself. Only
then is known whether the value is ever going to be used again (or a complete
code analysis program has to be written). Luckily, the problem can be solved
pretty easily with only a single line of code. LCC has uses a forest [5] to inter-
nally represent the parsed C code. A forest consists of trees of DAGs [5], [4]. A
simple tree for the statement z = x + y is shown in Figure 4.2. For function
calls two types of trees exist: those for when a return value is used, and those
for when a return value is not used. In Figures 4.2 and 4.2 two function call
trees are shown. In the first figure, the result is stored in z, in the second, the
result is discarded. It can be seen that when the return value is not used, the
CALL instruction is the root of the tree. When the return value is used, the
CALL instruction will never be the root of the tree.

ASGN
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{{wwwwwwwww

z ADD

""EE
EE

EE
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E

yyssssssssss

x y

Figure 4.2: Tree for z = x + y

Inside LCC, a loop iterates through all tree roots and emits code for them.
The roots themselves recursively emit code for their children. The code-emit
function for roots is thus isolated for the code emit function for any other tree
node. The loop is placed in the I(emit) function in the code generator, and is
modified as follows:



CHAPTER 4. IMPLEMENTATION 26

ASGN
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z CALL
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some func

Figure 4.3: Tree for z = some func()

CALL

��
some func

Figure 4.4: Tree for some func()

dumptree(p);

to:

dumptree(p);
if (generic(p->op) == CALL && optype(p->op) != VOID) {
print("DISCARD%s%d\n", suffixes[optype(p->op)], opsize(p->op));

As can be seen, a new instruction DISCARD is introduced which pops a value
of the stack, and throws it away. The results obtained by this minor modification
can be found in Section 5.1.1. Note that the DISCARD instruction is not printed
when calling a VOID function.

4.2.1 Debug symbols

Another problem with LCC which could also not be handled outside of LCC
was the poor generation of debug symbols. Since most of the info required to
generate useful debug symbols is only known within LCC, the bytecode generator
itself must be modified when debug symbols are required. Even though debug
symbols are completely ignored by the assembler, the LCC bytecode generator
has already been modified to generate them.

Because the original debug information generation functions in the LCC byte-
code generator do not provide enough information to generate good debugging
symbols, the real code generation functions are hacked to emit debugging infor-
mation before, for example, emitting a local variable.

The new bytecode generator emits three new types of debugging informa-
tion: information about the return value of functions, about the type of local
variables, about the type of global variables and about the type of function
parameters. They all start with a keyword (directive), which is either local
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for local variables, global for global variables, function for function return
values and parameter for function parameters. After the directive, the name
of the variable is printed. In case of a parameter or a local variable, the name
is prefixed by the name of the function followed by a colon. The variable type
is printed after the variable name, and placed between triangular brackets. It
consists of the type of the variable followed by the size of variable between
square brackets. When a variable type is of the pointer type, the type which
the pointer points to is also resolved, and pointer[m] to is added in front of
the variable type.

For the following piece of C code:

int gbl;

int main(int argc, char** argv) {
int lcl;
/* some code */

}

The following debugging symbols are generated:

global gbl <integer[4]>
function main <integer[4]>
local main:lcl 0 <integer[4]>
param main:argc <integer[4]>
param main:argv <pointer[4] to pointer[4] to integer[1]>

The debugging symbols are generally placed before the actual code or di-
rective which creates the label, the assembler should however allow debugging
information to be placed anywhere in the file.

Note that each local variable gets an extra numeric parameter. This param-
eter contains the location of the variable in the function’s stack frame. No such
argument is added for parameters since within LCC it is not known, and can only
be found by counting arguments and summing their sizes1. For global variables
the locations are also not emitted, but their labels are preserved during the
compilation and assembling process.

4.2.2 Updating LCC

Since multiple applications may depend on LCC, the original bytecode generator
is left untouched, but instead, a copy was made. All the code for the bytecode
generator is located in src/bytecode.c. A copy of this file is made, and is
called src/xbytecode.c. Before attaching it to LCC, the name of the Interface
structure must be changed to xbytecodeIR, or any other unique name: The line

Interface bytecodeIR = {

is replaced by:

Interface xbytecodeIR = {

To attach the backend to LCC, one line must be added in src/bind.c:
1The bytecode converter described in Section 4.3 computes the location of arguments, the

converter can easily be converted to add these locations to the debug symbols
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xx(xbytecode, xbytecodeIR) \

can be placed right under the original

xx(bytecode, bytecodeIR) \

Off course the Makefile must also be altered to compile and link the new source
file.

4.3 The bytecode converter

The bytecode converter is a very small and simple program which only mod-
ifies a few LCC bytecode directives and instructions. It basically fixes a few
“glitches”. All these modifications could have been done by the assembler, but
to honor the traditional roll of the assembler, and to keep the process transpar-
ent, the modifications are made by a different program. The modifications to
the bytecode the converter makes are listed here:

• Replace procedure directives with real stack frame creation instructions

• Replace the LABEL instruction with a label directive

• The ARG instruction gets a parameter containing the parameter’s offset

• The INDIRB instruction gets a parameter containing the size of the struc-
ture

Most of these items are hot fixes for LCC bytecode shortcommings described
in Section 3.3. One new item is the replacement of procedure directives by real
instructions. This is done to simplify the assembling process. The instructions
which are currently used for stack frame creation are completely based on the
working of the interpreter, and may need to be changed for a real hardware
implementation. The actual instructions used to create function stack frames
can be found in Section 4.6.3.

4.4 The assembler

The assembler is a small program which converts the bytecode into binary
code, and handles all LCC bytecode directives. The conversion is a simple
one-to-one conversion, meaning that theoretically the exact source file can be
reproduced when disassembling the binary assembly file, only debug information
and comment will be lost. Except for the code segment, the binary coding of the
segments is exactly done as described by the assembler directives described in
Section 3.1. The binary coding of the code segment, as well as the format of the
assembly file can be found in Appendix D.2. All labels are left intact within the
assembler, thus all addresses must be computed within the linker. All addresses
within the binary code are replaced by unique identifiers, which correspond to
entries in a table containing all labels. For example: when calling function
add, the parameter of the ADDRG instruction (which is used to get the address
of add), is replaced by an unique identifier which corresponds to a table entry
containing the actual address and segment of add. To find all unique identifiers
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in the binary code, a bitmap pattern is generated. Each bit represents one byte,
and each bit being one represents that byte being part of an unique identifier
(and thus should be replaced by the actual address. The linker should thus scan
the bitmap for an unique identifier, read it, find the address and segment within
the table, and update the code with the final (absolute) address. An example
of the assembling process can be found in Appendix F. Debug information is
currently discarded within the assembler. All directives introduced in Section
4.2 are accepted as valid input, but nothing is done with them yet.

4.5 The linker

The linker joins all object files into one executable file. In addition it also
computes all label locations and updates the segments with these locations. In
general the linker walks through the following steps:

• Load all files into memory, store them in Assembly structures

• Check all labels, and connect labels pointing to code in other assemblies

• Compute the combined size of the four segments (see Section 3.1.1)

• Compute all label locations

• Update the binary segment data

• Write all to segments to a single file

In addition to the assemblies given as input files, the linker may add several
other assemblies if required. These are discussed in the following sections.

Upon execution, the entire executable should be copied to the CPU’s mem-
ory. The program assumes it is placed on address 0, if not, the address of each
memory operation must be incremented by the programs base address. The
CODE segment is the first segment in the executable, directly followed by the
LIT segment and the DATA segment. The BSS segment is again not written to
the final executable, since it would only contain junk. Instead, a dummy la-
bel with the name $endprog is introduced in the linker who points to the first
byte beyond the BSS segment. The location of this label can be used to correctly
place the stack or heap within the processing unit’s memory. Note that the label
starts with a dollar sign, meaning the label is only accessible through bytecode,
and will never interfere with any existing C variables or functions. The stack
can be placed anywhere in memory, but needs to grow upwards in memory (see
Section 4.6.2). The stack can therefore be placed right after the program, while
all dynamically allocated data objects can be placed at the end of the memory.

4.5.1 Bootstrap code

The bootstrap code is a small piece of code placed at the very beginning of the
executable file. The bootstrap code is merely a bridge between the startup of the
processing unit, which will start executing at address 0, and the startup of the C
code, which will start at the call to the main function. A simple bootstrapping
code can thus exist of only a few lines of code calling main.
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The standard bootstrap code which is used for this project contains in addi-
tion the setup of the two standard parameters to the main function: argc and
argv. They will not contain any useful information, but they will be valid for
any C program using them.

The bootstrap code also contains code to allocate the BSS segment. Since
the stack grows upwards (see Section 4.6.2) on default, it is placed in memory
right after the executable file, which is placed at address zero. To save space,
the BSS segment is never included in the executable file, and the stack, when
started directly after the program’s data, will overlap the BSS segment. The
bootstrap code starts by moving the stack beyond the BSS segment. To do
this, some variables must be placed on the stack which thus overwrites the BSS
segment. This is not a problem, since uninitialized variables contain junk when
the program starts anyway. To move the stack a new instruction NEWSTACK is
introduced, which moves the stack to the location pointed by the value on top
of the stack. Any values left on the stack before using NEWSTACK are no longer
valid after a NEWSTACK instruction.

4.5.2 Library files

Some functions may be so widely used they need to be put in library files. Most
C compilers provide the programmer with a standard library containing a lot
of functions for I/O, mathematical calculations, etcetera. Library files can be
created and linked (see Appendix E.4) by the linker. A library file consists of
several assembly files, which are added to the executable when required. If one
library assembly needs another library assembly it is also automatically linked,
however an assembly within a library is always added completely to the exe-
cutable. When the functions printf and putchar, for example, are placed in
a library in the same assembly, printf is always added to the executable when
putchar is. However, when they are put in the same library, but in differ-
ent assemblies, the use of printf automatically imports printf and putchar
(assuming printf uses putchar), but the use of putchar won’t import printf.

4.6 The interpreter

The interpreter is a program which interprets and executes binary instructions
generated by the assembler. The engine of the interpreter, the part which ac-
tually executes the instructions, is separated from the user interface. This is
done so the interpreter can also be embedded in other applications for test-
ing or debugging purposes. How to embed the interpreter is described in
Appendix B. The layout of the interpreter is shown in Figure 4.6. The in-
terpreter is started from interpreter.c which continuously calls execute in
interpreter_engine.c, which executes one instruction. I/O required by pro-
grams running on the interpreter is handled by the operation system specific
io.c. The execute function relies on several sub functions which handle, for
example, comparison, arithmetic and memory operations. These operations are
all mapped on the native operations supported by C, the OS or the running
processor.

The first section of this paragraph describes the interpreter engine, how
programs are loaded and executed. The second section describes the stack,
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how it is built and maintained. Finally, Section 4.6.3, describes the few new
instructions the interpreter supports.

Figure 4.5: Interpreter

4.6.1 The interpreter engine

The engine of the interpreter is the part of the interpreter which loads pro-
grams into its memory, and executes the instructions. It also has several helper
functions to convert variables as they appear in the interpreter memory to C
variables, which can be used by programs embedding the interpreter for maxi-
mum control.

The interpreter engine uses an Interpreter information structure which
holds the state of the interpreter, and a pointer to its memory. The
create_interpreter is used to create a new interpreter information structure.
The desired size of interpreter memory is passed to this function, and can not
be changed afterwards. Loading an executable into the interpreter’s memory
is done by the load_program function, which accepts a file pointer. The file
is loaded into the lower part of the memory (address 0-...), and thus all pre-
computed pointers in the program are also valid for the interpreters memory.
However, this makes it impossible to load multiple programs on the interpreter.

The interpreter always starts executing at address 0, which should hold
some bootstrap code which calls the main function. See Section 4.5.1 for more
information about the used bootstrap code. The execute function executes
the instruction pointed to by the program counter: PC. The execute function
returns an error code (defined in src/interpreter_engine.h) if the instruc-
tion could for some reason not be executed, ERR_EXIT_PROGRAM when the HALT
instruction is encountered or ERR_NOERROR when the instruction was executed
successfully.



CHAPTER 4. IMPLEMENTATION 32

4.6.2 Stack frames

LCC makes a few assumptions about the stack frame when generating LCC bytecode,
and to be able to correctly execute LCC bytecode, the stack frame must be de-
signed by these assumptions. The assumptions are listed here, some are already
discussed in previous paragraphs, and some others are new.

• Space for local function variables is allocated when entering a function.

• Space for function arguments for callees is allocated when entering the
caller function.

• The first value in a structure is assumed to have the lowest absolute mem-
ory address of all values in a structure (see Section 3.2.7).

• Because of the previous assumption, the first of all local variables, and the
first of all arguments, must also have the lowest absolute memory address.

• A function return instruction should rollback the stack to the point right
before the call, with just the return value added: from the caller’s point
of view, a CALL instruction acts just like a CNST instruction.

The stack frame is further optimized, to require as small possible amount of
pointers as possible. The first pointer which is required for any stack is a
pointer pointing to the top of the stack. This pointer is from now on called
the stack pointer, or SP. The design is started by assuming some values already
exist on the stack, and a function call is encountered. The CALL function must
write the return address to the stack, since after the call, the return address is
no longer known. Right after a function call, the stack frame thus looks like
Figure 4.6.2.

. . .
Caller function

. . .

. . .
Return address

←SP

Figure 4.6: Stack frame step I

Note that the stack frame here grows downwards, this can either be to a
higher or a lower memory address. Next, space for both the arguments to sub-
functions and space for the function’s local variables must be allocated. To
be able to access these areas, pointers must be set to the lowest address of
these spaces. These pointers are called the local pointer (LP) and the argument
pointer (AP). An additional pointer is needed which denotes the beginning of a
function’s stack frame. This pointer is called the frame pointer, or FP. Since it
is not yet known whether the stack frame should grow up in memory, or down
in memory, in the following pictures some pointers appear twice, once with an
up pointing arrow, to denote this pointer is required when the stack grows up
in memory, or with a down pointing arrow, which is required when the stack
grows down. This is shown in Figure 4.6.2
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Note that placing the argument block above the local block is a random
choice, and they can be exchanged when needed.

Since the pointers must be able to be restored on function return, they must
also be placed on the stack. These should be stored before the argument and
local blocks, because the creation of these blocks also generate the new pointers,
as shown in Figure 4.6.2

The pointers are saved in the processing unit state block. The state block
is accessible through the FP pointer, and thus no new pointer is required. Since
the state block has a fixed size, the location of FP can be reached from AP when
the stack grows upward in memory. Therefore, one of those registers can be
left out when letting the stack grow upwards in memory. The result is show in
Figure 4.6.2.

. . .
Caller function

. . .

. . .
Return address
Argument block

Local block
.

←FP/AP↓
←AP↑/LP↓
←LP↑

Figure 4.7: Stack frame step II

. . .
Caller function

. . .

. . .
Return address

State
Argument block

Local block
. . .

←FP
←AP↑
←AP↓/LP↑
←LP↓

Figure 4.8: Stack frame step III

. . .
Caller function

. . .

. . .
Return address

State
Argument block

Local block
. . .

←Low address

←FP
←LP
←High address

Figure 4.9: Stack frame step IV



CHAPTER 4. IMPLEMENTATION 34

The argument pointer is reintroduced by letting it point to the argument
block of the previous function. This location is required to be able to load the
arguments passed to the current function. The final stack frame is shown in
Figure 4.6.2. All stack frames for the example introduced in Section 3.1.2, are
shown in Section 4.7.

. . .
Argument block
Caller function

. . .

. . .
Return address

State
Argument block

Local block
. . .

←AP

←FP
←LP

Figure 4.10: Final stack frame layout

4.6.3 New instructions

The interpreter has support for five new instructions, which can also be found
in Table A.2. These instructions are:

• DISCARD: discard (pop) top of stack.

• HALT: stop the interpreter, is used by the default exit() function.

• SAVESTATE: function preamble, save the entire state of the processor to
the stack (used on function calls). The SAVESTATE implementation on the
interpreter saves the argument pointer (AP), the local pointer (LP) and
the frame pointer (FP) in this order to the stack.

• ARGSTACK: function preamble, allocate space (amount of bytes in param-
eter) for arguments to sub-functions. Should be the second instruction of
every function (right after SAVESTATE) and must be followed by VARSTACK.
The VARSTACK implementation on the interpreter copies (besides allocat-
ing the space for arguments) the frame pointer to the argument pointer,
and the stack pointer to the frame pointer (see Section 4.7). Because of
the pointer change, this instruction must always be executed, even when
the size of the argument stack is zero.

• VARSTACK: function preamble, allocate space (amount of bytes in parame-
ter) for local variables. Should be preceded by ARGSTACK. The interpreter
copies the current stack pointer to the local pointer on execution of this
instruction (see Section 4.7). This instruction must therefore again always
be executed when entering a function.

• SYSCALL: calls a system function.
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An example of the usage of the SAVESTATE, ARGSTACK and VARSTACK instruc-
tions can be found in Section 4.7.

The SYSCALL instruction is introduced to interface with the environment,
for example to read and write characters from and to the console, or read some
interpreter properties. The SYSCALL instruction takes one or two parameters
from the stack, and always places one parameter back. The top of the stack
should be a constant 32-bit integer denoting the type of system call to be made.
All parameters and return values of the SYSCALL instruction are 32 bit integers.
The following types are supported:

• 0x01 read and return one character from the console (blocking).

• 0x02 write one character to the console, returns character written (takes
one extra 32 bit integer value from the stack).

• 0x03 read and return one character from the console (non-blocking). Re-
turns -1 when no character is present.

• 0x04 generate and return a random number.

• 0x05 return the number of instructions executed.

The interpreter has a special I/O library rather than using standard C func-
tions directly. The main reason for this is the support for non-blocking reads.
The standard getchar function provided by the C library does not return until
a character is written. This is very nice on a multitasking environment, but
when simulating an embedded application this is highly non-desirable.

The I/O library, stored in src/IO.c, supports three functions to access the
console: read_char, which reads one character, and blocks when no character
is available, read_char_non_blocking, which reads one character, or returns
-1 when no character is available, and write_char, which writes one character
to the console. In addition, the functions init_io and term_io are also called
at the startup and exit of the interpreter. Since non blocking reads are not
supported by C itself, this is done by directly manipulating the operation system.
The I/O library currently supports Windows and Linux, and chooses it’s OS at
compile-time by checking if the _WIN32 macro is defined.

4.7 Program stack frame example

This section contains the stack frames which will be generated by the interpreter
when running the code sum = add(a, b);. The first stack frame, shown in
Figure 4.7, is taken right before the function call to add. On the top of the
stack, the address of add can be found which is needed by the CALL instruction
(see Section 3.2.3. Before that, the address of the sum variable can be found,
which is required to assign the result of add to sum (see Section 3.2.2).

Next, the CALL instruction is executed. The address of add is taken from
the stack, and the return address (next instruction in caller function) is placed
on the stack (see Section 3.2.3). The stack frame taken right after the CALL
instruction is shown in Figure 4.7.

The program counter is now pointing to the first instruction of add, which
should be a SAVESTATE instruction. This instruction saves the AP, LP and FP
pointers to the top of the stack, as shown in Figure 4.7.
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. . .
a
b

sum
address(sum)
address(add)

←FP

←LP

←SP

Figure 4.11: Stack frame example Step I

. . .
a
b

sum
address(sum)
return address

←FP

←LP

←SP

Figure 4.12: Stack frame example Step II

. . .
a
b

sum
address(sum)
return address

AP
LP
FP

←FP

←LP

←SP

Figure 4.13: Stack frame example Step III
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Now that the processor state is saved, a new stack frame must be created
using the ARGSTACK and VARSTACK instructions. The two stack frames taken
after each of these instructions are shown in figures 4.7 and 4.7. Note that add
does not call any other functions, or use any local variables. The parameters of
both ARGSTACK and VARSTACK are therefore zero, and no space is allocated for
local variables and arguments to callee functions.

. . .
a
b

sum
address(sum)
return address

AP
LP
FP

←AP

←LP

←SP/FP

Figure 4.14: Stack frame example Step IV

. . .
a
b

sum
address(sum)
return address

AP
LP
FP

←AP

←SP/FP/LP

Figure 4.15: Stack frame example Step V

The next stack frame, shown in Figure 4.7, is taken just before the RET
instruction. The return value is placed on top of the stack.

The final stack frame is shown in Figure 4.7, and is taken right after the
return from add. All pointers are restored to there original values from before
the function call, and the return value is the only result left from the call to
add.

4.8 Future work

Although many plain C programs can be compiled and executed on the inter-
preter, some issues are still open for future work. A few of these issues are given
in the following list, with a brief description on how this can be accomplished.

• Debugging: debugging is not supported by the interpreter, and debug
symbols are discarded by the assembler. To turn the application in a
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complete development environment, some way of debugging must be im-
plemented in the interpreter, and therefore debugging symbols must be
passed through the code conversion chain to the interpreter.

• Libraries: several standard C library functions are already implemented,
but most are not. To increase the power of the application, the entire
standard library should be ported to this platform.

• Base address: it is useful to build support for a “base” address for appli-
cations making it possible to run them from any point in memory. This
will be required for ROMable code, and also to load multiple programs on
the interpreter, for example to be able to run a simple operating system.

• Structures assignments: infinitely large structures are copied with only
one instruction. No real hardware system will ever be able to do this.
Splitting up the structure in parts can both be done by the hardware itself,
or the converter/assembler. The second one may be a logical choice since
it requires less complicated hardware, but then a feedback from hardware
specifications to the converter/assembler is required.

• Function preambles: these are currently created by the bytecode converter,
however, these depend heavily on the processing unit’s implementation.
Some feedback from the hardware specifications might be required to build
stack frames for future processing units.

. . .
a
b

sum
address(sum)
return address

AP
LP
FP
. . .

return value

←AP

←FP/LP

←SP

Figure 4.16: Stack frame example Step VI

. . .
a
b

sum
address(sum)
return value

←FP

←LP

←SP

Figure 4.17: Stack frame example Step VII
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• Floating point: currently the interpreter does not support the floating
point type. Since floating point numbers are stored as decimal values
in bytecode files, the assembler and linker can act on the floating point
type just as they act on integer types, but support for the floating point
arithmetic and conversion instructions must be built in the simulator to
fully support floating point operations.

• Beyond 32-bit: the ALU functions used by the interpreter are mapped onto
the ALU of the executing processor, meaning that on a 32-bit processor,
overflow will occur when executing arithmetic instructions larger than 32-
bit.
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Test results

This chapter contains the test results obtained by analyzing compiled programs,
executing them and comparing them to programs compiled for other processing
units. In addition, the instruction set and register usage for de LCC Bytecode
interpreter is compared to those of a few existing processing units. The first
section of this chapter shows some analysis of the LCC Bytecode language. In
the second section, the assembly files of programs compiled for different pro-
cessing units are compared, and in the last section, different processing units
are compared to the LCC Bytecode interpreter written for this research.

The test programs which are used to generate these results are a simple
game zeeslag and a fast Fourier algorithm fft written by the author, a memory
monitor application written by Arjan van Gemund, mymon, and the test program
which comes with the softfloat library, float, written by John R. Hauser.

5.1 LCC Bytecode analysis

In this section, LCC Bytecode is further analyzed. In the following sections, the
results for the stack-leak fix are shown, and an overview of the occurrence of all
instruction types is given.

5.1.1 Results of the DISCARD instruction

As mentioned in section 3.3.5, unused return values stay on the stack forever.
To fix this problem, a new instruction was introduced: the DISCARD instruction,
which discards the top n bytes of the stack. This method slightly increases
the amount of instructions to be executed, and thus decreases the speed of the
application, but it fixes a memory leak. It should therefore be considered a nec-
essary fix, rather than an optimization. Using the -nd command line parameter
on the interpreter, the DISCARD instruction can be ignored (the interpreter will
not execute the instruction, nor will it increase the instructions executed count).
Several test files which can be found in the projects test directory where exe-
cuted with and without the use of the DISCARD instruction, the results can be
found in Table 5.1.

The test files used for these results can all be found in the test directory in
the projects directory. The retvaltest is a test program written to show the

40
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problem, and should not be considered a real program. However, it shows that
the DISCARD instruction is able to get rid of 99% of the (wasted) stack space at
the cost of only a 6% slower program. This program is also not used to compute
the final averages.

Table 5.1: Discard instruction results
Program stack peak decrement instructions executed increment
retvaltest 99% 6%
zeeslag 49% 0%
mymon 38% 1%
fft 51% 1%
float 92% 0%
averages 58% 1%

5.1.2 Instruction usage

In Table 5.2, the occurrence percentage of each single instruction is shown in
percentage. To obtain these results, results from the zeeslag, mymon, fft and
float programs are combined. In total over a 150 million instructions where
executed. It can be seen that memory read and write operations make up for
a huge part of an average program. All instructions are tested several times
(although some very often compared to others), except for all floating point
instructions, which are not yet implemented in the interpreter.

Table 5.2: LCC Instruction frequency
Instruction Frequency
ADDRF 7,96%
ADDRG 2,30%
ADDRL 22,87%
CNST 6,16%
BCOM 0,06%
CVF 0,00%
CVI 4,84%
CVP 0,00%
CVU 1,88%
INDIR 21,42%
NEG 0,15%
ADD 1,99%
BAND 0,87%
BOR 0,54%
BXOR 0,09%
DIV 0,09%
LSH 1,28%
MOD 0,00%
MUL 0,53%
RSH 1,14%

Instruction Frequency
SUB 0,62%
ASGN 10,30%
EQ 0,38%
GE 0,72%
GT 0,30%
LE 0,01%
LT 0,11%
NE 1,06%
ARG 4,36%
CALL 1,48%
RET 1,48%
JUMP 0,47%
LABEL 0,00%
VARSTACK 1,48%
ARGSTACK 1,48%
SYSCALL 0,01%
SAVESTATE 1,48%
NEWSTACK 0,00%
DISCARD 0,09%
HALT 0,00%
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5.2 Assembly files

In this section, the assembly (text) files are compared for several processing
units. LCC is used to generate i386 code, MIPS code and LCC Bytecode. SDCC
to generate code for the 8051. In table 5.3 the number of assembly lines for
several programs are displayed.

Table 5.3: Assembly file lines comparison
Program i386 MIPS 8051 LCC Bytecode
zeeslag 1320 (63%) 1258 (60%) 2042 (98%) 2088 (100%)
mymon 3642 (74%) 3259 (66%) 3795 (77%) 4954 (100%)
fft 450 (67%) 424 (63%) ? 670 (100%)
float 3390 (68%) 3236 (65%) ? 4972 (100%)
average (perc.) 68% 64% ? 100%

At first glance, the number of lines in an assembly file may give any infor-
mation, but when the following things are considered, they do:

• Each line in an assembly file contains one instruction

• Assembler directives can be neglected

• If a program is compiled for platform A and B, and assembly file A contains
n times as much instructions as assembly file B, the number of instructions
executed on platform A will also be roughly n times as much as the number
of instructions executed on platform B, when the extra instructions are
uniformly distributed through the code.

It can be seen both MIPS and i386 assembly code files are about 2/3 the size
of the LCC Bytecode files. The main reason for this is the fact that both the
MIPS and the i386 support reading and writing from and to a memory location
relative to a register with only one instruction, where LCC Bytecode needs at
least two. As can be seen in Table 5.2, these instructions make up for a very
large part of any program. Unfortunately, SDCC was not able to compile the
float and fft programs, thus no test results are available. This method is
chosen over looking at the sizes of the object or executable files, since both can
contain a huge amount of information besides the actual code, and are very
depended on the size (8-bit 8051, 32-bit i386) of the processor.

5.3 Processing unit comparison

Finally, in this section, several processing units are compared to the written
LCC Bytecode interpreter.

It can be seen a lot can be won on the complexity of the processing unit
when designing it from the viewpoint of C. Both MIPS and i386 are very pow-
erful processor which have come a long way, but clearly support a lot more
instructions than necessary to execute just C code, which will definitely make
those processors a lot more complicated. One should remember however that
the i386 and MIPS where designed to be much more than just a C processor. To
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be able to build operating systems like Linux in LCC Bytecode, the instruction
set must be slightly expanded to support threading and interrupts.

Table 5.4: Instruction count and size
Processing unit Supported Instruction size General purpose Control

instructions (bits) registers registers
MIPS R2000[8] 60+ 32 28 4
8051[1] 43 8-24 81 2
i386[9] 100+ ? 4 4
LCC bytecode 38 16-48 0 3
interpreter



Chapter 6

Conclusions

In Chapter 2, it is shown that LCC Bytecode is the best choice for an assembly
language, when building a processor based on C in limited time. Although
several modifications had to be made to efficiently execute the code generated
by the LCC compiler, test results show that, if not all, most standard C programs
can correctly be converted to LCC Bytecode and executed.

A software interpreter was written to execute the generated LCC Bytecode
programs, and was used to analyze the code generated by LCC. To fully support
the LCC Bytecode language, 31 instructions needed to be implemented, plus
seven new instructions for stack frame manipulation and interpreter control.
The total number of 38 required instructions is much lesser than the number
of instructions supported instructions by most existing processors. Basing a
new processor on LCC Bytecode will thus result in a much simpler processor,
which will in the end result in a smaller, more reliable processor which can be
developed in lesser time.

Even though no real speed tests where done, it can be seen from the gener-
ated assembly files that the average number of instructions per C application is
higher when using LCC Bytecode than most other assembly languages. Thus a
LCC Bytecode processor with the same amount of instructions per second as,
for example, a MIPS processor, will be slightly slower. This is mostly caused by
the fact that most assembly languages allow memory access in one instruction,
while LCC Bytecode requires two. Since these instructions make up for about
one third of an average C program, a lot of instructions are lost here. In terms
of instructions per second, the new processor will most likely be a lot slower
than most modern processors, which are all mostly developed to be fast, not
small or simple.

In conclusion, it is seen from the previous chapters that basing a new pro-
cessor completely on the C programming language will result in a less complex
processor, which makes the development easier and thus faster. In the end this
will require smaller (and thus cheaper) chips. When lowering development and
product costs have a higher priority than using the fastest processor available,
designing a processor based on C might therefore be a better solution than
designing a processor based on hardware properties.
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LCC bytecode instructions

In Table A.2, quoted from The lcc 4.x Code-Generation Interface [6], show
all possible instructions generated by the LCC Bytecode generator. The first
column denotes the opcode as it appears in LCC Bytecode files. The second
and third column contain the possible type and sizes for this opcode. The size
column contains blocks of sizes, each block shows the possible sizes for one
type. If an instruction supports two types, two blocks will be found in the size
column. Since the structure and void types have no size, they will also have no
corresponding allowed size block in the third column. The types and sizes are
denoted as letters which are defined in Table A.1. Finally, the last column gives
a brief description of the instruction.

The last few entries in the instruction table are not generated by LCC, but
are added to successfully execute standalone programs.

Table A.1: LCC Instruction type and size suffixes

Type suffix Meaning (C)
F Floating point
I Signed integer
U Unsigned integer
P Pointer
V Void
B Structure

Size (bytecode) Size (C)
f sizeof(float)
d sizeof(double)
x sizeof(long double)
c sizeof(char)
s sizeof(short)
i sizeof(int)
l sizeof(long)
h sizeof(long long)
p sizeof(void*)
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Table A.2: LCC Instructions
Operator Type Suffixes Sizes Operation
ADDRF ...P.. p address of a parameter
ADDRG ...P.. p address of a global
ADDRL ...P.. p address of a local
CNST FIUP.. fdx csilh csilh p constant
BCOM .IU... ilh ilh bitwise complement
CVF FI.... fdx ilh convert from float
CVI FIU... fdx csilh csilhp convert from signed integer
CVP ..U... p convert from pointer
CVU .IUP.. csilh csilh p convert from unsigned integer
INDIR FIUP.B fdx csilh csilh p fetch
NEG FI.... fdx ilh negation
ADD FIUP.. fdx ilh ilhp p addition
BAND .IU... ilh ilh bitwise AND
BOR .IU... ilh ilh bitwise inclusive OR
BXOR .IU... ilh ilh bitwise exclusive OR
DIV FIU... fdx ilh ilh division
LSH .IU... ilh ilh left shift
MOD .IU... ilh ilh modulus
MUL FIU... fdx ilh ilh multiplication
RSH .IU... ilh ilh right shift
SUB FIU... fdx ilh ilhp p subtraction
ASGN FIUP.B fdx csilh csilh p assignment
EQ FIU... fdx ilh ilhp jump if equal
GE FIU... fdx ilh ilhp jump if greater than or equal
GT FIU... fdx ilh ilhp jump if greater than
LE FIU... fdx ilh ilhp jump if less than or equal
LT FIU... fdx ilh ilhp jump if less than
NE FIU... fdx ilh ilhp jump if not equal
ARG FIUP.B fdx ilh ilh p argument
CALL FIUPVB fdx ilh ilh p function call
RET FIUPVB fdx ilh ilh p function return
JUMP ....V. unconditional jump
LABEL ....V. label definition
HALT ....V. Stop interpreter
ARGSTACK ....V. Create argument stack
VARSTACK ....V. Create local variable stack
SYSCALL FIUP.. fdx ilh ilh p Call special function
SAVESTATE ....V. Saves processor state on stack
NEWSTACK ....V. Creates a new stack
DISCARD FIUP.. fdx ilh ilh p Discard top of stack
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Embedding the interpreter

The interpreter is fully embedable, meaning it can be linked with any application
which can then run code on the interpreter. This feature makes it possible to
test only parts of a program on the interpreter, while running the running the
rest of the code natively. The source code used in this chapter can be found in
the test/embed directory of the project.

The first section of this chapter describes how to embed the interpreter in an
application: how to link the interpreter with the application and how to start it.
The second paragraph describes how to call a function in the embedded code.

B.1 Embedding the interpreter

To embed the interpreter in an existing C program, the header
interpreter_engine.h which is placed in the projects source directory, must
be included. From then, several functions are available to control the interpreter.

The first step is to create a new instance of the interpreter, which must be
done by calling create_interpreter. This function returns a pointer to an
interpreter information structure (Interpreter*), or NULL if something went
wrong. It takes one argument: the total amount of memory the interpreter can
access. This can not be altered later, and must be large enough to hold the
program’s executable, the uninitialized variables and the programs stack. The
interpreter will generate an error when it runs out of memory, so when it runs
out, increase the memory size and try again.

When the interpreter is created succesfully, an executable file must be loaded.
This is done with the load_program function, which takes two arguments: a
FILE* to the executable and an Interpreter* to the interpreter info structure
created by the previous function. This function will return zero when it failes
(not enough memory or file access violation). From this moment, the interpreter
is ready to execute instructions.

The execute function executes one instruction and sets the program counter
to the next. It returns an error code (see interpreter engine.h for all codes) when
an error occures, or ERR_NOERROR when it succeeds. A very simple interpreter
(without any error checks) would look like the following:

Interpreter* interpreter;
interpreter = create_interpreter(1024*1024);
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load_program(executable_file, interpreter);
while(execute(interpreter) == ERR_NOERROR);

To compile your program, three files must be linked with it: interpreter_engine.o,
io.o and instructions.o. The first file contains the actual interpreter, the
second some extended io functions1 and the third the instruction decoder.

B.2 Calling a function

The previous example shows how to run a complete program on the interpreter.
More usefull is the possibility to run only a part of the program on the inter-
preter. When embedding the interpreter it is possible to run only one specific
function. Several actions must be performed to call a function on the interpreter.
These are all described in the following sections.

B.2.1 Gathering information

Since neither the debugger, nor the linker, nor the interpreter supports debug-
ging symbols (yet), it is up to the programmer to pass all relevant information
about the function to the interpreter and to make sure this information is cor-
rect. At first the complete function declaration must be known: the type and
count of the parameter as well as the type of the return value must be passed
correctly to the interpreter. This can off course be directly extracted from the
running C source file. Finally also the function’s location in the executable must
be provided. All final addresses are computed during the linking stage of the
build, and only after this stage, the addresses are valid. Luckily, the linker can
write the addresses of all public variables and functions2 to the screen while
linking the program. This is done by supplying the linker with the -v command
line switch. For example:

linker -v func_serv.co -lib stdio.cl -o testcode.ce

Public functions:
Name: Location:
exit 0x0000003A
mult 0x00000100
main 0x00000080
set_i 0x000001EA
add 0x000000B0
sub 0x000000D8
pow 0x00000150
div 0x00000128

Variables:
Name: Location:
i 0x000002F0

1one may wants to make his/her own io.o when embedding which does not use stdin and
stdout directly.

2private/local functions and variables are not shown.
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Here the addresses of all public functions in the original func serv.c are printed,
as well as the single public variable declared in func_serv.h.

B.2.2 Preparing the call

Before making a function call, the stack must be prepared for it. All parameters
must be placed on the stack and the stack pointers must be set correctly. This
is all be done by the setup_call function, which is exported by the interpreter
engine. Besides the interpreter to run the call, the function takes three parame-
ters: an array of Value*, the number of items stored in the array and a Value*
which denotes the type of the return value. This last parameter is only required
to allocate the right amount of space for the return value. The function returns
ERR_NOERROR when it succeeds or an error code if otherwise.

The Value* is a pointer to a structure which can hold any type of variable
supported by the interpreter. Several functions to create values are supplied
by the interpreter engine, and are all called create_type, where type is a C
type, such as create_int, create_ulong etcetera. They all take one parameter
being an int for create_int, and an an unsigned long for create_ulong. To
destroy a value structure, use the destroy_value function.

Passing pointers to the interpreter is possible (as long as the pointer points
to something inside the interpreters memory, not in the systems memory), but
it will most likely be much easier to build a wrapper function to handle the
pointers.

B.2.3 Making the call

The function call itself consists of a simple jump to the address got from the
linker, which is done with the jump procedure. This function takes only one
argument: the address of the function to jump to. The interpreter will not
start executing itself, but you must write your own execution loop. When the
function is completed it will return to address 0, and thus restart the complete
program. Since no (correct) function will ever jump to address 0, it is safe to
check the program counter for being larger than zero. A complete function call
to the mult procedure is given here:

/* int mult(int a, int b) {
* return a * b;
* }
*/

Value* params[2],c;
params[0] = create_int(4);
params[1] = create_int(8);
c = create_int(0);
setup_call(interpreter, params, 2, c);
jump(interpreter, 0x014E);
while(interpreter->pc && execute(interpreter) == ERR_NOERROR);
pop_value(interpreter, c);

The final call, pop_value, takes one variable from the top of the stack (and
removes it from the stack). After a function call, the return value is placed on
the top of the stack, and can thus be read using the pop_value function. The
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value structure for the return value must be created in advance, to hold the
return variable, but its value will be overwritten, and can be set to anything.

When calling multiple functions on the same interpreter, one must make
sure to reset the interpreter’s state from time to time. The setup_call function
allocates new stack space for the parameters each time it is called, and the stack
will thus run out of space after several calls. Resetting the interpreter is done
by the reset function:

reset(interpreter);



Appendix C

Source files

This appendix contains lists of all source files used by the converter, assembler,
linker and interpreter, and a short description of its function. Each C source file
has a header file which contains further information on the C file, and a brief
description of its functions.

C.1 Common source files

These sources are shared through multiple programs.

• hashtable.c: Contains functions to create and manage a hashtable.

• list.c: Contains functions to create and manage a linked list.

• memstream.c: Contains functions to create and manage a memory stream.

• textparser.c: Contains functions to parse a text file.

• instructions.c: Contains functions to parse, decode and build instruc-
tions. All opcodes are defined in the header file.

C.2 Converter

• converter.c: Main converter source file

C.3 Assembler

• assembler.c: Main assembler source file

C.4 Linker

• linker.c: Main linker source file

• library.c: Contains functions to load library files.
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C.5 Interpreter

• interpreter.c: Main interpreter source file

• interpreter_engine.c: The actual interpreter (contains execution code)

• io.c: Contains several IO functions for Windows and Linux

C.6 Bootstrap code

• bootstrap.bc: Bootstrap code for standard programs (calls main)



Appendix D

File formats

This chapter contains the format specifications of all intermediate files gener-
ated.

D.1 Bytecode file format

Bytecode files (both the original LCC generated files, as the modified bytecode
files consist of plain textfiles. Each line contains one instruction or assembler
directives, the supported instructions and directives, as well as there format can
be found in chapter 3 and appendix A.

Any additional spaces, tabs and whitelines are discarded by the assembler,
however they are never generated by LCC. Comment can be added using the “#”
character. All text after a “#” is ignored, until the end of the line. Note that
comment is not part of the LCC Bytecode specifictations, but is accepted by
the assembler.

D.2 Assembly file format

The assembly files are binary representations of bytecode files. An assembly
file can be disassembled into a bytecode file without losing any information
(this excludes comment and formatting). Each assembly file contains a table of
labels found in the bytecode file, binary data for each segments, and bitmaps
for each segment which point out the location of label positions within the
segments. Each bitmap bit represents one segment byte, and each one in the
bitmap denotes the representing byte in the segment contains a label location.
Before resolving all addresses, the segments contain unique label id’s instead
of addresses. The address resolver can thus check the bitmap for ones, read
the label id from the segment on the same byte-location as the bitmap ones
bit-location, find the labels address and write the address back to the segment.
The formats of the assembly file, the label table and the individual labels are
shown respectively in tables D.1, D.2 and D.3. In table D.4 the different label
flags codes can be found. Since several fields in a file have sizes which depend
on the data, the size of a field, and thus the offset of the next field, is not
known. Therefore, in all tables, the sizes of each field are placed rather than
the locations where they can be found.
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Table D.1: Assembly file format

4 bytes Magic marker ”SOBJ” or 0x534F424A
n bytes List of labels
n bytes Code segment
n bytes Lit segment
n bytes Data segment
n bytes BSS segment

Table D.2: Label list file format

4 bytes Number of labels Little Endian (Intel) Integer
n bytes List of labels
n bytes Label 1

...
n bytes Label n

Table D.3: Label format

1 byte Size of label name
n bytes Label name
1 byte Label flags
1 byte Label segment
4 bytes Label (unique) id Little Endian (Intel) Integer
4 bytes Label location Little Endian (Intel) Integer

Table D.4: Label flags

0x01 label is exported
0x02 label is imported
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Any function or variable which is accesible in other files, will be marked as
exported. Any function or variable which is accessed, but not declared in the
current file will be marked imported. For every imported variable or function,
an exported variable or function must exist in any file also passed to the linker.

Table D.5: Segment codes

unkown 0x00
code 0x02
lit 0x04
data 0x08
bss 0x01

Table D.6: Segment format

4 bytes Segment size Little Endian (Intel) Integer
n bytes Segment data
n bytes Label bitmap Will be eight times smaller than the segment data

Finally, in tables D.5 and D.6 the segment data format is shown. Since the
BSS segment does not contain any usefull information (uninitialized variables),
only the size for this segment is stored in the assembly file, and the segment
data and label bitmap are omitted.

D.3 Code segment format

The code segment is filled with instructions. Each instruction is coded into a
binary form and then written to the binary assembly file. Each instruction has a
16-bit opcode, containing the actual opcode, the type (pointer, integer, etc. . . )
and size (in bytes), just as they are generated by LCC. Some instructions also
get a parameter. The encoding of instructions can be found in the tables D.7,
D.8 and D.9. The size and coding of parameters can also be found in D.9 (the
characters in this column are the same as those used in Table A.2).

Table D.7: Instruction format

Bit index Description
15-09 opcode (see Table D.9)
08-06 instruction operand type (table:instructiontype2)
05-02 log2 of instruction operand size
01-00 not used
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The INDIR and ASGN parameters are only generated by LCC when fetching
or assigning a structure. In the binary assembly files, this parameter is always
generated, and should be set to 0 for all other operand types.

D.4 Library file format

The library file is a simple container format for several assembly files. The
assembly files are dumped right after eachother in the library file. Therefore
the library file must be read sequencially, since the exact position of the second
file is only known when the first file is completely read. The format of a library
file is shown in table D.10.

D.5 Executable file format

The executable file generated by the linker contains the combined binary seg-
ments. It has no header, nor a real format. The segments are written in the
following order: code, lit, data. The bss segment is not placed in the exe-
cutable file, instead the bootstrap code which is placed at address 0 allocates
space for the bss segment.

Table D.8: Instruction type format

Type Coding
Floating point (F) 0x03
Signed integer (I) 0x02
Unsigned integer (U) 0x04
Pointer (P) 0x01
Void (V) 0x05
Structure (B) 0x06
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Table D.9: LCC Instructions
Operator Type Suffixes Parameter size Coding
ADDRF ...P.. p 0x01
ADDRG ...P.. p 0x02
ADDRL ...P.. p 0x03
CNST FIUP.. fdx csilh csilh p 0x04
BCOM .IU... 0x05
CVF FI.... i i 0x06
CVI FIU... i i i 0x07
CVP ..U... i 0x08
CVU .IUP.. i i i 0x09
INDIR FIUP.B i i i i i 0x0A
NEG FI.... 0x0B
ADD FIUP.. 0x0C
BAND .IU... 0x0D
BOR .IU... 0x0E
BXOR .IU... 0x0F
DIV FIU... 0x10
LSH .IU... 0x11
MOD .IU... 0x12
MUL FIU... 0x13
RSH .IU... 0x14
SUB FIU... 0x15
ASGN FIUP.B i i i i i 0x16
EQ FIU... p i i 0x17
GE FIU... p i i 0x18
GT FIU... p i i 0x19
LE FIU... p i i 0x1A
LT FIU... p i i 0x1B
NE FIU... p i i 0x1C
ARG FIUP.B i i i i i 0x1D
CALL FIUPVB 0x1E
RET FIUPVB 0x1F
JUMP ....V. 0x20
HALT ....V. 0x7F
ARGSTACK ....V. i 0x22
VARSTACK ....V. i 0x23
SYSCALL FIUP.. 0x27
SAVESTATE ....V. 0x28
NEWSTACK ....V. 0x29
DISCARD FIUP.. 0x30
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Table D.10: Library format
4 bytes Magic marker ”SLIB” or 0x534C4942
4 bytes Number of assembly files Little Endian (Intel) Integer
n bytes Assembly file 1

...
n bytes Assembly file n
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User manual

This chapter contains very brief user interfaces on how to run a C project on
the interpreter.

E.1 LCC

The LCC manual can be found on http://www.cs.princeton.edu/software/lcc/.
A standard installation of LCC can be used to create bytecode files, but it is
recomended to install the new bytecode backend which is discussed in section
4.2. Generating bytecode can either be done by the RCC compiler part of LCC, or
by LCC itself. The difference is that LCC first calls the C preprocessor, then RCC,
and then the systems assembler and linker, which can be skipped by using the ‘-
S’ argument. To select the bytecode backend, the parameter ‘-target=bytecode’
must be given to RCC, or ‘-Wf-target=bytecode’ to LCC. ‘bytecode’ may need
to be replaced by ‘xbytecode’ when the new backend is used.

Note that when using LCC, either the LCC C preprocessor, or the GNU C
preprocessor can be used. Both need to be pointed to the right header file
directory (not the systems header files) found in libs. The LCC driver may
need to be modified for this. Information about modifieng the LCC driver can
be found on the LCC website.

E.2 Converter

The converter converts LCC Bytecode files into slightly customized LCC Bytecode
files. The assembler will only accept customized LCC Bytecode files, so the con-
verter must be used on LCC Bytecode files before passing them to the assembler.
The converter must be provided an input and output file:

converter <inputfile> -o <outputfile>

E.3 Assembler

The assembler converts modified bytecode files into binary assembly files. The
binary assembly files can later be fed to the linker, which combines several
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binary assembly files into one executable file. The assembler must be provided
with an input and output file:

assembler <inputfile> -o <outputfile>

E.4 Linker

The linker combines several binary assembly files, the bootstrap code, and sev-
eral library functions if needed, and places them into a single executable file.
In addition, the linker can also be used to generate library files. All input files
specified must be binary assembly files, generated by the assembler, the output
file is either a library file, or an executable file:

linker <inputfile> [<inputfile>...] [-lib <libdir>]
[-buildlib] [-v] -o <outputfile>

If the -buildlib parameter places all input files in a library file denoted by
outputfile. The -lib and -v arguments are ignored. When an executable file
is created, the linker will search in each directory specified by the -lib argument
(multiple directories require multiple -lib arguments) for library functions and
includes them into the output file when required. When the -v argument is
used, the linker will print all addresses of public functions and variables to the
console, which can be used when embedding the interpreter.

E.5 Interpreter

The interpreter executes executable files generated by the linker. When it is
used as a standalone application it can be executed from the commandline:

interpreter <inputfile> [m <memorysize>] [-nd]
[-t <tracefile>] [-a <analysisfile>]

Besides an input file, which must be specified, two output files can be specified,
an analysis file and a trace file. When an analysis file is specified, it will be
filled with information on the amount of instructions executed, the amount of
memory used, and how many each individual instruction type was executed.
The result is stored in a tab delimited text file. When a trace file is specified, on
each clocktick the current instruction, machine state and stack is written to the
trace file. Note that this file will become very large on big programs. Finally,
the nd parameter can be used to ignore the DISCARD instruction and should
only be used for testing purpses.
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Example compilation run

This chapter shows an entire sample run from C source file to executable file
and explains the data in all intermediate files.

F.1 C File

The following C file is used to generate an executable file, which also served as
an example in the previous chapters.

int add(int a, int b) {
return a + b;

}
int main() {

int sum;
sum = add(1, 2);
return sum;

}

F.2 Bytecode file

The bytecode file is generated by LCC during the compilation phase. The byte-
code file is slightly different from the original example, since LCC copies the sum
variable to another local variable before returning it. This was omitted from
the original example for simplicity (the result is the same).

export add
code
proc add 0 0
ADDRFP4 0
INDIRI4
ADDRFP4 4
INDIRI4
ADDI4
RETI4
LABELV $1
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endproc add 0 0
export main
proc main 8 8
CNSTI4 1
ARGI4
CNSTI4 2
ARGI4
ADDRLP4 4
ADDRGP4 add
CALLI4
ASGNI4
ADDRLP4 0
ADDRLP4 4
INDIRI4
ASGNI4
ADDRLP4 0
INDIRI4
RETI4
LABELV $2
endproc main 8 8

F.3 Custimized bytecode file

The customized bytecode file is a slightly altered version of the bytecode file,
for easier assembling. All changes made can be found in Section 4.3.

export add
code
### procedure add:
label add
SAVESTATEP4
ARGSTACKV 0
VARSTACKV 0
ADDRFP4 0
INDIRI4
ADDRFP4 4
INDIRI4
ADDI4
RETI4
label $1
RETV
### end procedure add
export main
### procedure main:
label main
SAVESTATEP4
ARGSTACKV 8
VARSTACKV 8
CNSTI4 1
ARGI4 0
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CNSTI4 2
ARGI4 4
ADDRLP4 4
ADDRGP4 add
CALLI4
ASGNI4
ADDRLP4 0
ADDRLP4 4
INDIRI4
ASGNI4
ADDRLP4 0
INDIRI4
RETI4
label $2
RETV
### end procedure main

F.4 Binary assembly file

The binary assembly file contains the binary representation of the customized
bytecode file. It is printed completely in hexadecimal, since most of the data
is binary. Using the ‘#’ character, comment is added to the file to explain all
data.

# file id: SOBJ
0x0000: 53 4F 42 4A
# total of 4 labels
0x0004: 04 00 00 00
# label main
# main is 4 characters long
0x0008: 04
# "main"
0x0009: 6D 61 69 6E
# the flag of main is 0x01 (exported)
0x000D: 01
# the segment of main is 0x02 (code)
0x000E: 02
# the unique id of this label is 0x03
0x000F: 03 00 00 00
# the address of main in the code segment is 0x2C
0x0013: 2C 00 00 00
# label $1
0x0017: 02 24 31 00 02 02 00 00 00 2A 00 00 00
# label $2
0x0024: 02 24 32 00 02 04 00 00 00 8C 00 00 00
# label add
0x0031: 03 61 64 64 01 02 01 00 00 00 00 00 00 00
# 90h bytes code segment size
0x003F: 90 00 00 00
# label add
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# SAVESTATEP4
0x0043: 50 48
# ARGSTACKV 0
0x0045: 47 40 00 00 00 00
# VARSTACKV 0
0x004B: 45 40 00 00 00 00
# ADDRFP4 0
0x0051: 02 48 00 00 00 00
# INDIRI4
0x0057: 14 88 00 00 00 00
# ADDRFP4 4
0x005D: 02 48 00 00 00 04
# INDIRI4
0x0063: 14 88 00 00 00 00
# ADDI4
0x0069: 18 88
# RETI4
0x006B: 3E 88
# label $1
# RETV
0x006D: 3F 40
# label main
# SAVESTATEP4
0x006F: 50 48
# ARGSTACKV 8
0x0071: 47 40 00 00 00 08
# VARSTACKV 8
0x0077: 45 50 00 00 00 08
# CNSTI4 1
0x007D: 08 88 00 00 00 01
# ARGI4 0
0x0083: 3A 88 00 00 00 00
# CNSTI4 2
0x0089: 08 88 00 00 00 02
# ARGI4 4
0x008F: 3A 88 00 00 00 04
# ADDRLP4 4
0x0095: 06 48 00 00 00 04
# ADDRGP4 add
# the parameter is 0x01, the unique id of label add
0x009B: 04 48 00 00 00 01
# CALLI4
0x00A1: 3C 88
# ASGNI4
0x00A3: 2C 88 00 00 00 00
# ADDRLP4 0
0x00A9: 06 48 00 00 00 00
# ADDRLP4 4
0x00AF: 06 48 00 00 00 04
# INDIRI4
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0x00B5: 14 88 00 00 00 00
# ASGNI4
0x00BB: 2C 88 00 00 00 00
# ADDRLP4 0
0x00C1: 06 48 00 00 00 00
# INDIRI4
0x00C7: 14 88 00 00 00 00
# RETI4
0x00CD: 3E 88
# label $2
# RETV
0x00CF: 3F 40
# alignment bytes, to make segment size a multiple of 8
0x00D1: 00 00
# label bitmap for code segment (0x90/8 = 0x12 bytes)
# the 3C on 0x00DE (4 ones starting at bit 90)
# represent a label reference at byte 90 in the code
# segment (which starts at 0x43). A label reference
# is placed at 0x9D; the parameter of ‘ADDRGP4 add’
0x00D3: 00 00 00 00 00 00 00 00
0x00DB: 00 00 00 3C 00 00 00 00
0x00E3: 00 00
# size of lit segment (0 bytes)
0x00E5: 00 00 00 00
# the size of the lit segment is 0, thus there is no
# lit segment or bitmap data present in the file
# size of data segment (0 bytes)
0x00E9: 00 00 00 00
# size of bss segment (0 bytes)
0x00ED: 00 00 00 00

F.5 Executable file

The executable file contains the combined binary segments of the loader and the
assembly file shown in the previous section. It starts with the code segment of
the loader, followed by the code segment of the assembly file from the previous
section. This piece of data is the same as the data from the previous section,
except for the parameter of the ADDRGP4 add instruction, it is now correctly set
to the absolute address of the add function. After the code segments, the lit
and bss segments of the loader are located, since the example does not use these
segments, they also don’t appear in the executable.
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