12. The TMS34010 Instruction Set

This section contains the TMS34010 instruction set (in alphabetical order). Related subjects, such as addressing modes, are presented first.

Section		Page
12.1	Symbols and Abbreviations	
12.2	Addressing Modes	12-3
	Move Instructions Summary	
	PIXBLT Instructions Summary	
12.5	PIXT Instructions Summary	12-14
	TMS34010 Instruction Set Summary	
	Example Instruction	

12.1 Symbols and Abbreviations

The symbols and abbreviations in Table 12-1 are used in the addressing modes discussion, the instruction set summary, and in the individual instruction descriptions.

Table 12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions

Symbol	Definition	Symbol	Definition			
Register File A	Registers A0-A14, including SP	Register File B	Registers B0-B14, including SP			
Rs	Source register	Rd	Destination register			
RsX	X half of source register	RsY	Y half of source register			
RdX	X half of destination register	Rd Y	Y half of destination register			
An	Register n in register file A	Bn	Register n in register file B			
PC	Program counter	PC'	PC prime. Specifies the PC of the next instruction (PC + instruction length)			
ST	Status register	N	Status sign bit			
С	Status carry bit	z	Status zero bit			
V	Status overflow bit	IE	Global interrupt enable bit			
SP	Stack pointer	TOS	Top of stack			
SAddress	Source address	DAddress	Destination address			
MSW	Most significant word	LSW	Least significant word			
LSB	Least significant bit	MSB	Most significant bit			
>	Hexadecimal number	к	5-bit constant			
IW	16-bit immediate value	1L	32-bit immediate value			
W	16-bit immediate value	L	32-bit immediate value			
F	Field select. F=0 selects FS0, FE0 in the status register, F=1 selects FS1, FE1	R	Register file select. Indicates which register file (A or B) the operand registers are in. R=0 specifies register file A, R=1 specifies register file B			
()	In Instruction syntax , contents of. For example, (Rd) specifies the contents of the destination register	:	Concatenation. For example, Rd:Rd + 1 means the concatena- tion of one register and the next into a 64-bit value, as in A0:A1			
→	Becomes the contents of	~	1's complement			
	Absolute value	[]	Optional parameter			
*	Indirect addressing	@	Absolute addressing			
<text></text>	In instruction syntax , indicates a "fill in the blank" – substitute an actual value, address, or register for the text enclosed in the angle brackets. For example, substitute an actual source register for $\langle Rs \rangle$; substitute an actual destination address for $\langle DAddress \rangle$.					

12.2 Addressing Modes

The TMS34010 supports a variety of addressing modes. Most instructions use only one addressing mode; however, the MOVB, MOVE, and PIXT instructions each support several addressing modes. The following subsections describe the TMS34010 addressing modes.

12.2.1 Immediate Addressing

In this addressing mode, the source operand may be one of the following:

- A 16-bit immediate value (designated as IW)
- A 32-bit immediate value (designated as IL)
- A constant (designated as K)

Figure 12-1 shows an example of the MOVI <IL>, <Rd> instruction. A 32-bit immediate value, >FC00, is loaded into the destination register, A3.

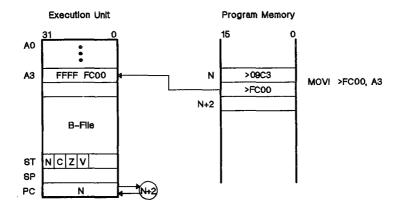


Figure 12-1. Immediate Addressing Mode

12.2.2 Indirect XY

A source operand or a destination operand can be specified using this addressing mode.

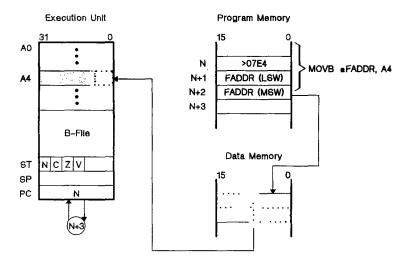
- **Rs.XY* The register contains the XY address of the data.
- *Rd.XY The register contains the XY address where the data will be moved.

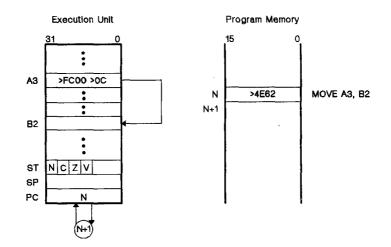
12.2.3 Absolute Addressing

A source operand or a destination operand can be specified as an absolute address.

- @SAddress The specified address contains the data.
- @DAddress The data will be moved into the specified address.

Figure 12-2 shows an example of the MOVB @<SAddress>, <Rd> instruction. In this example, the symbol *FADDR* represents a memory address; the data at this address are loaded into register A4.




Figure 12-2. Absolute Addressing Mode

12.2.4 Register Direct

A source operand or a destination operand can be specified using register direct addressing mode.

- Rs The source register contains the data.
- Rd The data will be moved into the destination register.

Figure 12-3 shows an example of the MOVE <Rs>,<Rd> instruction. The contents of the source register, A3, are moved into the destination register, B2.

12.2.5 Register Indirect

A source operand or a destination operand can be specified using register indirect addressing modé.

- *Rs The register contains the address of the data.
- *Rd The register contains the address where the data will be moved.

Figure 12-4 shows an example of the MOVE <Rs>, *<Rd>, [<F>] instruction. Register A4 contains the source operand. Register A3 contains an address (represented by the symbol *FADDR*) where the data in A4 will be moved.

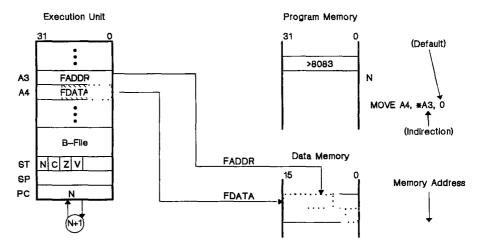


Figure 12-4. Register Indirect Addressing Mode

12.2.6 Register Indirect with Displacement

A source operand or a destination operand can be specified using this addressing mode.

- *Rs(Displacement) The address of the data is found by adding the register contents to the signed displacement.
- *Rd(Displacement) The data will be moved to the address specified by the sum register contents and the signed displacement.

Figure 12-5 shows an example of the MOVE $\langle Rs \rangle$, $\langle Rd \rangle$ ($\langle Displacement \rangle$) instruction. Register A4 contains the source operand. Register A3 contains an address (represented by the symbol *FADDR*). The displacement, 16, is added to FADDR, to point to the location where the data in A4 will be moved. FS0 contains the field size.

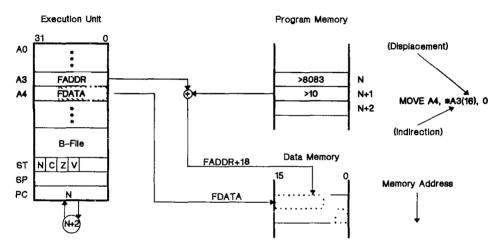


Figure 12-5. Register Indirect with Displacement Addressing Mode

12.2.7 Register Indirect with Predecrement

A source operand or a destination operand can be specified using this addressing mode.

- -*Rs The address of the data is found by decrementing the register contents by the field size of the move.
- -**Rd* The data will stored at the address found by decrementing the register contents by the field size of the move.

Figure 12-6 shows an example of the MOVE $\langle Rs \rangle$, *- $\langle Rd \rangle$ instruction. Register A4 contains the source operand. Register A3 contains an address (represented by the symbol *FADDR*). This address is decremented by the field size of the move, so that it points to the location where the data in A4 will be moved. FS1 contains the field size.

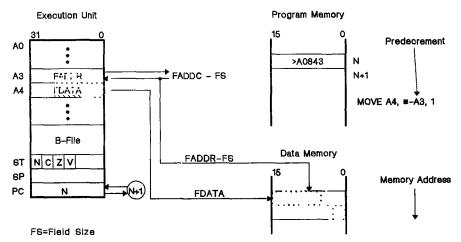


Figure 12-6. Register Indirect with Predecrement Addressing Mode

12.2.8 Register Indirect with Postincrement

A source operand or a destination operand can be specified using this addressing mode.

- **Rs*+ The register contains the address of the data. The register contents are incremented after the move.
- **Rd*+ The register contains the address where the data will be moved. The register contents are incremented after the move.

Figure 12-7 shows an example of the MOVE <Rs>, *-<Rd> instruction. Register A4 contains the source operand. Register A3 contains an address (represented by *FADDR*) where the data in A4 will be moved. The register contents are incremented after the move. FS0 contains the field size.

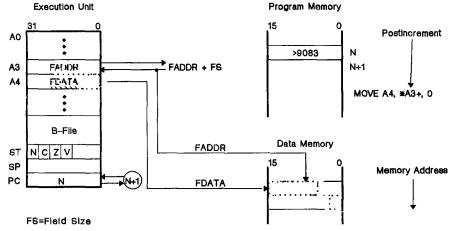


Figure 12-7. Register Indirect with Postincrement Addressing Mode

12.3 Move Instructions Summary

The move instructions use the GSP's bit-addressing and field operation capabilities to provide flexible memory management. All memory addresses for move operations are bit addresses. When a field is moved from memory to a register. Register bits to the left of the field are filled with either 0s or the sign bit, depending on the field extension mode. When a field is moved to memory from a register, the data for the field is assumed to be right justified within the register, and the bits to the left of the field are ignored. Table 12-2 summarizes the GSP move instructions.

Move Type	Mnemonic	Description
Register	MOVE	Move register to register
Constant	ΜΟΥΚ	Move constant (5 bits)
	MOVI	Move immediate (16 bits)
	MOVI	Move immediate (32 bits)
XY	MOVX	Move 16 LSBs of register (X half)
	MOVY	Move 16 MSBs of register (Y half)
Multiple Register	MMFM	Move multiple registers from memory
	MMTM	Move multiple registers to memory
Byte	MOVB	Move byte (8 bits, 9 addressing modes)
Field	MOVE	Move field to/from memory/register (15 addressing modes)

Table 12-2. Summary of Move Instructions

12.3.1 Register-to-Register Moves

The register-to-register MOVE instruction moves data directly between register files A and B. This is a 32-bit move; the entire contents of the destination register are replaced.

12.3.2 Constant-to-Register Moves

The MOVK and MOVI instructions load a register with a constant value. MOVK places a zero-extended value of 1 to 32 in the register. MOVI has two modes, 16-bit and 32-bit. The 32-bit MOVI uses two extension words which explicitly define the value to be stored in the register. The extension word for the 16-bit MOVI contains a value which is sign extended to 32 bits when moved into the register. Use the CLR instruction to store 0 in a register.

12.3.3 X and Y Register Moves

The MOVX and MOVY instructions move the X and Y halves, respectively; the other half of the destination register is not affected. These are 16-bit moves within the register file. XY addressing is discussed in Section 4.

12.3.4 Multiple Register Moves

Multiple-register moves save and restore select members of up to an entire file of registers to memory. A 16-bit mask specifies which of the 16 registers in the designated file are to be moved to or from memory. One register from the selected file acts as a pointer register for the move. Any of the registers in the file, including the SP, may be used as the pointer register. The selected registers are input as a list; the assembler checks that they and the pointer register are all in the same file. The pointer register contains a bit address for the register "stack." The stacking operation follows the same conventions as the system stack, growing in the direction of lower memory. If the SP is used, both register files may be moved to the same stack area (since SP may be accessed from both files). MMTM moves multiple registers to the stack while MMFM moves them from memory back to the register file.

12.3.5 Byte Moves

Byte moves are special 8-bit cases of the field moves described in Section 12.3.6. Byte moves are implicitly 8-bit moves. They transfer data:

- From memory to a register (using field extraction),
- From a register to memory (using field insertion), or
- From memory to memory (using field extraction and field insertion).

A byte can begin on any bit boundary within a word. When a byte is moved from memory to a general-purpose register, it is right justified within the register so that the LSB of the byte coincides with the rightmost bit (bit 0) of the register. The byte is sign extended to fill the 24 MSBs of the register.

Table 12-3 lists the possible combinations of source and destination addressing modes for MOVBs.

Source	Destination Addressing Mode						
Addressing Mode	Rd	*Rd	*Rd(disp)	@Address			
Rs		•	•	•			
*Rs	•	•					
*Rs(Disp)	•		•				
@Address	•			•			

Table 12-3. MOVB Addressing Modes

Note: The ● symbol indicates a valid operation; a blank box indicates an invalid operation.

Sequences of byte-move operations can be expected to execute more efficiently if the byte address points to an even 8-bit boundary within memory. This occurs when the three LSBs of the 32-bit starting address of the byte are 0. A byte that straddles a word boundary requires twice as many memory cycles to access.

12.3.6 Field Moves

A field is a configurable data structure in memory. It is identified by two parameters – size and data address. A field's length can be defined to be any value from 1 to 32 bits. Field moves manipulate arbitrarily-sized data fields in memory and the register file.

- Field data in *memory* is addressed by its bit address and is treated as a string of contiguous bits; it may start at any bit address in memory.
- Field data in *the register file* is right justified in the register; the LSB of the field is stored in the LSB of the register.

When field data is moved into a register, it is right justified within the register. The register bits to the left of the field are all 1s or all 0s, depending on the values of both the appropriate FE (field extension) bit in the status register, and sign bit (MSB) of the field. If FE=1, the field is sign extended; if FE=0, the field is zero extended. When data is moved from a register, these non-field bits of the register are ignored.

Fields are transferred between the general-purpose registers and memory by means of the memory-to-register and register-to-memory move instructions. Fields are transferred from one memory location to another via the memory-to-memory move instructions.

Table 12-4 lists the possible combinations of source and destination addressing modes for MOVEs.

Source Addressing	Destination Addressing Mode								
Mode	Rd	*Rd	*Rd+	-*Rd	*Rd(disp)	@Address			
Rs			•	•	•	•			
*Rs	•	•							
*Rs+	•		•						
-*Rs	•			•					
*Rs(Disp)	•		•		•				
@Addr	•		•			•			

Table 12-4. Field Move Addressing Modes

Note: The • symbol indicates a valid operation; a blank box indicates an invalid operation.

Two field sizes are simultaneously available for field moves. The lengths of fields 0 and 1 are defined by two 5-bit fields in the status register, FS0 and FS1. The status register also contains the FE0 and FE1 parameters, which define the field extension properties of the data when it is moved into a register.

The SETF instruction specifies the size and signed/unsigned condition of either field 0 or 1 by placing this data in one of two 6-bit fields located in the

status register. One bit specifies sign/zero extension, and five bits store the field size (in bits).

The EXGF instruction may also set either of the two field types, while preserving a copy of the previous definition.

The address of a field points to its least significant bit. A field can begin at an arbitrary bit address in memory. Field data addresses for particular moves are derived from values in registers and extension words following the instruction. Field moves transfer data:

- From memory to a register (using field extraction),
- From a register to memory (using field insertion), or
- From memory to memory (using field extraction and field insertion).

12.3.6.1 Register-to-Memory Field Moves

Figure 12-8 illustrates the register-to-memory move operation. In this type of move, the source register contains the right-justified field data (width is specified by the field size). The destination memory location is the bit position pointed to by the destination memory address. The address consists of a portion defining the starting word in which the field is to be written and an offset into that word, the bit address. Depending on the bit address within this word and the field size, the destination location may extend into two or more words. The field size for the move is one of two indirect values stored in ST, as selected by the programmer. The field extension bit is not used.

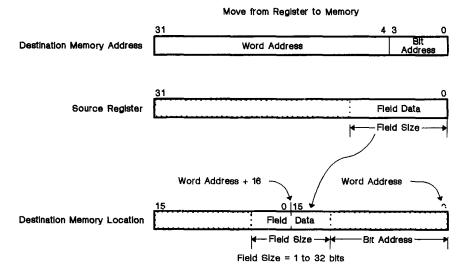


Figure 12-8. Register-to-Memory Moves

12.3.6.2 Memory-to-Register Field Moves

Figure 12-9 shows the memory-to-register move operation. The source memory location is the bit position pointed to by the source memory address. The address consists of a portion defining the starting word in which the field is to be written and an offset into that word, the bit address. Depending on the bit address within this word and the field size, the source location may extend into two or more words. After the move, the destination register LSBs contain the right-justified field data (width is specified by the field size). The MSBs of the register contain either all 1s or all 0s. If the sign extension bit FE0 or FE1 associated with the field size selected is 0, the MSBs are 0s. If the sign extension bit selected is 1, the MSBs contain the value of the sign bit of the field data (its MSB). The field size for the move is one of two indirect values stored in ST, as selected by the programmer.

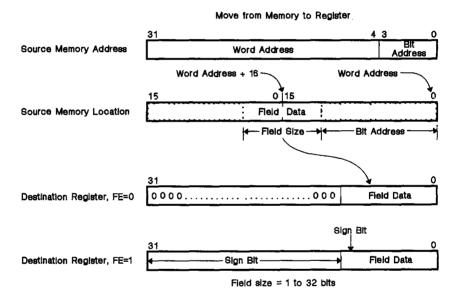


Figure 12-9. Memory-to-Register Moves

12.3.6.3 Memory-to-Memory Field Moves

Figure 12-10 shows a memory-to-memory field move operation. The source memory location is the bit position pointed to by the source memory address. The destination memory location is the bit position pointed to by the destination memory address. Depending on the bit addresses within the respective words and the field size, either the source location or destination locations may extend into two or more words. After the move, the destination location contains the field data from the source memory location. The field size for the move is one of two indirect values stored in ST, as selected by the programmer. The field extension bit is not used.

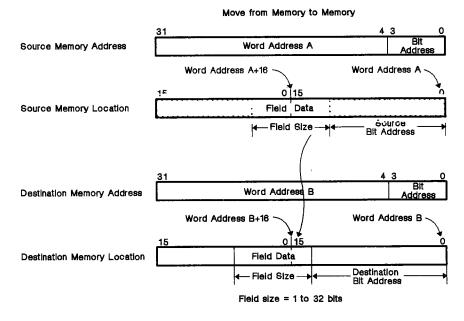


Figure 12-10. Memory-to-Memory Moves

12.4 PIXBLT Instructions Summary

The TMS34010 supports 6 different PIXBLT instructions. PIXBLTs vary according to the format of the source and destination pixel blocks. Table 12-5 summarizes the PIXBLT instructions.

Syntax	Formats	Page
PIXBLT B,L	Binary to linear	12-157
PIXBLT B,XY	Binary to XY	12-162
PIXBLT L,L	Linear to linear	12-169
PIXBLT L,XY	Linear to XY	12-175
PIXBLT XY,L	XY to linear	12-181
PIXBLT XY,XY	XY to XY	12-186

Table 12-5. PIXBLT Instruction Summary

12.5 PIXT Instructions Summary

The PIXT instructions move single pixels. The pixel may originate from a register or a memory location, and may be moved to a register or a memory location. There are 6 variations of the PIXT instruction; each uses a different combination of the addressing modes described in Section 12.2.

Table 12-6 lists the possible combinations of source and destination addressing modes for PIXTs.

Source	Destina	tion Addressi	ing Mode
Addressing Mode	Rd	*Rd	*Rd.XY
Rs		•	•
*Rs	٠	•	
*Rs.XY		•	•

Table 12-6. PIXT Addressing Modes

Note: The ● symbol indicates a valid operation; a blank box indicates an invalid operation.

Graphics Instructions						
Syntax and Description	Words	Machine States	MSB	16-Bit (Opcode	LSB
ADDXY Rs,Rd Add registers in XY mode	1	1,4	1110	0005	SSSR	DDDD
CMPXY Rd,Rd Compare X and Y halves of registers	1	3,6	1110	0105	SSSR	DDDD
CPW Rs,Rd Compare point to window	1	1,4	1110	0115	SSSR	DDDD
CVXYL Rs,Rd Convert XY address to linear address	1	3,6	1110	1005	SSSR	DDDD
DRAV Rs,Rd Draw and advance	1	t	1111	0115	SSSR	DDDD
FILL L Fill array with processed pixels, linear	1	±	0000	1111	1100	0000
FILL XY Fill array with processed pixels, XY	1	‡	0000	1111	1110	0000
MOVX Rs,Rd Move X half of register	1	1,4	1110	1105	SSSR	DDDD
MOVY Rs,Rd Move Y half of register	1	1,4	1110	1115	SSSR	DDDD
PIXBLT B,L Pixel block transfer, binary to linear	1	‡‡	0000	1111	1000	0000
PIXBLT B,XY Pixel block transfer and expand, binary to XY	1	‡‡	0000	1111	1010	0000
PIXBLT L,L Pixel block transfer, linear to linear	1	ş	0000	1111	0000	0000
PIXBLT L,XY Pixel block transfer, linear to XY	1	5	0000	1111	0010	0000
PIXBLT XY,L Pixel block transfer, XY to linear	1	ş	0000	1111	0100	0000
PIXBLT XY,XY Pixel block transfer, XY to XY	1	ş	0000	1111	0110	0000
PIXT Rs,*Rd Pixel transfer, register to indirect	1	†	1111	1005	SSSR	DDDD
PIXT Rs,*Rd.XY Pixel transfer, register to indirect XY	1	+	1111	0005	SSSR	DDDD
PIXT *Rs,Rd Pixel transfer, indirect to register	1	t	1111	101S	SSSR	DDDD
PIXT *Rs,*Rd Pixel transfer, indirect to indirect	1	†	1111	1105	SSSR	DDDD
PIXT *Rs.XY,Rd Pixel transfer, indirect XY to register	1	†	1111	0015	SSSR	DDDD
PIXT *Rs.XY,*Rd.XY Pixel transfer, indirect XY to indirect XY	1	t	1111	0105	SSSR	DDDD
SUBXY Rs,Rd Subtract registers in XY mode	1	1,4	1110	001S	SSSR	DDDD
LINE Z Line draw	1	Δ	1101	1111	Z001	1010

Table 12-7. TMS34010 Instruction Set Summary

See instruction
 See Section 13.3, FILL Instructions Timing
 See Section 13.5, PIXBLT Expand Instructions Timing
 See Section 13.4, PIXBLT Instructions Timing
 Δ See Section 13.6, The LINE Instruction Timing

Move In	struction	าร				
Syntax and Description	Words	Machine States	MSB	16-Bit	Opcode	LSB
MOVB Rs,*Rd Move byte, register to indirect	1	٩ï	1000	1105	SSSR	DDDD
MOVB *Rs,Rd Move byte, indirect to register	1	۹	1000	1115	SSSR	DDDD
MOVB *Rs,*Rd Move byte, indirect to indirect	1	٩	1001	1105	SSSR	DDDD
MOVB *Rs,*Rd(Disp) Move byte, register to indirect with displacement	2	१	1010	1105	SSSR	DDDD
MOVB *Rs(Disp),Rd Move byte, indirect with displacement to register	2	f	1010	1115	SSSR	DDDD
MOVB *Rs(Disp),*Rd(Disp) Move byte, indirect with displacement to indirect with displacement	3	१	1011	1105	SSSR	DDDD
MOVB Rs,@DAddress Move byte, register to absolute	3	¶	0000	0101	111R	SSSS
MOVB @SAddress,Rd Move byte, absolute to register	3	f	0000	0111	111R	DDDD
MOVB @SAddress,@DAddress Move byte, absolute to absolute	5	۹	0000	0011	0100	0000
MOVE Rs,Rd Move register to register	1	1,4	0100	1 1MS	SSSR	DDDD
MOVE Rs,*Rd,F Move field, register to indirect	1	শ	1000	00FS	SSSR	DDDD
MOVE Rs,-*Rd,F Move field, register to indirect (predecrement)	1	१	1010	00FS	SSSR	DDDD
MOVE Rs,*Rd+,F Move field, register to indirect (postincrement)	1	१	1001	00FS	SSSR	DDDD
MOVE *Rs,Rd,F Move field, indirect to register	1	শ	1000	01 F S	SSSR	DDDD
MOVE -*Rs,Rd,F Move field, indirect (predecrement) to register	1	শ	1010	01 F S	SSSR	DDDD
MOVE *Rs+,Rd,F Move field, indirect (postincrement) to register	1	¶T	1001	01 F S	SSSR	DDDD
MOVE *Rs,*Rd,F Move field, indirect to indirect	1	¶T	1000	10FS	SSSR	DDDD
MOVE -*Rs,-*Fd,F Move field, indirect (predecrement) to indirect (predecrement)	1	¶	1010	10FS	SSSR	DDDD
MOVE *Rs+,*Rd+,F Move field, indirect (postincrement) to indirect (postincrement)	1	n	1001	10FS	SSSR	DDDD
MOVE Rs,*Rd(Disp),F Move field, register to indirect with displacement	2	¶	1011	00FS	SSSR	DDDD
MOVE *Rs(Disp),Rd,F Move field, indirect with displacement to register	2	¶	1011	01FS	SSSR	DDDD

Table 12-7. TMS34010 Instruction Set Summary (Continued)

1 See Section 13.2, MOVE and MOVB Instructions Timing

Move Instruct	ions (Cor	ntinued)			······	
Syntax and Description	Words	Machine States	мѕв	16-Bit	Opcode	LSB
MOVE *Rs(Disp),*Rd+,F Move field, indirect with displacement to indirect (postincrement)	2	π	1101	00FS	SSSR	DDDD
MOVE *Rs(Disp),*Rd(Disp),F Move field, indirect with displacement to indirect with displacement	3	¶	1011	10FS	SSSR	DDDD
MOVE Rs,@DAddress,F Move field, register to absolute	3	П	0000	01 F 1	100R	DDDD
MOVE @SAddress,Rd,F Move field, absolute to register	3	ी	0000	01 F 1	101 R	DDDD
MOVE @SAddress,*Rd+,F Move field, absolute to indirect (postincrement)	3	গ	1101	01F0	000R	DDDD
MOVE @SAddress,@DAddress,F Move field, absolute to absolute	5	Π	0000	01F1	1100	DDDD
General	nstructio	ons	L.,			
Syntax and Description	Words	Machine States	мѕв	16-Bit	Opcode	, LSB
ABS Rd Store absolute value	1	1,4	0000	0011	100R	DDDD
ADD Rs,Rd Add registers	1	1,4	0100	0005	SSSR	DDDD
ADDC Rs,Rd Add registers with carry	1	1,4	0100	001S	SSSR	DDDD
ADDI IW,Rd Add immediate (16 bits)	2	2,8	0000	1011	000R	DDDD
ADDI IL.Rd Add immediate (32 bits)	3	3,12	0000	1011	001 R	DDDD
ADDK K,Rd Add constant (5 bits)	1	1,4	0001	00KK	KKKR	DDDD
AND Rs,Rd AND registers	1	1,4	0101	0005	SSSR	DDDD
ANDI IL,Rd AND immediate (32 bits)	3	3,12	0000	1011	100R	DDDD
ANDN Rs,Rd AND register with complement	1	1,4	0101	001 S	SSSR	DDD
ANDNI IL,Rd AND not immediate (32 bits)	3	3,12	0000	1011	100R	DDDD
BTST K,Rd Test register bit, constant	1	1,4	0001	11KK	KKKR	DDDD
BTST Rs,Rd Test register bit, register	1	2,5	0100	1015	SSSR	DDDD
CLR Rd Clear register	1	1,4	0101	011 D	DDDR	DDDD
CLRC Clear carry	1	1,4	0000	0011	0010	0000
CMP Rs,Rd Compare registers	1	1,4	0000	1011	01 0 R	DDDD

Table 12-7. TMS34010 Instruction Set Summary (Continued)

T See Section 13.2, MOVE and MOVB Instructions Timing

General Instructions (Continued)					
Words	Machine States	MSB	16-Bit	Opcode	LSB
2	2,8	0000	1011	010R	DDDD
3	3,12	0000	1011	011R	DDDD
1	1,4	0001	0100	001 R	DDDD
1	3,6	0000	0011	0110	0000
1	40,43 39,42 Δ	0101	1005	SSSR	DDDD
1	37,40	0101	101S	SSSR	DDDD
1	3,6	0000	1101	0110	0000
1	1,4	1101	01 F 1	000R	DDDD
1	1,4	0110	101S	SSSR	DDDD
2	†	0000	1001	101 R	DDDD
2	+	0000	1001	100R	DDDD
1	40,43	0110	1105	SSSR	DDDD
1	35,38	0110	111S	SSSR	DDDD
2	2,8	0000	1001	110R	DDDD
3	3,12	0000	1001	111R	DDDD
1	1,4	0001	10KK	KKKR	DDDD
1	20,23	0101	1105	SSSR	DDDD
1	21,24	0101	1115	SSSR	DDDD
1	1,4	0000	0011	101R	DDDD
1	1,4	0000	0011	110R	DDDD
1	1,4	0000	0011	0000	0000
1	1,4	0000	0011	111R	DDDD
	Words 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 3 1 1 1 1 1 1 1 1 1 1	WordsMachine States22,833,1211,413,6140,43 39,42 Δ 137,4013,611,411,411,411,411,42†2†135,3822,833,1211,4121,2411,411,411,411,4	WordsMachine StatesMSB22,8000033,12000011,4000113,60000140,43 $39,42 \Delta$ 0101137,40010113,6000011,4110111,4110111,40110210000140,43011021000011,4011022,8000033,12000011,40011120,23010111,4000011,4000011,4000011,40000	WordsMachine States16-Bit MSB22,80000101133,120000101111,40001010013,600000011140,43 $39,42 \Delta$ 0101100S137,400101101S13,60000110111,4110101F111,40110101S21000010012100001001140,430110110S2100001001135,380110111S22,80000100133,120000100111,4000110KK121,24010111S11,40000001111,400000011	Words Machine States 16-Bit Opcode MSB 2 2,8 0000 1011 010R 3 3,12 0000 1011 011R 1 1,4 0001 0100 001R 1 3,6 0000 0011 0110 1 3,6 0000 0011 0110 1 3,6 0000 1011 010S 1 3,6 0000 1011 0110 1 3,6 0000 1101 0110 1 3,6 0000 1101 0110 1 1,4 1101 01F1 000R 1 1,4 0110 101S SSSR 2 1 0000 1001 10R 2 1 0000 1001 10R 1 40,43 0110 110S SSSR 2 2,8 0000 1001 110R 3 3,12 0

Table 12-7. TMS34	10 Instruction	Set Summary	(Continued)
-------------------	----------------	-------------	-------------

t See instruction
t If F=1, add 1 to cycle time
Δ Rd even/Rd odd

.

tructions (Co	ontinued)	
Words	Machine States	16-Bit Opcode MSB LSB
1	1,4	0101 010S SSSR DDDD
3	3,12	0000 1011 101R DDDD
1	1,4	0011 00KK KKKR DDDD
1	1,4	0110 10SS SSSR DDDD
1	1,4	0000 1101 1110 0000
1	1,4 2,5 [‡]	0000 01F1 01FS SSSS
1	3,6	0000 01F1 000R DDDD
1	3,6	0010 00KK KKKR DDDD
1	3,6	0110 000S SSSR DDDD
1	1,4	0010 01KK KKKR DDDD
1	1,4	0110 001S SSSR DDDD
1	1,4	0010 10KK KKKR DDDD
1	1,4	0110 010S SSSR DDDD
1	1,4	0010 11KK KKKR DDDD
1	1,4	0110 0115 SSSR DDDD
1	1,4	0100 010S SSSR DDDD
1	1,4	0100 011S SSSR DDDD
2	2,8	0000 1011 111R DDDD
3	3,12	0000 1101 111R DDDD
1	1,4	0001 01KK KKKR DDDD
1	1,4	0101 011S SSSR DDDD
3	3,12	0000 1011 110D DDDD
1	1,4	0000 01F1 001R DDDD
	Words 1 3 1 3	WordsStates1 $1,4$ 3 $3,12$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $3,6$ 1 $3,6$ 1 $3,6$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 1 $1,4$ 3 $3,12$

Table 12-7. TMS34010 Instruction Set Summary (Continued)

[†] See instruction [‡] If F=1, add 1 to cycle time Δ Rd even/Rd odd

Program Control and C	ontext Swi	tching Inst	ructio	ns		
Syntax and Description	Words	Machine States			Opcode	LSB
CALL Rs Call subroutine indirect	1	${3+(3),9\atop 3+(9),15}\Theta$	0000	1001	001 R	DDDD
CALLA Address Call subroutine address	3	4+(2),15 4+(8),21Θ	0000	1101	0101	1111
CALLR Address Call subroutine relative	2	3+(2),11 3+(8),17 ⁰	0000	1101	0011	1111
DSJ Rd,Address Decrement register and skip jump	2	^{3,9} 2,8 П	0000	1101	100R	DDDD
DSJEQ Rd, Address Conditionally decrement register and skip jump	2	^{3,9} 2,8 п	0000	1101	101R	DDDD
DSJNE Rd, Address Conditionally decrement register and skip jump	2	^{3,9} 2,8 п	0000	1101	110R	DDDD
DSJS Rd,Address Decrement register and skip jump short	1	^{2,5} 3,6 П	0011	1 DK K	KKKR	DDDD
EMU Initiate emulation	1	6,9	0000	0001	0000	0000
EXGPC Rd Exchange program counter with register	1	2,5	0000	0001	001R	DDDD
GETPC Rd Get program counter into register	1	1,4	0000	0001	010R	DDDD
GETST Rd Get status register into register	1	1,4	0000	0001	100R	DDDD
JAcc Address Jump absolute conditional	3	^{3,6} 4,7 П	1100	code	1000	0000
JRcc Address Jump relative conditional	2	^{3,6} 1,4 П	1100	code	0000	0000
JRcc Address Jump relative conditional short	1	^{2,5} 2,5 П	1100	code	x	x
JUMP Rs Jump indirect	1	2,5	0000	0001	011R	DDDD
POPST Pop status register from stack	1	8,11 10,13 ⁰	0000	0001	1100	0000
PUSHST Push status register onto stack	1	2+(3),8 $2+(8),13\Theta$	0000	0001	1110	0000
PUTST Rs Copy register into status	1	3,6	0000	0001	101R	DDDD
RETI Return from interrupt	1	11,14 15,18Φ	0000	1001	0100	0000
RETS [N] Return from subroutine	1	7,10 9,12Φ	0000	1001	011N	NNNN
TRAP N Software interrupt	1	16,19 30,33 ^Θ	0000	1001	000N	NNNN

Table 12-7. TMS34010 Instruction Set Summary (Concluded)

Θ SP aligned/SP nonaligned
 Π Jump/no jump
 Φ Stack aligned/stack nonaligned

- Syntax This line shows you how to enter an instruction. Here are some sample syntaxes:
 - **EXAMPLE** <source operand>,<destination operand>

If an operand is enclosed in angle brackets (< and >), substitute actual source and destination operands (such as a register or constant) for the text that is shown.

• EXAMPLE B,XY

If an operand is **not** enclosed in angle brackets, then enter it as shown. In this example, you would actually enter EXAMPLE B,XY.

• **EXAMPLE** < source operand>[,< destination operand>]

If an operand is enclosed in square brackets ([]), then the operand is optional. (Do not enter the brackets.) This example could be entered as EXAMPLE source operand, destination operand **or** as EXAMPLE source operand.

Execution This section describes instruction execution. The general form is:

<operand> operator <operand $> \rightarrow <$ operand>

Encoding	15	14	13	12	11	10	9_	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	<	sourc	e opd	>	R	<de< th=""><th>stinat</th><th>ion o</th><th>opd></th></de<>	stinat	ion o	opd>

This section displays the contents of the instruction word.

- **Operands** This section describes any instruction operands and elements of the preceding opcode format. Any assembler exception handling for operands may be described here.
- Fields This line discusses any fields in the opcode that are not explicit operands.
- **Description** This section describes the instruction execution and its effect on the rest of the processor or memory contents. Any constraints on the operands imposed by the GSP or the assembler are also described here. Special instruction applications may follow the description.

Implied Operands

This section describes any operands which are implicit inputs to the instruction. These operands are usually B file registers and I/O registers and are described in detail in Sections 5 and 6. You must load these registers with appropriate values before instruction execution.

-		B File Re	egisters					
Register	Name	Format	Description	1				
	•		•					
•	•		• .					
		I/O Reg	listers					
Address	Name	Des	cription and Elements (Bits)					
•	•		•					
•	•		•					

Special Graphics Topics

Graphics instructions (DRAV, PIXBLTs, etc.) may present special topics of discussion under the following headings:

- Source Array
- Source Expansion
- Destination Array
- Pixel Processing
- Window Checking
- Transparency
- Corner Adjust
- Plane Mask
- Shift Register Transfers

Interrupts Discusses the effects of possible interrupts.

Words Specifies the number of memory words required to store the instruction and its extension words.

Machine States

Cache resident + (Hidden cycles), Cache disabled

Specifies instruction cycle timing for the instruction. Not all instructions have hidden cycles. Section 13, Instruction Timings, provides a complete explanation of instruction timing.

Status Bits N Describes the instruction's effects on the sign bit.

- C Describes the instruction's effects on the carry bit.
 - Z Describes the instruction's effects on the zero bit.
- V Describes the instruction's effects on the overflow bit.

Examples Each instruction description contains sample code, and shows the effects of the code on memory and/or registers.

Syntax	ABS <rd></rd>
Execution	(Rd) → Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 1 1 0 0 R Rd
Description	ABS stores the absolute value of the contents of the destination register back into the destination register. This is accomplished by subtracting the destination register data from 0 and storing it if status bit N indicates that the result is positive. If the result of the subtraction is negative, then the original contents of the destination register are retained.
Words	1
Machine States	1,4
Status Bits	 N 1 if the original data is positive, 0 otherwise. This status bit is the inverse of its normal function; it is the output of the subtract-from-0 operation. C Unaffected Z 1 if the original data is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise. An overflow occurs if Rd contains >8000 0000 (>8000 0000 is returned).
Examples	Code Before After A1 NCZV A1 ABS >7FFF 1x00 >7FFF ABS A1 >FFFF 1x00 >7FFF ABS A1 >FFFF 0x00 >0000 0001 ABS A1 >FFFF 0x00 >0000 0001 ABS A1 >8000 0x00 1x01 >8000 0000 ABS A1 >8000 0x01 0x00 >7FFF FFFF ABS A1 >8000 0x01 1x01 >8000 0x01 ABS A1 >0000 0x11 1x00 >0000 0x01 ABS A1 >0000 0x11 0x00 >0000 0x01

ADD

Α	D	D

Syntax	ADD <rs>,<</rs>	Rd>									
Execution	$(Rs) + (Rd) \rightarrow$	Rd									
Encoding	15 14 13 13 0 1 0 0	2 11 10 0 0 0	9	87	6 Rs	5	4 R	3	2 R	1 d	0
Description	ADD adds the c nation register; t								s of t	he d	esti-
	Multiple-precision in conjunction v					hed t	oy us	ing t	his ir	stru	ction
	The source and	destination r	egist	ers mus	st be in	the	same	e reg	ister	file.	
Words	1										
Machine States	1,4										
Status Bits	C 1 if there is Z 1 if the resu	It is negative a carry, 0 oth It is 0, 0 othe an overflow,	nerw erwis	ise. Se.							
Examples	<u>Code</u>	<u>Before</u>					<u>Af</u> 1	ter			
	ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0 ADD A1,A0	A1 > FFFF FFF > FFFF FFF > FFFF FFF > FFFF FFF > 7FFF FFF > 7FFF FFF > 7FFF FFF > 00000 0000		>8000 >8000 >8000 >8000 >0000	0 0001 0 0002 0 0000 0 0001 0 0001 0 0001		NC: 11(01) 01(01) 11(01) 10(10) 00)	00 10 00 01 00 10 00 10 00 01	A0 > FF > 000 > 7F > 800 > FF > 800 > FF > 800 > 000	00 00 FF FI 00 00 FF FI 00 00 FF FI	000 001 FFF 000 000 FFF 000

ADDC

Add Register with Carry ADDC

Syntax	ADDC <rs>,</rs>	<rd></rd>											
Execution	(Rs) + (Rd) + (C) →	Rd										
Encoding	15 14 13 12	2 11	10	9	8	7	6	5	4	3	2	1	0
	0 1 0 0) 0	0	1		R	s		R		R	ld	
Description	ADDC adds the the contents of t register. Note th	he de	stinatio	on re	giste	er; the	resu	lt is s	store	d in t	he de		
	The source and o	destin	ation	regis	ters i	must	be in	the	same	e regi	ster	file.	
Words	1												
Machine States	1,4												
Status Bits	 N 1 if the resul C 1 if there is a Z 1 if the resul V 1 if there is a 	a carry It is 0,	/, 0 ot 0 oth	herw erwi	vise. se.								
Examples	Code	Bef	ore						<u>A</u>	fter			
	ADDC A1,A0 ADDC A1,A0	1 > 1 > 1 > 1 > 1 > 1 > 1 > 0 >	A1 FFFF FFFF FFFF FFFF FFFF FFFF FFFF F	FFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		> FFF > 000 > 000 > 800 > 800 > 800 > 800 > 800 > 800 > 800	0 000 0 000 0 000 0 000 0 000 0 000 F FFF 0 000 0 000 0 000	91 92 90 91 91 90 91 92 91 92 90 91 91 90 91 90 91 90 91 90 91 90 91 90 91 90 91 90 91 90 91 90 91 90 90 91 90 90 90 90 90 90 90 90 90 90 90 90 90	11 01 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CZV 100 100 100 100 100 100 100 10		0000 0000 8000 8000 0000 8000 0000 FFFF 8000 0000 FFFF 8000 FFFF 8000	0002 0000 0001 0001 0001

đ

ê

ADDI

Add Immediate - 16 Bits

ADDI

Cuptov								
Syntax	ADDI , <rd>[,W]</rd>							
Execution	$IW + (Rd) \rightarrow Rd$							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 0 0 0 1 0 1 1 0 0 0 R Rd							
	IW							
Operands	IW is a 16-bit, sign-extended immediate value.							
Description	ADDI adds the sign-extended, 16-bit immediate value to the contents of the destination register; the result is stored in the destination register.							
	The assembler will use the short (16-bit) add if the immediate value has been previously defined and is in the range $-32,768 \le IW \le 32,767$. You can force the assembler to use the short form by following the instruction with W :							
	ADDI <iw>,<rd>,W</rd></iw>							
	If the IW value is outside the legal range, the assembler will discard all but the 16 LSBs and issue an appropriate warning message.							
	Multiple-precision arithmetic can be accomplished by using ADDI in conjunction with the ADDC instruction.							
Words	2							
Machine States	2,8							
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a carry, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise. 							
Examples	<u>Code</u> <u>Before</u> <u>After</u>							
	A0NCZVA0ADDI 1,A0>FFFF FFFF0110>00000000ADDI 2,A0>FFFF FFFF0100>00000001ADDI 1,A0>7FFF FFFF1001>80000000ADDI 2,A0>000000020000>00000004ADDI 32767,A0>000000020000>00008001ADDI >FFFF0010,A0,W>FFFF0110>00000000							

ADDI

Add Immediate - 32 Bits ADDI

Syntax	ADD! , <rd>[,L]</rd>					
Execution	$IL + (Rd) \rightarrow Rd$					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 1 1 0 0 1 Rd IL (LSW)					
	IL (MSW)					
Operands	IL is a 32-bit immediate value.					
Description	ADDI adds the 32-bit, signed immediate data to the contents of the destination register; the result is stored in the destination register.					
	The assembler will use the long (32-bit) ADDI if it cannot use the short form. You can force the assembler to use the long form by following the instruction with L :					
	ADDI <il>,<rd>,L</rd></il>					
Words	3					
Machine States	3,12					
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a carry, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise. 					
Examples	Code Before After					
	A0 NCZV A0 ADDI >FFFFFFFF,A0 >FFFF FFFF 1100 >FFFF FFFE ADDI >80000000,A0 >FFFF FFFF 0101 >7FFF FFFF ADDI >80000000,A0 >FFFF FFFF 1000 >FFFF FFFF ADDI 32768,A0 >7FFF FFFF 1001 >8000 7FFF ADDI 2,A0,L >FFFF FFFF 0100 >0000 0001					

ADDK

Add Constant (5 Bits)

Syntax	ADDK < <i>K</i> >,< <i>Rd</i> >
Execution	$K + (Rd) \rightarrow Rd$
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 1 0 0 K R Rd
Operands	K is a constant from 1 to 32.
Description	ADDK adds a 5-bit constant to the contents of the destination register; the result is stored in the destination register. The constant is treated as an unsigned number in the range 1-32, where $K = 32$ is converted to 0 in the opcode. The assembler will issue an error if you try to add 0 to a register.
	Multiple-precision arithmetic can be accomplished by using this instruction in conjunction with the ADDC instruction.
Words	1
Machine States	1,4
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a carry, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise.
Examples	Code Before After
	A0 NCZV A0 ADDK 1,A0 >FFFF FFFF 0110 >0000 0000 ADDK 2,A0 >FFFF FFFF 0100 >0000 0001 ADDK 1,A0 >7FFF FFFF 1001 >8000 0000 ADDK 1,A0 >8000 0000 1000 >8000 0001 ADDK 32,A0 >8000 0000 1000 >8000 0020 ADDK 32,A0 >00000 0002 0000 >0020

>0000 0002

0000 >0000 0022

ADDK 32,AO

ľ

Syntax	ADDXY <rs>,<rd></rd></rs>
Execution	$(RsX) + (RdX) \rightarrow RdX$ $(RsY) + (RdY) \rightarrow RdY$
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 1 1 0 0 0 0 Rs R Rd
Description	ADDXY adds the signed source X value to the signed destination X value, and adds the signed source Y value to the signed destination Y value. The result is stored in the destination register. The source and destination reg- isters are treated as if they contained separate X and Y values. When they are added, the carry out from the lower (X) half of the register does not propagate into the upper (Y) half.
	If you only want to add the X halves together, then the Y value of one of the operands must be 0 (the method for adding the Y halves is similar).
	This instruction can be used for manipulating XY addresses in the register file and is particularly useful for incremental figure drawing.
	The source and destination registers must be in the same register file.
Words	1
Machine States	1,4
Status Bits	 N 1 if resulting X field is all 0s, 0 otherwise. C The sign bit of the Y half of the result. Z 1 if Y field is all 0s, 0 otherwise. V The sign bit of the X half of the result.
Examples	Code Before After
	A1A0A0NCZVADDXY A1,A0>0000 0000>0000 0000>0000 00001010ADDXY A1,A0>0000 0000>0000 0001>0000 00010010ADDXY A1,A0>0000 0000>0001 0000>0001 00001000ADDXY A1,A0>0000 0000>0001 0001>0001 00010000ADDXY A1,A0>0000 0000>0001 0001>0001 00010000ADDXY A1,A0>0000 FFFF>0000 0001>0000 00001010ADDXY A1,A0>0000 FFFF>0000 0002>0001 00001000ADDXY A1,A0>0000 FFFF>0001 0001>0001 00001010ADDXY A1,A0>0000 FFFF>0001 0002>0001 00010000ADDXY A1,A0>FFFF 0000>0001 0002>0001 00001010ADDXY A1,A0>FFFF 0000>0002 0000>0001 00010000ADDXY A1,A0>FFFF 0000>0002 0001>0001 00011000ADDXY A1,A0>FFFF FFF>0001 0001>0000 00011000ADDXY A1,A0>FFFF FFFF>0001 0001>0000 00011010ADDXY A1,A0>FFFF FFFF>0001 0001>0000 00011010ADDXY A1,A0>FFFF FFFF>0001 0002>0000 00011010ADDXY A1,A0>FFFF FFFF>0002 0001>0001 00001010ADDXY A1,A0>FFFF FFFF>0002 0001>0001 00001010ADDXY A1,A0>FFFF FFFF>0002 0001>0001 00001000ADDXY A1,A0>FFFF FFFF>0002 0001>0001 00001000

AND AND Registers

AND

Syntax	AND $\langle Rs \rangle$	Rd>			
•	· · · · · ,				
Execution	(Rs) AND (Rd)	→ Rd			
Encoding	15 14 13 13	2 11 10 9	8 7 6	543	2 1 0
	0 1 0 1	0 0 0	Rs	R	Rd
Description	AND bitwise-AN of the destination The source and the source and th	on register; the	result is stored	in the dest	ination register.
Words	1				
Machine States	1,4				
Status Bits	 N Unaffected C Unaffected Z 1 if the result V Unaffected 	It is 0 <i>, 0</i> otherw	vise.		
Examples	Code	Before		<u>After</u>	
	AND A1,A0 AND A1,A0 AND A1,A0 AND A1,A0 AND A1,A0 AND A1,A0 AND A1,A0	A1 > FFFF FFFF > 0000 0000 > AAAA AAAA > AAAA AAAA > 5555 5555 > 5555 5555	A0 >FFFF FFFF >0000 0000 >0000 0000 >5555 5555 >AAAA AAAA >5555 5555 >AAAA AAAA	NCZV xx0x xx1x xx1x xx1x xx0x xx0x xx0x xx1x	A0 >FFFF FFFF >0000 0000 >0000 0000 >0000 0000 > AAAA AAAA

ľ

ANDI

AND Immediate (32 Bits) ANDI

Syntax	ANDI , <rd></rd>	
Execution	$IL AND (Rd) \rightarrow Rd$	
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 1 1 1 0 0 Rd]
	~IL (LSW) ~IL (MSW)	1
Operands	IL is a 32-bit immediate value.	1
Description	ANDI bitwise-ANDs the value of the 32-bit immediate value, IL, with the contents of the destination register; the result is stored in the destination register.	
	This is an alternate mnemonic for ANDNI IL, Rd. The assembler stores the 1's complement of IL in the two extension words.	9
Words	3	
Machine States	3,12	
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 	
Examples	<u>Code</u> <u>Before</u> <u>After</u>	
	A0NCZVA0ANDI >FFFFFFF,A0>FFFFxx0x>FFFFANDI >FFFFFFF,A0>00000000xx1x>0000ANDI >FFFFFFF,A0>00000000xx1x>0000ANDI >0000000,A0>00000000xx1x>0000ANDI >AAAAAAAA,A0>55555555xx1x>0000ANDI >AAAAAAAA,A0>AAAAAXOX> AAAAANDI >55555555,A0>5555xx0x>5555ANDI >55555555,A0>AAAAAAAAxx1x>0000	

AND Register with Complement ANDN ANDN

Syntax	ANDN <rs>,<!--</th--><th>₽d></th><th></th><th></th><th></th></rs>	₽d>			
Execution	NOT(Rs) AND (R	d) → Rd			
Encoding	15 14 13 12 0 1 0 1	11 10 9 0 0 1	8 7 6 Rs	54 R	3 2 1 0 Rd
Description	gister with the cor destination registe	ntents of the des er. estination registe	tination registers ars must be in	er; the re the same	s of the source re- sult is stored in the e register file. Note
Words	1				
Machine States	1,4				
Status Bits	 N Unaffected C Unaffected Z 1 if the result V Unaffected 	is 0, 0 otherwise	ə.		
Examples	<u>Code</u>	Before		<u>A</u>	fter
	ANDN A1,AO ANDN A1,AO ANDN A1,AO ANDN A1,AO ANDN A1,AO ANDN A1,AO ANDN A1,AO	A1 >FFFF FFFF >0000 0000 >AAAA AAAA >AAAA AAAA >5555 5555 >5555 5555	A0 > FFFF FFFF > 0000 0000 > 5555 5555 > AAAA AAAA > 5555 5555 > AAAA AAAA	×) ×) ×) ×) ×)	CZV A0 x1x >0000 0000 x1x >0000 0000 x1x >0000 0000 x1x >0000 0000 x0x >5555 5555 x1x >0000 0000 x0x > AAAAAAAA

AND Not Immediate (32 Bits) ANDNI ANDNI

Syntax	ANDNI
Execution	NOT IL AND (Rd) \rightarrow Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 1 1 1 0 0 R Rd
	IL (LSW) IL (MSW)
• •	
Operands	L is a 32-bit immediate value.
Description	ANDNI bitwise-ANDs the 1's complement of the 32-bit immediate data with the contents of the destination register; the result is stored in the destination register. ANDI also uses this opcode.
Words	3
Machine States	3,12
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected
Examples	Code Before After
	A0NCZVA0ANDNI >FFFFFFF,A0>FFFFFFFxx1x>0000 0000ANDNI >FFFFFFF,A0>0000 0000xx1x>0000 0000ANDNI >00000000,A0>0000 0000xx1x>0000 0000ANDNI >AAAAAAAA,A0>5555 5555xx0x>5555 5555ANDNI >AAAAAAAA,A0>AAAAAAAAAxx1x>0000 0000ANDNI >55555555,A0>5555xx1x>0000 0000ANDNI >55555555,A0>AAAAAAAAAxx0x>AAAAAAAAA

BTST Test Register Bit - Constant

BTST

Syntax	BTST <k>,<r< th=""><th>d></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></r<></k>	d>							
Execution	Set status on valu	ie of bit K in R	d						
Encoding	15 14 13 12	11 10 9	87	65	4	3	2	1	0
_	0 0 0 1	1 1	~ K		R		Ro	ł	
Operands	K is a constant	in the range of	0 to 31.						
	31			ĸ			0 -		
							Rd		
	MSB					LS	38		
			L	<u>- (L)!!</u>					
Description	BTST tests the s accordingly. The a value in the rar assembler issues LSBs. The specif fore it is inserted	K value must nge 0 to 31; if a warning and ied bit numbe	be an abso the value truncates is 1's con	olute expr specified the K op nplement	essic Lis g peran	on tha reate id va	at eva er thar lue to	luat 1 31 1 the	es to , the five
Words	1								
Machine States	1,4						•		
Status Bits	 N Unaffected C Unaffected Z 1 if the bit test V Unaffected 	sted is 0, 0 if t	ne bit teste	ed is 1.					
Examples	Code	Before	Aft	er					
		A0	NCZ	v					
	BTST 0,A0	> 55555 5555	x x 0						
	BTST 15,AO BTST 31,AO	>55555 5555 >55555 5555	x x 1 x x 1						
	BTST 0,AO	>ΑΑΑΑ ΑΑΑΑ	x x 1	х					
	BTST 15,A0 BTST 31,A0	> AAAA AAAA > AAAA AAAA	-						
	BISI SI,AO BTST 0,AO	>FFFF FFFF	. xx0 xx0						
	BTST 15,AO	>FFFF FFFF	xx0						
	BTST 31,AO	> FFFF FFFF							
	BTST 0,A0 BTST 15,A0	>0000 0000	x x 1 x x 1						
	BISI 13,AO	>0000 0000	xx1						

BTST Test Register Bit - Register BTST

Syntax	BTST < <i>Rs</i> >,< <i>Rd</i> >	
Execution	Set status on value of bit (Rs) in Rd	
Encoding	15 14 13 12 11 10 9 8 7 6 5 0 1 0 0 1 0 1 Rs	4 3 2 1 0 R Rd
Operands	Rs contains the number of the bit in Rd to be test	0
Description	BTST tests the specified destination register bit an cordingly. The five LSBs of the source register spectrum (the 27 MSBs are ignored). The source and destination registers must be in the	cify the bit to be tested
Words	1	Ū
Machine States	2,5	
Status Bits	 N Unaffected C Unaffected Z 1 if the bit tested is 0, 0 if the bit tested is 1. V Unaffected 	
Examples	Code Before A1 A0 BTST A1,A0 >0000 0000 >5555 5555 BTST A1,A0 >0000 000F >5555 5555 BTST A1,A0 >0000 000F >5555 5555 BTST A1,A0 >0000 000F >AAAA AAAA BTST A1,A0 >0000 000F FFFF FFF BTST A1,A0 >0000 000F FFFF FFF BTST A1,A0 >0000 000F FFFF FFF BTST A1,A0 >0000 000F >FFFF FFF BTST A1,A0 >0000 000F >0000 0000 BTST A1,A0 >0000 000F	After NCZV xx0x xx1x xx1x xx1x xx1x xx0x xx0x xx0

Curtan	
Syntax Execution	CALL $\langle Rs \rangle$ (PC') \rightarrow TOS (Rs) \rightarrow PC
	$(SP) - 32 \rightarrow SP$
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 0 1 0 0 1 R Rs
Description	CALL pushes the address of the next instruction (PC') onto the stack, then jumps to a subroutine whose address is contained in the source register. This instruction can be used for indexed subroutine calls. Note that when Rs is the SP, Rs is decremented after being written to the PC (the PC contains the original value of Rs).
	The TMS34010 always sets the four LSBs of the program counter to 0, so instructions are always word aligned.
	The stack pointer (SP) points to the top of the stack; the stack is located in external memory. The stack grows in the direction of decreasing linear address. PC' is pushed onto the stack and the SP is predecremented by 32 before the return address is loaded onto the stack. Stack pointer alignment affects timing as indicated in Machine States , below.
	Use the RETS instruction to return from a subroutine.
Words	1
Machine States	3+(3),9 (SP aligned) 3+(9),15 (SP nonaligned)
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Example	CALL AO
	Before A0 After PC >0123 4560 > 0444 2210 >0F00 0020 >0123 4560 >0F00 0000
	Memory will contain the following values after instruction execution:
	Address Data >0F00 >2220 >0F00 0020

Syntax	CALLA <address></address>						
Execution	(PC') → TOS Address → PC						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	Address (LSW) Address (MSW)						
Operands	Address is a 32-bit absolute address.						
Description	CALLA pushes the address of the next instruction (PC') onto the stack, then jumps to the address contained in the two extension words. This instruction is used for long (greater than ± 32 K words) or externally referenced calls.						
	The lower four bits of the program counter are always set to 0, so in- structions are always word-aligned.						
	The stack pointer (SP) points to the top of the stack; the stack is located in external memory. The stack grows in the direction of decreasing linear address. PC' is pushed onto the stack and the SP is predecremented by 32 before the return address is loaded onto the stack. Stack pointer alignment affects timing as indicated in Machine States , below.						
	Use the RETS instruction to return from a subroutine.						
Words	3						
Machine States	4+(2),15 (SP aligned) 4+(8),21 (SP nonaligned)						
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 						
Example	CALLA >01234560						
	Before <u>After</u>						
	PC SP PC SP >0444 2210 >0F00 0020 >0123 4560 >0F00 0000						
	Memory will contain the following values after instruction execution:						
	Address Data >0F00 0010 >2240 >0F00 0020 >0444						

0010	>2240
0020	>0444

CALLR Call Subroutine - Relative CALLR

Syntax	CALLR <address></address>							
Execution	$(PC') \rightarrow TOS$ PC' + (Displacement × 16) \rightarrow PC							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 0 1 0 1							
Operands	Address is a 32-bit address within ±32K words (-32,768 to 32,767) of PC'.							
Descript ion	CALLR pushes the address of the next instruction (PC') onto the stack, then jumps to the subroutine at the address specified by the sum of the next instruction address and the signed word displacement. This instruction is used for calls within a specified module or section.							
	The displacement is computed by the assembler as (Address - PC')/16. The address must be defined within the section and within -32,768 to 32,767 words of the instruction following CALLR. The assembler will not accept an address value that is externally defined or defined within a different section than PC'.							
	The lower four bits of the program counter are always set to 0, so in- structions are always word aligned.							
	The stack pointer (SP) points to the top of the stack; the stack is located in external memory. The stack grows in the direction of decreasing linear address. The PC is pushed on to the stack and the SP is predecremented by 32 before the return address is loaded onto the stack. Stack pointer alignment affects timing as indicated in Machine States , below.							
	Use the RETS instruction to return from a subroutine.							
Words	2							
Machine States	3+(2),11 (SP aligned) 3+(8),17 (SP nonaligned)							
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 							
Examples	Code Before After							
	PC SP PC SP CALLR >0447FFF0 >0440 0000 >0F00 0020 >0447 FFF0 >0F00 0000 CALLR >04480000 >0440 0000 >0F00 0020 >0448 0000 >0F00 0020 >0448 0000 >0F00 0020							
	Memory will contain the following values after instruction execution:AddressData>0F00 0010>0000>0F00 0020>0440							

CLR Clear Register

Syntax	CLR <rd< th=""><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></rd<>	>								
Execution	(Rd) XOR (Rd) 👈 Rd								
Encoding	15 14 13		10 9	87 F	6 5	4 R	3	2 8	1 d	0
Description	CLR clears the with itself.	he destinat	tion regis	ter by XO	Ring the	cont	ents (Rd.			gister
Words	1									
Machine States	1,4									
Status Bits	N Unaffec C Unaffec Z 1 V Unaffec	ted								
Examples	<u>Code</u>	Before	<u>t</u>	<u>After</u>						
	CLR AO CLR AO CLR AO CLR AO	A0 >FFFF FI >0000 00 >8000 00 >AAAA A	001 000	A0 >0000 0 >0000 0 >0000 0 >0000 0	000 xx 000 xx 000 xx	ZV (1x) (1x) (1x) (1x)				

CLRC Clear Carry

CLRC

Syntax	CLRC					
Execution	0 → C					
Encoding	15 14 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 9 8	7 6 5 0 0 1	4 3 2 0 0 0	1 0
Description				o 0. The rest o a counterpart to		
				ng a true/false v eneral-purpose r		carry bit)
Words	1					
Machine States	1,4					
Status Bits	N Unaff C 0 Z Unaff V Unaff	ected				
Examples	Code	Before		After		
	CLRC CLRC CLRC	ST >F000 0000 >4000 0010 >B000 001F	NCZV 1111 0100 1011	ST > B000 0000 > 0000 0010 > B000 001F	NCZV 1011 0000 1011	

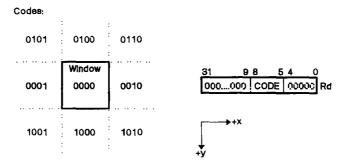
<u>CMP</u>

Syntax	CMP < <i>Rs</i> >,< <i>Rd</i> >
Execution	Set status bits on the result of (Rd) - (Rs)
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 0 0 Rs R Rd
Description	CMP subtracts the contents of the source register from the contents of the destination register and sets the condition codes accordingly. Both the source and destination registers remain unaffected. This instruction is often used in conjunction with the JAcc or JRcc conditional jump instructions.
	The source and destination registers must be in the same register file.
Words	1
Machine States	1,4
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if a there is a borrow, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise.
Examples	Code Before After Jumps Taken
	A1 A0 NCZV CMP A1,A0 >0000 0001 0010 UC,NN,NC,Z,NV,LS,GE,LE,HS CMP A1,A0 >0000 0000 0000 UC,NN,NC,Z,NV,LS,GE,LE,HS CMP A1,A0 >0000 0001 >FFFF 1000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS CMP A1,A0 >0000 0001 >FFFF 1000 UC,N,NC,NZ,NV,P,HI,LT,LE,HS CMP A1,A0 >0000 0001 >8000 0001 UC,NN,C,NZ,V,LS,GE,GT,LO CMP A1,A0 >FFFF >FFFF 1101 UC,N,C,NZ,V,LS,GE,GT,LO CMP A1,A0 >8000 0000 1100 UC,N,C,NZ,V,LS,GE,GT,LO CMP A1,A0 >8000 0000 1100 UC,N,C,NZ,V,LS,GE,GT,LO

CMPI Compare Immediate - 16 Bits

Syntax	CMPI , <rd>[,W]</rd>
Execution	Set status bits on the result of (Rd) - IW
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 0 1 1 0 1 0 R Rd
	~!W
Operands	IW is a 16-bit signed immediate value.
Description	CMPI subtracts the sign-extended, 16-bit immediate data from the contents of the destination register and sets the condition codes accordingly. The destination register remains unaffected.
	The assembler places the 1's complement of the specified value into the extension word (~IW).
	The assembler will use the short form if the immediate value has been pre- viously defined and is in the range $-32,768 \le IW \le 32,767$. You can force the assembler to use the short form by following the register specification with W:
	CMPI <iw>,<rd>,W</rd></iw>
	The assembler will truncate the upper bits and issue an appropriate warning message if the value is greater than 16 bits.
	This instruction is often used in conjunction with the JAcc or JRcc condi- tional jump instructions.
Words	2
Machine States	2,8
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a borrow, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise.
Examples	<u>Code</u> <u>Before</u> <u>After</u> <u>Jumps</u> <u>Taken</u>
	A0NCZVCMPI1,A0>000000020000UC,NN,NC,NZ,NV,P,HI,GE,GT,HSCMPI1,A0>00000010UC,NN,NC,Z,NV,LS,GE,LE,HSCMPI1,A0>00000100UC,N,N,C,Z,NV,LS,GE,LE,HSCMPI1,A0>FFFFFFFF1000UC,N,NC,NZ,NV,LS,LT,LE,LOCMPI1,A0>FFFFFFFF1000UC,N,N,C,NZ,NV,P,HI,LT,LE,HSCMPI1,A0>80000001UC,N,N,C,NZ,VV,P,HI,LT,LE,HSCMPI-2,A0>00000100UC,NN,NC,NZ,NV,P,LI,GE,GT,LOCMPI-2,A0>FFFFFFFF0000UC,NN,NC,NZ,NV,P,LI,GE,GT,HSCMPI-2,A0>FFFFFFFF0010UC,NN,NC,Z,NV,LS,GE,LE,HSCMPI-2,A0>FFFF1100UC,N,C,NZ,NV,LS,LT,LE,LOCMPI-1,A0>7FFFFFFF1101UC,N,C,NZ,V,LS,GE,GT,LO

CMPI Compare Immediate - 32 Bits


Syntax	CMPI , <rd>[,L]</rd>
Execution	Set status bits on the result of (Rd) - IL
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 1 1 0 1 1 Rd ~IL (LSW) ~IL (MSW)
Operands	IL is a 32-bit immediate value.
Description	CMPI subtracts the signed, 32-bit immediate data from the contents of the destination register and sets the condition codes accordingly. The destination register remains unaffected.
	The assembler places the 1's complement of the specified value into the extension words (\sim IL).
	The assembler will use this opcode if it cannot use the short form. You can force the assembler to use the long form by following the register specification with L :
	CMPI <il>, <rd>, L</rd></il>
	This instruction is often used in conjunction with the JAcc or JRcc condi- tional jump instructions.
Words	3
Machine States	3,12
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a borrow, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise.
Examples	<u>Code</u> <u>Before</u> <u>After</u> <u>Jumps</u> <u>Taken</u>
	A0 NCZ V CMPI >8000,A0 >0000 8001 000 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS CMPI >8000,A0 >0000 8000 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS CMPI >8000,A0 >0000 7FF 110 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS CMPI >8000,A0 >0000 7FF 100 0 UC,NN,NC,NZ,NV,P,HI,LT,LE,HS CMPI >8000,A0 >8000 7FF 000 1 UC,NN,NC,NZ,NV,P,HI,LT,LE,HS CMPI >8000,A0 >8000 07FF 000 1 UC,NN,NC,NZ,NV,P,HI,LT,LE,HS CMPI >FFFF7FFF,A0 >0000 0000 010 UC,NN,NC,NZ,NV,P,HI,LT,LE,HS CMPI >FFFF7FFF,A0 >0000 0000 010 UC,NN,NC,NZ,NV,P,HI,GE,GT,LO CMPI >FFFF7FFF,A0 >FFFF 7FFF 000 UC,NN,NC,Z,NV,LS,GE,LE,HS CMPI >FFFF7FFF,A0 >FFFF 7FFF 001 UC,NN,NC,Z,NV,LS,LT,LE,LO CMPI >FFFF7FFF,A0 >FFFF 7FFF 110 UC,N,C,NZ,V,LS,GE,GT,LO

CMPXY Compare X and Y Halves of Registers CMPXY

Syntax Execution	CMPXY < <i>Rs</i> > Set status bits on (RdX) - (Rs (RdY) - (Rs	the results of: sX)			
Encoding	15 14 13 12 1 1 1 0	11 10 9 0 1 0	8 7 6 Rs	54 R	3 2 1 0 Rd
Description	and sets the statu ters themselves re	is bits as if a su main unaffecte	ubtraction had d. The source	been pe and des	register in XY mode rformed. The regis- tination registers are etection is provided.
	The source and d	estination regis	ters must be ir	n the san	ne register file.
Words	1				
Machine States	1,4				
Status Bits	C Sign bit of Y Z 1 if source Y	field = destinat half of the resu field = destinat half of the resu	lt. tion Y field, 0 (
Examples	Code	Before		After .	lumps <u>Taken</u>
·	CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0 CMPXY A1,A0	A1 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009	A0 >0001 0001 >0009 0001 >0009 0009 >0009 0010 >0009 0010 >0010 0000 >0010 0009 >0010 0010	0011 1100 1010 0100 0010 0001 1000	NN, C, NZ, V, LS, LT NN, NC, Z, V, LS, LT N, C, NZ, NV, LS, LT N, NC, Z, NV, LS, LT NN, C, NZ, NV, LS, GE NN, NC, Z, NV, LS, GE NN, NC, NZ, V, HI, LT N, NC, NZ, NV, HI, LT NN, NC, NZ, NV, HI, GE

Syntax	CPW <rs>,<rd></rd></rs>															
Execution	Point Code → Rd															
Encoding	15	14	13	12	11	10	9	8	_ 7	6	5	4	3	_2	1	0
	1	1	1	0	0	1	1		R	s		R		F	ld	

Description CPW compares a point represented by an XY value in the source register to the window limits in the WSTART and WEND registers. The contents of the source register are treated as an XY address that consists of 16-bit signed X and Y values. WSTART and WEND are also treated as signed XY-format registers. WSTART and WEND should contain positive values; negative values produce unpredictable results. The location of the point with respect to the window is encoded as follows and loaded into the destination register.

Note that the five LSBs of the destination register are set to 0 so that Rd can be used as an index into a table of 32-bit addresses.

This instruction can also be used to trivially reject lines that do not intersect with a window. The CPW codes for the two points defining the line are ANDed together. If the result is nonzero, then the line must lie completely outside the window (and does not intersect it). A 0 result indicates that the line *may* intersect the window, and a more rigorous test must be applied.

The source and destination registers must be in the same register file.

Implied	
Operands	

B File Registers									
Register	Name	Format	Description						
B5	WSTART	XY	Window start. Defines inclusive starting corner of window (lesser value corner).						
B6	WEND	XY	Window end. Defines inclusive ending corner of window (greater value corner).						

Words

Machine States 1

1,4

- Unaffected Status Bits Ν
 - С Unaffected
 - Ž Unaffected
 - v 1 if point lies outside window, 0 otherwise.

Examples You must select appropriate implied operand values before executing the instruction. In this example, the implied operands are set up as follows, specifying a block of 36 pixels.

> WSTART = 5,5WEND = A,A

CPW A1,A0

Refore

Befor	<u>e</u>		<u>After</u>		
A1		NCZV	A0		NCZV
>0004	0004	xxx0	>0000	00A0	xxx1
>0004	0005	x x x 0	>0000	0080	x x x 1
>0004	000A	xxx0	>0000	0080	x x x 1
>0004	000B	xxx1	>0000	00C0	xxx1
>0005	0004	x x x 1	>0000	0020	x x x 1
>0005	0005	xxx0	>0000	0000	x x x O
>0005	000A	xxx0	>0000	0000	xxx0
>0005	000B	x x x O	>0000	0040	x x x 1
>000A	0004	xxx0	>0000	0020	x x x 1
>000A	0005	xxx1	>0000	0000	xxx0
>000A	000A	xxx1	>0000	0000	xxx0
>000A	000B	x x x O	>0000	0040	xxx1
>000B	0004	xxx0	>0000	0120	xxx1
>000B	0005	x x x O	>0000	0100	x x x 1
>000B	000A	x x x 0	>0000	0100	x x x 1
>000B	000B	xxx0	>0000	0140	x x x 1

ł

CVXYL Convert XY Address to Linear Address

Syntax	CV	XYL	< F	?s>,<	<rd></rd>	•										
Execution	(Rs	XY)	\rightarrow	Rd (Linea	ır)										
Encoding	15	14	13	12	11	10	9	8	7	6	5		3	2	1	0
	1	1	1	0	1	0	0		F	ls		R		R	d	

Operands Rs The source register contents are treated as an XY address that contains signed 16-bit X and Y values. The X value must be positive.

Description CVXYL converts an XY address to a linear address. The source register contains an XY address. The X value occupies the 16 LSBs of the register and the Y value occupies the 16 MSBs. This is converted into a 32-bit linear address which is stored in the destination register. The following conversion formula is used:

Address = $(Y \times Display Pitch) OR (X \times Pixel Size) + Offset$

Since the TMS34010 restricts the screen pitch and pixel size to powers of two (for XY addressing), the multiply operations in this conversion are actually shifts. The offset value is in the OFFSET register. The CONVDP value is used to determine the shift amount for the Y value, while the PSIZE register determines the X shift amount.

The source and destination registers must be in the same register file.

Operands	B File Registers						
	Register	Name	Format	Description			
	B3	DPTCH	Linear	Destination pitch			
	B4	OFFSET	Linear	Screen origin (location 0,0)			
	I/O Registers						
	Address	Name	Description and Elements (Bits				
	>C0000140	CONVDP	XY-to-linear conversion (destination pitch)				
	>C0000150	PSIZE	Pixel size (1,2,4,8,16)				
Words	1						
Machine States	3,6						
Status Bits	N Unaffecto C Unaffecto Z Unaffecto V Unaffecto	ed ed					

Implied

Examples

<u>Code</u>	<u>Before</u>	<u>After</u>			
	A0	OFFSET	PSIZE	CONVDP	A1
CVXYL A0,A1	>0040 0030	>0000 0000	>0010	>0014	>0002 0300
CVXYL A0,A1	>004 0 003 0	>0000 0000	>0008	> 0 014	> 0 002 0180
CVXYL A0,A1	>0040 0030	>0000 0000	>0004	>0014	>0002 0000
CVXYL A0,A1	>0040 0030	>0000 8000	>0004	>0014	>0002 8000
CVXYL A0,A1	>0040 0030	>0F00 0000	>0004	>0014	>0F02 0000
CVXYL A0,A1	>0040 0030	>0000 0000	>0002	>0014	>0002 0060
CVXYL A0,A1	>0040 0030	>0000 0000	>0001	>0014	>0002 0030
CVXYL A0,A1	>0040 0030	>0000 0000	>0001	>0013	>0004 0030
CVXYL A0,A1	>0040 0030	>0000 0000	>0001	>0015	>0001 0000
	CONVDP = >0013	corresponds to	DPTCH =	= >0000 1	000

CONVDP = >0014 corresponds to DPTCH = >0000 0800CONVDP = >0015 corresponds to DPTCH = >0000 0400

DEC

Decrement Register

Syntax	DEC <rd< th=""><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></rd<>	>							
Execution	(Rd) - 1 →	Rd							
Encoding	15 14 13	12 11	10 9	87	65	4	3	2 1	0
	0 0 0	1 0	1 0	0 0	0 1	R		Rd]
Description	stored in the	EC subtracts 1 from the contents of the destination register; the result is ored in the destination register. This instruction is an alternate mnemonic r SUBK 1, Rd.							
	Multiple-pre in conjunctio					by us	ing thi	s instru	ction
Words	1								
Machine States	1,4								
Status Bits	C 1 if there Z 1 if the	esult is neg is a borro esult is 0, (is an over	w, 0 othe 0 otherwi	rwise. se.					
Examples	Code	<u>Before</u>		<u>After</u>					
	DEC A1 DEC A1 DEC A1 DEC A1 DEC A1	A1 >0000 00 >0000 00 >0000 00 >FFFF FF >8000 00	001 000 FFF	A1 >0000 (>0000 (>FFFF F >FFFF F >7FFF F	0000 FFF FFE	NCZ 0000 0010 1100 0000	0 0 0 0		

DINT

Disable Interrupts

DINT

Syntax	DINT	
Execution	0 → IE	
Encoding	15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
	0 0 0 0 0 0 1 1 0 1 1 0	0 0 0 0
Description	DINT disables interrupts by setting the global interrupt bit 21) to 0. All interrupts except reset and NMI are di enable mask in the INTENB register is ignored. The ren register is unaffected.	sabled; the interrupt
	The EINT instruction enables interrupts.	
Words	1	
Machine States	3,6	
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected IE 0 	
Examples	<u>Code</u> <u>Before</u> <u>After</u>	
	ST ST DINT >0000 0010 >0000 0010 DINT >0020 0010 >0000 0010	

DIVS

Syntax	DIVS <rs>,<rd></rd></rs>						
Execution	Rd Even: (Rd):(Rd+1)/(Rs) \rightarrow Rd, remainder \rightarrow Rd+1 Rd Odd: (Rd)/(Rs) \rightarrow Rd						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	0 1 0 1 1 0 0 Rs R Rd						
Operands	Rs is a 32-bit signed divisor.						
	Rd is a 32-bit signed dividend, or the most significant half of a 64-bit signed dividend.						
Description	There are two cases:						
	Rd Even DIVS performs a signed divide of the 64-bit operand contained in the two consecutive registers, starting at the specified desti- nation register, by the 32-bit contents of the source register. The specified even-numbered destination register, Rd, contains the 32 MSBs of the dividend. The next consecutive register (which is odd-numbered) contains the 32 LSBs of the divi- dend. The quotient is stored in the destination register, and the remainder is always the same sign as the dividend (in Rd:Rd+1). Avoid using A14 or B14 as the destination register, since this overwrites the SP; the assembler will issue a warning in this case.						
	Rd Odd DIVS performs a signed divide of the 32-bit operand contained in the destination register by the 32-bit value in the source re- gister. The quotient is stored in the destination register; the re- mainder is not returned.						
	The source and destination registers must be in the same register file.						
Words	1						
Machine States	40,43 (Rd even) 39,42 (Rd odd) 41,44 if result = >80000000 7,10 if (Rd) ≥ (Rs) or (Rs) ≤ 0						
Status Bits	 N 1 if the quotient is negative, 0 otherwise. C Unaffected Z 1 if the quotient is 0, 0 otherwise. V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise. The following conditions will set the overflow flag: 						
	 Divisor is 0 Quotient cannot be contained within 32 bits 						

Examples

DIVS A2,A0

Before			<u>After</u>			
A0 >1234 5678 >EDCB A987 >EDCB A987 >1234 5678 >1234 5678 >1234 5678	A1 >8765 4321 >789A BCDF >789A BCDF >8765 4321 >8765 4321 >0000 0000	A2 >8765 4321 >8765 4321 >789A BCDF >789A BCDF >0000 0000 >0000 0000	A0 > D95B C60A > 26A4 39F6 > D95B C60A > 26A4 39F6 > 1234 5678 > 0000 0000	A1 >15CA 1DD7 >EA35 E229 >EA35 E229 >15CA 1DD7 >8765 4321 >0000 0000	A2 >8765 4321 >8765 4321 >789A BCDF >789A BCDF >0000 0000	NCZV 1x00 0x00 1x00 0x00 0x01
>0000 0000 >0000 0000 >8765 4321	>0000 0000 >0000 0000 >0000 0000	>8765 4321 >8765 4321	>0000 0000 >0000 0000 >8765 4321	>0000 0000 >0000 0000 >0000 0000	>0000 0000 >8765 4321 >8765 4321	0x01 0x10 0x01

DIVS A2,A1

<u>Before</u>

<u>After</u>

A0	A1	A2	A0	A1	A2	NCZV
>0000 0000	>8765 4321	>1234 5678	>0000 0000	>FFFF FFFA	>1234 5678	1 x 0 0
>0000 0000	>8765 4321	>EDCB A988	>0000 0000	>0000 0006	>EDCB A988	0x00
>0000 0000	>789A BCDF	>EDCB A988	>0000 0000	>FFFF FFFA	>EDCB A988	1 x 0 0
>0000 0000	>789A BCDF	>1234 5678	>0000 0000	>0000 0006	>1234 5678	0x00
>0000 0000	>8765 4321	>0000 0000	>0000 0000	>8765 4321	>0000 0000	0x01
>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	0x01

ŧ

DIVU Divide Registers - Unsigned

Syntax	DIVU < <i>Rs</i> >,< <i>Rd</i> >					
Execution	Rd Even: (Rd):(Rd+1)/(Rs) \rightarrow Rd, remainder \rightarrow Rd+1 Rd Odd: (Rd)/(Rs) \rightarrow Rd					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
	0 1 0 1 1 0 1 Rs R Rd					
Operands	Rs is a 32-bit unsigned divisor.					
	Rd is a 32-bit unsigned dividend or the most significant half of a 64-bit unsigned divisor.					
Description	There are two cases:					
	Rd Even DIVU performs an unsigned divide of the 64-bit operand con- tained in the two consecutive registers, starting at the destina- tion register, by the 32-bit contents of the source register. The specified even-numbered destination register, Rd, contains the 32 MSBs of the dividend. The next consecutive register (which is odd-numbered) contains the 32 LSBs of the divi- dend. The quotient is stored in the destination register, and the remainder is stored in the following register (Rd+1). Avoid using A14 or B14 as the destination register, since this over- writes the SP; the assembler will issue a warning in this case.					
	Rd Odd DIVU performs an unsigned divide of the 32-bit operand con- tained in the destination register by the 32-bit value in the source register. The quotient is stored in the destination regis- ter; the remainder is not returned.					
	The source and destination registers must be in the same register file.					
Words	1					
Machine States	37,40 (Rd even) 37,40 (Rd odd) 5,8 if (Rd) ≥ (Rs) or (Rs) <u><</u> 0					
Status Bits	 N Unaffected C Unaffected Z 1 if the quotient is 0, 0 otherwise. V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise. The following conditions set the overflow flag: Divisor is 0 Quotient cannot be contained within 32 bits 					

Examples

DIVU A2,A0

<u>Before</u>

<u>Before</u>			<u>After</u>			
A0	A1	A2	A0	A1	A2	NCZV
>1234 5678	>8765 4321	>789A BCDF	>26A4 39F6	>15CA 1DD7	>789A BCDF	x x 00
>1234 5678	>8765 4321	>0000 0000	>1234 5678	>8765 4321	>0000 0000	x x 01
>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	x x 01
>0000 0000	>0000 0000	>8765 4321	>0000 0000	>0000 0000	>8765 4321	x x 1 0
>8765 4321	>0000 0000	>8765 4321	>8765 4321	>0000 0000	>8765 4321	x x 01

DIVU A2,A1

<u>Before</u>

<u>After</u>

A0	A1	A2	A0	A1	A2	NCZV
>0000 0000	>789A BCDF	>1234 5678	>0000 0000	>0000 0006	>1234 5678	x x 00
>0000 0000	>1234 5678	>0000 0000	>0000 0000	>1234 5678	>0000 0000	x x 0 1
>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	>0000 0000	x x 01
>0000 0000	>0000 0000	>8765 4321	>0000 0000	>0000 0000	>8765 4321	x x 1 0
>0000 0000	>8765 4321	>8765 4321	>0000 0000	>0000 0001	>8765 4321	x x 0 0

	1	1	1	1	0	1	1		F	ls		R		R	d	
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Execution	(Rs	X) +	OLOI (Rd) (Rd)	X) -	→ Rc	IX										
Syntax	DR	AV	< Rs	;>,<	Rd>											

Description DRAV writes the pixel value in the COLOR1 register to the location pointed to by the XY address in the destination register. Following the write, the XY address in the destination register is incremented by the value in the source register: the X half of Rs is added to the X half of Rd, and the Y half of Rs is added to the Y half of Rd. Any carry out from the lower (X) half of the register will not propagate into the upper (Y) half.

COLOR1 bits 0-15 are output on data bus lines 0-15, respectively. The pixel data used from COLOR1 is that which aligns to the destination location, so 16-bit patterns can be implemented. The source and destination registers must be in the same register file.

Implied Operands

B File Registers								
Register	Name	Format	Format Description					
B3	DPTCH	Linear	Linear Destination pitch					
B4	OFFSET	Linear	Screen origin (location 0,0)					
B5	WSTART	XY	Window starting corner					
B6	WEND	XY	Window ending corner					
B9	COLOR1	Pixel	Pixel color					
		i/0 F	Registers					
Address	Name	D	escription and Elements (Bits)					
> C00000 B0	CONTROL	W – Wind	PP-Pixel processing operations (22 options) W - Window checking operation T - Transparency operation					
>C0000140	CONVDP	XY-to-lin	XY-to-linear conversion (destination pitch)					
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)					
>C0000160	PMASK	Plane ma	Plane mask - pixel format					

Pixel Processina

ssing Set the PPOP field in the CONTROL register to select a pixel processing operation. This operation will be applied to the pixel as it is moved to the destination location. At reset, the default pixel processing operation is *replace* ($S \rightarrow D$). For more information, see Section 7.7, Pixel Processing, on page 7-15.

Window Checking

ng Select a window checking mode by setting the W bits in the CONTROL register. If you select an active window checking mode (W = 1, 2, or 3), the WSTART and WEND registers will define the XY starting and ending corners of a rectangular window. The X and Y values in both WSTART and WEND must be positive.

When the TMS34010 attempts to write a pixel inside or outside a defined value, the following actions may occur:

- **W=0** No window operation. The pixel is drawn and the WVP and V bits are unaffected.
- W=1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies within the window; otherwise, it is set to 1.
- W=2 Window miss. If the pixel lies outside the window, the WVP and V bits are set to 1 and the instruction is aborted (no pixels are drawn). Otherwise, the pixel is drawn and the V bit is set to 0.
- W=3 Window clip. If the pixel lies outside the window, the V bit is set to 1 and the instruction is aborted (no pixels are drawn). Otherwise, the pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL register to 1. The TMS34010 checks for 0-valued (transparent) pixels resulting from the combination of the source and destination pixels, according to the selected pixel processing operation. At reset, the default case for transparency is *off.*
- **Plane Mask** The plane mask is enabled for this instruction.

Shift Register

Transfers When this instruction is executed and the SRT bit is set, normal memory read and write operations become SRT reads and writes. Refer to Section 9.9.2, Video Memory Bulk Initialization, on page 9-27 for more information.

Words

Machine

States The states consumed depend on the operation selected, as indicated below.

Pixel Processing Operation							-	/indoviolatic		
PSIZE	Replace	Boolean	ADD	ADDS	SUB	SUBS	MIN/MAX	W=1	W=2	W=3
1,2,4,8 16						8+(3),14 8+(1),12		5,8 5,8	3,6 3,6	5,8 5,8

Status Bits N Unaffected

- C Unaffected
- Z Unaffected
- V 1 if a window violation occurs, 0 otherwise; unaffected if window clipping is not used.

Examples These DRAV examples use the following implied operand setup.

Register File B:		I/O Regis	ters:
DPTCH (B3)	= >200	CONVDP	= >0016
OFFSET (B4)	= >0001 0000		
WSTART (B5)	= >0010 0000		
WEND (B6)	= >003C 0040		
COLORI (B9)	= >FFFF F FFF		

Assume that memory contains the following values before instruction execution:

Address	Data
>0001 8040	>8888

<u>Code</u>	Before					<u>After</u>	
	A0	A1	PSIZE	PP	w	PMASK A0	@>18040
DRAV A1,AO	>0040 0040	>0010 0010	>0001	00000	00	>0000 >0050 0050	>8889
DRAV A1,A0	>0040 0020	>0010 0010	>0002	00000	00	>0000 >0050 0030	>888B
DRAV A1,A0	>0040 0010	>0010 0010	>0004	00000	00	>0000 >0050 0020	>888F
DRAV A1,A0	>0040 0008	>0010 0010	>0008	00000	00	>0000 >0050 0018	>88FF
DRAV A1,A0	>0040 0004	>0010 0010	>0010	00000	00	>0000 >0050 0014	>FF F F
DRAV A1,A0	>0040 0004	>0000 FFFF	>0010	01010	00	>0000 >0040 0003	>0000
DRAV A1,A0	>0040 0004	>FFFF 0000	>0010	10011	00	>0000 >003F 0004	>0000
DRAV A1,A0	>0040 0004	>0001 0001	>0010	00000	11	>0000 >0041 0005	>0000
DRAV A1,A0	>0040 0004	>0040 0004	>0010	00000	00	>00FF >0080 0008	>FF00

DSJ Decrement Register and Skip Jump

<u>DSJ</u>

Syntax	DSJ <rd>,<add< th=""><th>dress></th><th></th><th></th><th></th><th></th><th></th><th></th></add<></rd>	dress>						
Execution	(Rd) - 1 → Rd If (Rd) \neq 0, then (Displacement×16) + (PC') → PC If (Rd) = 0, then go to next instruction							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 0 0 0	1 1 0	1 1	0 0	R		Rd	
		D	isplacemen	it]
Operands	Rd contai	ns the operan	d to be deo	cremente	ed.			
	Address is a 32	2-bit address	(within 32)	K words)).			
Description	DSJ decrements the is nonzero , then a PC points to the inso of the DSJ instruc- bit displacement b tained by adding t to the address of the	a jump is mac struction word stion. The sig y multiplying the resulting s	le relative t I that imme I ned word by 16. Th igned disp	to the c diately f displace ne new	urren ollow emen PC a	t PC. /s the s t is cor ddress	The cu econd iverted is ther	urrent word to a ob-
	If the result of the formed and the presence of the presence o							
	The displacement The resulting jump 32-bit address is co displacement field.	o range is -3	2,768 to -	+32,767	wor	ds. Th	ne spe	cified
	This instruction is loops, the assemble						For st	norter
Words	2							
Machine States	3,9 (Jump) 2,8 (Nojump)							
Status Bits	N UnaffectedC UnaffectedZ UnaffectedV Unaffected							
Examples	Code	Before	<u>A</u> 1	fter				
,	DSJ A5,LOOP DSJ A5,LOOP DSJ A5,LOOP	A5 >0000 0009 >0000 0001 >0000 0000	1 >00	5 000 0008 000 0000 FFF FFF	3 0	ump tak Yes No Yes	ken?	

DSJEQ

Conditionally Decrement Register and Skip Jump

DSJEQ

Syntax	DSJEQ <rd>,<address></address></rd>							
Execution	<pre>If (Z) = 1 then (Rd) - 1 → Rd If (Rd) ≠ 0 then PC' + (Displacement×16) → PC If (Rd) = 0 then go to next instruction If (Z) = 0 then go to next instruction</pre>							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
	0 0 0 0 1 1 0 1 1 0 1 R Rd							
	Displacement							
Operands	Rd contains the operand to be conditionally decremented.							
	Address is a 32-bit address (within 32K words).							
Description	The DSJEQ instruction performs a conditional jump, based on an evalu- ation of the status Z bit.							
	• If $Z = 1$, the contents of the destination register are decremented by 1.							
	 If this result is nonzero, then a jump is made relative to the current PC. The current PC points to the instruction word that immediately follows the second word of the DSJ instruction. The signed word displacement is converted to a bit displacement by multiplying by 16. The new PC address is then obtained by adding the resulting signed displacement (Displacement × 16) to the address of the next instruction. 							
	 If the result is 0, then the jump is skipped and the program continues execution at the next sequential instruction. 							
	If Z = 0, the jump is skipped, the program counter is advanced to the next sequential instruction, and the instruction completes.							
	The displacement is computed by the assembler as $(Address - PC')/16$. The resulting jump range is -32,768 to +32,767 words. The specified 32-bit address is converted by the assembler into the value required for the displacement field.							
	This instruction can be used after an explicit or implicit compare to 0. Ad- ditional information on these types of compares can be obtained in the CMP and CMPI, and MOVE-to-register instructions, respectively.							
Words	2							
Machine States	3,9 (Jump) 2,8 (No jump)							
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 							

Examples	<u>Code</u>	Before		After		
	DSJEQ A5,LOOP DSJEQ A5,LOOP DSJEQ A5,LOOP DSJEQ A5,LOOP DSJEQ A5,LOOP DSJEQ A5,LOOP	A5 >0000 0009 >0000 0001 >0000 0000 >0000 0009 >0000 0001 >0000 0000	NCZV xx1x xx1x xx1x xx0x xx0x xx0x xx0x	A5 >0000 000 >FFFF FFF >0000 000 >0000 000 >0000 000	00 No F Yes 09 No 01 No	
	20017 1.0/HOOT		~~~~	1 0000 000		

DSJNE

Conditionally Decrement Register and Skip Jump

DSJNE

Syntax	DSJNE <rd>,<address></address></rd>								
Execution	<pre>If (Z) = 0 then (Rd) - 1 → Rd</pre>								
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
	0 0 0 0 1 1 0 1 1 1 0 R Rd								
	Displacement								
Oper ands	Rd contains the operand to be conditionally decremented.								
	Address is a 32-bit address (within 32K words).								
Description	The DSJNE instruction performs a conditional jump, based on an evalu- ation of the Z bit.								
	• If $Z = 0$, the contents of the destination register are decremented by 1.								
	 If this result is nonzero, then a jump is made relative to the current PC. The current PC points to the instruction word that immediately follows the second word of the DSJ instruction. The signed word displacement is converted to a bit displacement by multiplying by 16. The new PC address is then obtained by adding the resulting signed displacement (Displacement × 16) to the address of the next instruction. If the result is 0, then the jump is skipped and the program continues execution at the next sequential instruction. 								
	 If Z = 1, the jump is skipped, the program counter is advanced to the next sequential instruction, and the instruction completes. 								
	The displacement is computed by the assembler as (Address - PC')/16. The resulting jump range is -32,768 to +32,767 words. The specified 32-bit address is converted by the assembler into the value required for the displacement field.								
	This instruction can be used after an explicit compare or an implicit compare to 0. Additional information on these types of compares can be obtained in the CMP, CMPI, and MOVE-to-register instructions.								
Words	2								
Machine States	3,9 (Jump) 2,8 (No jump)								
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 								

Conditionally Decrement Register and Skip Jump

DSJNE

Examples	<u>Code</u>	<u>Before</u>		<u>After</u>	
		A5	NCZ V	A5	Jump taken?
	DSJNE A5,LOOP	>0000 000 9	xx1x	>000 000)9 No
	DSJNE A5, LOOP	>0000 0001	xx1x	>000 000	01 No
	DSJNE A5,LOOP	>0000 0000	xx1x	>000 000	00 No
	DSJNE A5,LOOP	>0000 000 9	x x O x	>000 000	08 Yes
	DSJNE A5,LOOP	>0000 0001	xx0x	>000 000<	00 No
	DSJNE A5,LOOP	>0000 0000	xx0x	>FFFF FF	FFYes

DSJS Decrement Register and Skip Jump - Short DSJS

Syntax	DSJS <rd>,<ad< th=""><th>dress></th><th></th><th></th><th></th><th></th></ad<></rd>	dress>							
Execution	(Rd) - 1 → Rd If (Rd) ≠ 0 then Po If (Rd) = 0 then go	C' + (Displacemen to next instruction	t×16) → PC	;					
Encoding	· · · · · · · · · · · · · · · · · · ·								
	0 0 1 1	1 D Displa	cement	R	Rd				
Operands	Rd contains	s the operand to b	e decremente	ed.					
	Address is a 32-	bit address (withir	a 32K words)).					
Description	DSJS performs a co destination register b		st, it decreme	ents the	contents o	of the			
	PC. The curre follows the sec	nonzero , then a nt PC points to th cond word of the I ted to a bit displac	e instruction DSJ instruction	word t on. The	hat immed 5-bit disp	iately			
	 If the direction bit D is 0, the new PC address is then obtained by adding the resulting displacement to PC'. 								
	 If the direction bit D is 1, the new PC address is obtained by subtracting the resulting displacement from PC'. This provides a jump range of -32 to 32 words, excluding 0. 								
	 If the result of the decrement is 0, then the jump is skipped and pro- gram execution continues at the next sequential instruction. 								
	The specified 32-bit required for the disp assembler as (Addre loops for cache-resid	lacement field. This s - PC')/16. This	ne displacem	ent is c	omputed b	by the			
Words	1								
Machine States	2,5 (Jump) 3,6 (No jump)								
Status Bits	N UnaffectedC UnaffectedZ UnaffectedV Unaffected								
Examples	<u>Code</u>	Before	After						
	DSJS A5,LOOP DSJS A5,LOOP DSJS A5,LOOP	A5 >0000 0009 >0000 0001 >0000 0000	A5 >0000 000 >0000 000 >FFFF FF	08 00	np taken? Yes No Yes				

EINT

Enable Interrupts

EINT

Syntax	EINT						
Execution	1 → IE						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	0 0 0 1 1 0 1 0 1 1 0 0 0 0						
Description	EINT sets the global interrupt enable bit (IE) to 1, allowing interrupts to be enabled. When $IE=1$, individual interrupts can be enabled by setting the appropriate bits in the INTENB interrupt mask register. The rest of the status register is unaffected.						
	The DINT instruction disables interrupts.						
Words	1						
Machine States	3,6						
Status Bíts	 N Unaffected C Unaffected Z Unaffected V Unaffected IE 1 						
Examples	Code Before After ST ST ST EINT >00000010 >00200010 EINT >00200010 >00200010						

?

EMU

Syntax	EMU						
Execution	ST \rightarrow Rd and conditionally enter emulator mode						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	0 0 0 0 0 0 1 0 0 0 0 0 0 0						
Description	The EMU instruction pulses the \overline{EMUA} pin and samples the RUN/ \overline{EMU} pin. If the RUN/ \overline{EMU} pin is in the RUN state, the EMU instruction acts as a NOP. If the pin is in the EMU state, emulation mode is entered. This instruction is not intended for general use; refer to the <i>TMS34010 XDS/22 User's</i> <i>Guide</i> for more information.						
Words	1						
Machine States	6,9 (or more if EMU mode is entered)						
Status Bits	 N Indeterminate C Indeterminate Z Indeterminate V Indeterminate 						

EXGF	Exchange Field Size EXGF
Syntax	EXGF < <i>Rd</i> >[,< <i>F</i> >]
Execution	(Rd) → FS0, FE0 or (Rd) → FS1, FE1 FS0, FE0 → (Rd) or FS1, FE1 → (Rd)
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 0 1 F 1 0 0 0 Rd
Operands	 F is an optional operand; it defaults to 0. F=0 selects FS0, FE0 to be exchanged. F=1 selects FS1, FE1 to be exchanged
Description	EXGF exchanges the six LSBs of the destination register with the selected six bits of field information (field size and field extension). Bit 5 of the 6-bit quantity in Rd is exchanged with the field extension value. The upper 26 bits of Rd are cleared.
	31 30 29 26 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 N C Z V Res B Res L Reserved F F61 F61 F60 Status Register
Words	1
Machine States	1,4
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	<u>Code</u> <u>Before</u> <u>After</u>
	A5 ST A5 ST EXGF A5,0 >FFFF FFC0 >F000 0FFF >0000 003F >F000 0FC0 EXGF A5,1 >FFFF FFC0 >F000 0FFF >0000 003F >F000 003F

P

}

EXGPC Exchange Program Counter with Register EXGPC

Syntax	EXGPC <rd></rd>						
Execution	$(Rd) \rightarrow PC, (PC') \rightarrow Rd$						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	0 0 0 0 0 0 0 1 0 0 1 R Rd						
Description	EXGPC exchanges the next program counter value with the destination re- gister contents. After this instruction has been executed, the destination register contains the address of the instruction immediately following the EXGPC instruction.						
	Note that the TMS34010 sets the four LSBs of the program counter to 0 (word aligned).						
	This instruction provides a "quick call" capability by saving the return ad- dress in a register (rather than on the stack). The return from the call is accomplished by repeating the instruction at the end of the "subroutine." Note that the subroutine address must be reloaded following each call-re- turn operation.						
Words	1						
Machine States	2,5						
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 						
Examples	Code Before After						
	A1PCA1PCEXGPC A1>0000 1C10>0000 2080>0000 2090>0000 1C10EXGPC A1>0000 1C50>0000 2080>0000 2090>0000 1C50						

Syntax	FIL	Lι														
Execution	pix	el(CC	DLOF	R 1)	→ P	ixel a	rray	(with	proc	cessii	ng)					
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0

Operands L specifies that the pixel array starting address is in linear format.

Description FILL processes a set of source pixel values (specified by the COLOR1 register) with a destination pixel array. This instruction operates on a two-dimensional array of pixels using pixels defined in the COLOR1 register. As the FILL proceeds, the source pixels are combined with destination pixels based on the selected graphics operations.

Note that the instruction is entered as FILL L. The following set of implied operands govern the operation of the instruction and define both the source pixels and the destination array.

Implied Operands

B File Registers									
Register	Name	Format	Description						
B2†	DADDR	Linear	Pixel array starting address						
B3	DPTCH	Linear	Pixel array pitch						
B7	DYDX	XY	Pixel array dimensions (rows:columns)						
B9	COLOR1	Pixel	Fill color or 16-bit pattern						
B10-B14 [†]			Reserved registers						
		I/O F	Registers						
Address	Name		Description and Operations						
>C00000B0	CONTROL	PP-Pixel processing operations (22 options) T - Transparency operation							
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)						
>C0000160	PMASK	Plane mas	sk – pixel format						

[†] Changed by FILL during execution.

Destination

Array

The contents of the DADDR, DPTCH, and DYDX registers define the location of the destination pixel array:

 At the outset of the instruction, DADDR contains the linear address of the pixel with the lowest address in the array.

During instruction execution, DADDR points to the next pixel (or word of pixels) to be modified in the destination array. When the array transfer is complete, DADDR points to the linear address of the pixel following the last pixel written.

 DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array. DPTCH must be a multiple of 16, exept when a single pixel-width line is drawn (DX=1). In this case, DPTCH may be any value.

• DYDX specifies the dimensions of the destination array in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

Pixel

Processing Set the PPOP field in the CONTROL register to select a pixel processing operation. This operation will be applied to the pixel as it is moved to the destination location. There are 16 Boolean and 6 arithmetic operations; the default operation at reset is *replace* ($S \rightarrow D$). Note that the destination data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.

Window

- **Checking** Window checking **cannot** be used with this instruction. The contents of the WSTART and WEND registers are ignored.
- **Corner Adjust** There is no corner adjust for this instruction. The direction of the FILL is fixed as increasing linear addresses.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it processes the source data. At reset, the default case for transparency is *off.*
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the FILL is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10–B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the insterrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the FILL correctly. You can inhibit the TMS34010 from resuming the FILL by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Plane Mask The plane mask is enabled for this instruction.

Shift Register Transfers	if the SRT bit in the DPYCTL register is set, each memory read or write in- itiated by the FILL generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.) See Section 9.9.2, Video Memory Bulk Initialization, on page 9-27 for more information.
Words	1
Machine States	See Section 13.3, FILL Instructions Timing.

Į

- C Unaffected
- Z Unaffected
- V Unaffected

Examples These FILL examples use the following implied operand setup.

Register File I	B:	I/O Reg	isters:
DADDR (B2)	= >00002010	PSIZE	= >0008
DPTCH (B3)	= >00000080		
DYDX (B7)	= >0002000D		
COLOR1 (B9)	= >30303030		

Assume that memory contains the following values before instruction execution.

FILL

Linear Data Address >02000 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE >02080 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE

Example 1 This example uses the pixel processing *replace* $(S \rightarrow D)$ operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, PP=00000).

After instruction execution, memory contains the following values:

Linear Data Address Data >02000 >1100, >3030, >3030, >3030, >3030, >3030, >3030, >FF30 >02080 >1100, >3030, >3030, >3030, >3030, >3030, >FF30

Example 2 This example uses the $(\overline{S} \text{ and } D) \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >2C00 (T=0, PP=01010).

After instruction execution, memory contains the following values:

Linear Data Address Data >02000 >1100, >0302, >4544, >4746, >8988, >8B8A, >CDCC>FFCE >02080 >1100, >0302, >4544, >4746, >8988, >8B8A, >CDCC>FFCE

Example 3 This example uses transparency and the (S and D) \rightarrow D pixel processing operation. Before instruction execution, PMASK = > 0000 and CONTROL = > 0420 (T=1, PP=00000).

After instruction execution, memory contains the following values:

Linear Address	Data
	>1100, >3020, >1044, >3020, >1088, >3020, >10CC, >FF20 >1100, >3020, >1044, >3020, >1088, >3020, >10CC, >FF20

Example 4 This example uses plane masking; the four MSBs are masked. Before instruction execution, PMASK = >F0F0 and CONTROL = >0000 (T=0, PP=00000).

After instruction execution, memory contains the following values:

Linear Data Address Data >02000 >1100, >3020, >5040, >7060, >9080, >B0A0, >D0C0, >FFE0 >02080 >1100, >3020, >5040, >7060, >9080, >B0A0, >D0C0, >FFE0

Syntax Execution	FILL XY pixel(COLOR1) → Destination pixel array (with processing)															
Encoding	15 0	14 0	13 0	12 0	11	10	9	8	71	6	5 1	4	3	2	1	0
Operands	XY	Spe	ecifie	s tha	t the	pixel	array	star	ting	addr	ess is	s give	en in	XY f	orma	t.
Description	FILL processes a set of source pixel values (specified by the COLOR1 reg- ister) with a destination pixel array.															
	This instruction operates on a two-dimensional array of pixels using pixels defined in the COLOR1 register. As the FILL proceeds, the source pixels are combined with destination pixels based on the selected graphics operations.															
	Note that the instruction is entered as FILL L,XY. The following set of implied operands govern the operation of the instruction and define both the source pixels and the destination array.															
Implied Operands		B File Registers														
	R	egist	er	N	ame	F	orma				De	scrip	tion			

B File Registers									
Register	Name	Format	Description						
B2†‡	DADDR	XY	Pixel array starting address						
В3	DPTCH	Linear	Pixel array pitch						
B4	OFFSET	Linear	Screen origin (address of 0,0)						
B5	WSTART	XY	Window starting corner						
B6	WEND	XY	Window ending corner						
B7†‡	DYDX	XY	Pixel array dimensions (rows:columns)						
B9	COLOR1	Pixel	Fill color or 16-bit pattern						
B10-B14 [†]			Reserved registers						
		I/O F	Registers						
Address	Name	D	escription and Elements (Bits)						
>C00000B0	CONTROL	PP- Pixel processing operations (22 options) W - Window checking operation T - Transparency operation							
>C0000140	CONVDP	XY-to-lin	ear conversion (destination pitch)						
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)						
>C0000160	PMASK	Plane ma	sk – pixel format						

[†] Changed by FILL during execution.

[‡] Used for common rectangle function with window hit operation (W=1).

Destination Array

ľ

Ì

The location of the destination pixel array is defined by the contents of the DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. At the outset of the instruction, DADDR contains the **XY** address of the pixel with the lowest address in the array. It is used with OFFSET and CONVDP to calculate the linear address of the starting location of the array. DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array (typically this is the screen pitch). DPTCH must be a power of two (greater than or equal to 16) and CONVDP must be set to

FILL

correspond to the DPTCH value. CONVDP is computed by operating on the DPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing and window clipping. DYDX specifies the dimensions of the destination array in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns. During instruction execution, DADDR points to the next pixel (or word of pixels) to be modified in the destination array. When the array transfer is complete, DADDR points to the linear address of the pixel following the last pixel written. This is that pixel on the **last** row that would have been written had the array transfer been wider in the X dimension.

Pixel Processing

Processing Pixel processing can be used with this instruction. The PPOP field of the CONTROL register specifies the pixel processing operation that will be applied to pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the *replace* $(S \rightarrow D)$ operation. Note that the destination data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.

Window

- **Checking** The window operations described in Section 7.10, Window Checking, on page 7-25. can be used with this instruction. Window pick, violation detect, or preclipping can be selected by setting the W bits in the CONTROL register to 1, 2, or 3, respectively. Window pick modifies the DADDR and DYDX registers to correspond to the common rectangle formed by the destination array and the clipping window defined by WSTART and WEND. DADDR is set to the XY address of the pixel with the lowest address in the common rectangle. If no window operations are selected, the WSTART and WEND registers are ignored. At reset, no window operations are enabled.
- Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is fixed as increasing linear addresses.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it processes the source data. At reset, the default case for transparency is *off.*
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the FILL is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the interrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the FILL correctly. You can inhibit the TMS34010 from resuming the FILL by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

FILL Fill Array with Processed Pixels - XY

Plane Mask The plane mask is enabled for this instruction.

Shift Register Transfers

ers If the SRT bit in the DPYCTL register is set, each memory read or write initiated by the FILL generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.) See Section 9.9.2, Video Memory Bulk Initialization, on page 9-27 for more information.

Words

Machine States

See Section 13.3, FILL Instructions Timing.

Status Bits N Unaffected

1

- C Unaffected
- Z Unaffected
- V 1 if a window violation occurs, 0 otherwise. Unaffected if window clipping is not enabled.

Examples These FILL examples use the following implied operand setup.

Register File	B:	I/O Registe	ers:
DADDR (B2)	= >0052 0007	CONVDP	= >0017
DPTCH (B3)	= >0000 0100	PSIZE	= >0004
OFFSET (B4)	= >0001 0000	PMASK	= >0000
WSTART (B5)	= >0030 000C	CONTROL	= >0000
WEND (B6)	= >0053 0014		(W=00, T=0, PP=00000)
DYDX (B7)	= >0003 0012		
COLORI (B9)	= >FFFF FFFF		

Assume that memory contains the following values before instruction execution.

Linear Address	Data
>15200	>3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC
>15300	>3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC
>15400	>3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear Address	Data
>15200	>3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F, >FEDC
>15300	>3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F, >FEDC
>15400	>3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F, >FEDC

Fill Array with Processed Pixels - XY FILL FILL

	XY Addressing X Address
	Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
	d 52 0123456FFFFFFFFFFFFFFFFFFFFFFBABCDEF
	r 53 0123456FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	e s 54 0123456FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF s
Example 2	This example uses the (D XOR S) \rightarrow D pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >2800 (T=0, W=00, PF=01010).
	After instruction execution, memory contains the following values:
	X Address
	Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
	A d 52 0 1 2 3 4 5 6 8 7 6 5 4 3 2 1 0 F E D C B A 9 8 7 9 A B C D E F
	d 52 0123456876543210FEDCBA9879ABCDEF d
	r 53 0123456876543210FEDCBA9879ABCDEF
	e s 54 0123456876543210FEDCBA9879ABCDEF s
Example 3	This example uses transparency, the (D subs S) \rightarrow D pixel processing op-
	eration. Before instruction execution, COLOR1 = >888888888, PMASK = >0000, and CONTROL = >4C20 (T=1, W=00, PP=10011).
	After instruction execution, memory contains the following values:
	X Address
	Y 000000000000000011111111111111111 0123456789ABCDEF0123456789ABCDEF
	A
	d 52 01234567812345670123456789ABCDEF d
	r 53 01234567812345670123456789ABCDEF
	e s 54 01234567812345670123456789ABCDEF
	s

FILL Fill Array with Processed Pixels - XY

Example 4 This example uses window operation 3; the destination is clipped. Before instruction execution, PMASK = >0000 and CONTROL = >00C0 (T=0, W=11, PP=00000).

After instruction execution, memory contains the following values:

Example 5 This example uses plane masking; the most significant bit is masked. Before instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory contains the following values:

 X Address

 Y
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 1
 1
 1</th

Get Program Counter into Register GETPC GETPC

Syntax	GETPC < <i>Rd</i> >
Execution	$(PC') \rightarrow Rd$
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 1 0 1 0 R Rd
Description	GETPC increments the PC contents by 16 to point past the GETPC in- struction, and copies the value into the destination register. Execution continues with the next instruction. This instruction can be used with the EXGPC and JUMP instructions for quick call on jump operations. GETPC can be used to access relocatable data areas whose position relative to the code area is known at assembly time.
Words	1
Machine States	1,4
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	<u>Code</u> <u>Before</u> <u>After</u>
	PC A1 GETPC A1 >0000 1BD0 >0000 1BE0 GETPC A1 >0000 1C10 >0000 1C20

GETST	Get Sta	<u>tus Regi</u>	ster int	to Reg	ister		GE	<u>rst</u>
Syntax	GETST <rd< th=""><th>></th><th></th><th></th><th></th><th></th><th></th><th></th></rd<>	>						
Execution	$(ST) \rightarrow Rd$							
Encoding		12 11 10	9 8	76	54	3	2 1	0
	0 0 0	0 0 0	0 1	1 0	0 R		Rd	
Description	GETST copies t ter.	the contents of	of the stat	us registe	er into t	he des	tination r	egis-
	<u>3130 29 28 27 26</u>		19 18 17 18					<u> </u>
	N C Z V Res	P B Rest E	Reserv	ed .	F E F8 1	51 E	F60	
			Status R	legister				
Words	1							
Machine States	1,4							
Status Bits	N UnaffectedC UnaffectedZ UnaffectedV Unaffected							
Examples	<u>Code</u>	Before	E	fter				
	GETST A1 GETST A1	PC >2020 0010 >0000 0010) >2	1 020 001 000 001				

.

INC

Increment Register

INC

Syntax	INC <rd></rd>										
Execution	(Rd) + 1 →	Rd									
Encoding	15 14 13	12 11	10 9	8	76	5	4	3	2	1	0
	0 0 0	1 0	0 0	0	0 0) 1	R		R	d	
Description	in the destir	INC adds 1 to the contents of the destination register and stores the result in the destination register. This instruction is an alternate mnemonic for ADDK 1,Rd.								esult c for	
		Multiple-precision arithmetic can be accomplished by using this instruction in conjunction with the ADDC instruction.									
Words	1										
Machine States	1,4										
Status Bits	C 1 if there Z 1 if the	esult is ne e is a carry esult is 0, e is an ove	, 0 other 0 otherv	wise. vise.							
Examples	<u>Code</u>	Before	<u> </u>	<u>Aft</u>	er						
	INC A1 INC A1 INC A1 INC A1 INC A1	A1 >0000 0 >0000 0 >FFFF F >FFFF F >7FFF F	00F FFF FFE	>000 >000 >FFF	00 0001 00 001 (00 000(FF FFF 00 000(00 000 001 - 10	2V 000 000 10 000 001				

JAcc Jump Absolute Conditional

0

Syntax	JA	cc	<add< th=""><th>fress</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></add<>	fress	>										
Execution		If condition <i>true</i> , then Address \rightarrow PC If condition <i>false</i> , then go to next instruction													
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	1	1	0	0		Co	de		1	0	0	0	0	0	0
	Address (LSW)														
	Address (MSW)														
	<u> </u>		· · · ·												

Operands cc is a condition mnemonic such as UC, LO, etc. (see condition codes table).

Address is a 32-bit absolute address.

Fields Code is a 4-bit digit (see condition codes table below).

Description If the specified condition is **true**, jump to the address contained in the two words of extension and continue execution from that point. If the specified condition is **false**, continue execution at the next sequential instruction. Note that the lower four bits of the program counter are set to 0 (word aligned). These instructions are usually used in conjunction with the CMP and CMPI instructions. The JAV and JANV instructions can also be used to detect window violations or CPW status.

Condition Codes	Mnemonic [†]	Code	Condition	Status Bits						
	JAUC	0000	Unconditional	No conditions						
	· · · · · · · · · · · · · · · · · · ·	Unsigned Compare								
	JALO (JAC)	1000	Lower than	С						
	JALS	0010	Lower or same	C + Z						
	JAHI	0011	Higher than	<u></u> <u></u> <i>¯</i> C · <u></u>						
	JAHS (JANC)	1001	Higher or same	<u></u>						
	JAEQ (JAZ)	1010	Equal	Z						
	JANE (JANZ)	1011	Not equal	Ī						
		Signed Compare								
	JALT	0100	Less than	$(N \cdot \overline{V}) + (\overline{N} \cdot V)$						
	JALE	0110	Less than or equal	$(N \cdot \overline{V}) + (\overline{N} \cdot V) + Z$						
	JAGT	0111	Greater than	$(N \cdot V \cdot \overline{Z}) + (\overline{N} \cdot \overline{V} \cdot \overline{Z})$						
	JAGE	0101	Greater than or equal	$(N \cdot V) + (\overline{N} \cdot \overline{V})$						
	JAEQ (JAZ)	1010	Equal	Z						
	JANE (JANZ)	1011	Not equal	Ž						
		Compare to Zero								
	JAZ	1010	Zero	Z						
	JANZ	1011	Nonzero	Ž						
	JAP	0001	Positive	<u>N</u> ·Z						
	JAN	1110	Negative	N						
	JANN	1111	Nonnegative	N						

Condition Codes

Mnemonic [†]	Code	Condition	Status Bits
		General Arithmetic	
JAZ	1010	Zero	Z
JANZ	1011	Nonzero	Z
JAC	1000	Carry	С
JANC	1001	No carry	C
JAB (JAC)	1000	Borrow	C
JANB (JANC)	1001	No borrow	Ē
JAV‡	1100	Overflow	V
JANV [‡]	1101	No overflow	⊽

[†] Jump instructions in parentheses indicate equivalent instructions

[‡] Also window clipping

+ Logical OR

- Logical AND

Logical NOT

3

Ν

Words

Machine

	(Jump) (No jump)
4,7	(No Jump)

Status Bits

С	Ur	naffe	cte	d
_				

Unaffected Ζ V

Unaffected

Unaffected

Examples	<u>Code</u>	Flags for Branc		anch	<u>Code</u>		<u>Flags for Bra</u>		anch
		NCZV	NCZ V	NCZ V			NCZ V	NCZ V	NCZV
	JAUC HERI	XXXX			JAV	HERE	xxx1		
	JAP HERI	0x0x			JANZ	HERE	xx0x		
	JALS HERE	xx1x	x1xx		JANN	HERE	0xxx		
	JAHI HERI	x00x			JANV	HERE	xxx0		
	JALT HERI	0xx1	1 x x 0		JAN	HERE	1xxx		
	JAGE HERI	0xx0	1xx1		JAB	HERE	x1xx		
	JALE HERI	0xx1	1xx0	xx1x	JANB	HERE	x0xx		
	JAGT HERE	0x00	1x01		JALO	HERE	x1xx		
	JAC HERI	x1xx			JAHS	HERE	x00x	xx1x	
	JANC HERI	x0xx			JANE	HERE	xx0x		
	JAZ HERI	xx1x			JAEQ	HERE	xx1x		

Note:

The TMS34010 assembler will take the jump when any one or more of the Flags for Branch listed above are set as indicated.

JRcc Jump Relative Conditional - ±127 Words

JRcc

Execution If condition *True* then Displacement + (PC') \rightarrow PC If condition *False* then go to next instruction

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	0	0		co	de				D	ispla	cemer	t		

Operands cc is a condition mnemonic such as UC, LO, etc. (see condition codes table).

Address is a 32-bit relative address, ±127 words (excluding 0).

Fields Code is a 4-bit digit (see condition codes table below).

Description If the condition specified is **true**, then jump to the location at the address specified by the sum of the next instruction address (PC') and the signed word displacement. If the specified condition is **false**, then continue execution at the next sequential instruction.

The displacement is the number of words relative to the PC and is computed by the assembler as (Address - PC')/16. The assembler will use this opcode if the address in the range -127 to 127 words (except for 0). If the displacement is outside the legal range, the assembler will automatically use the longer JRcc instruction. If the displacement is 0, the assembler will automatically substitute a NOP opcode instead. The assembler will **not** accept an address which is externally defined or an address which is relative to a different section than the PC. Note that the four LSBs of the program counter are always 0 (word aligned).

These instructions are usually used in conjunction with the CMP and CMPI instructions. The JRV and JRNV instructions can also be used to detect window violations or CPW status.

Codes			Condition	Status Bits
	JRUC	0000	Unconditional	No conditions
			Unsigned Compare)
	JRLO (JRC)	1000	Lower than	С
	JRLS	0010	Lower or same	C + Z
	JRHI	0011	Higher than	੮੶ਫ਼
	JRHS (JRNC)	1001	Higher or same	<u>7</u>
	JREQ (JRZ)	1010	Equal	Z
	JRNE (JRNZ)	1011	Not equal	Z
		_	Signed Compare	
	JRLT	0100	Less than	$(N \cdot \overline{V}) + (\overline{N} \cdot V)$
	JRLE	0110	Less than or equal	$(N \cdot \overline{V}) + (\overline{N} \cdot V) + Z$
	JRGT	0111	Greater than	$(N \cdot V \cdot \overline{Z}) + (\overline{N} \cdot \overline{V} \cdot \overline{Z})$
	JRGE	0101	Greater than or equal	$(N \cdot V) + (\overline{N} \cdot \overline{V})$
	JREQ (JRZ)	1010	Equal	Z
	JRNE (JRNZ)	1011	Not equal	Ź

12-82

Condition

JRcc

Condition Codes

(continued)

Mnemonic [†]	Code	Condition	Status Bits
		Compare to Zero	
JRZ	1010	Zero	Z
JRNZ	1011	Nonzero	Z
JRP	0001	Positive	Ñ·Ż
JRN	1110	Negative	N
JRNN	1111	Nonnegative	Ň
		General Arithmetic	
JRZ	1010	Zero	Z
JRNZ	1011	Nonzero	Ž
JRC	1000	Carry	С
JRNC	1001	No carry	C
JRB (JRC)	1000	Borrow	С
JRNB (JRNC)	1001	No borrow	Ē
JRV‡	1100	Overflow	V
JRNV [‡]	1101	No overflow	$\overline{\nabla}$

[†] Jump instructions in parentheses indicate equivalent instructions

[‡] Also window

+ Logical OR

- Logical AND Logical NOT

Words

Machine States

ates	2,5	(Jump)
	1,4	(No jump)

1

Status Bits N Unaffected C Unaffected Z Unaffected V Unaffected

Examples	<u>Code</u>	Flags for Br	anch	Code		<u>Flags</u>	for Bra	inch
Examples	JRUC HERE JRP HERE JRLS HERE JRHI HERE JRLT HERE	NCZV NCZV xxxx 0x0x xx1x x1xx x00x 0xx1	NCZ V	JRC JRNC JRZ JRNZ JRV	HERE HERE HERE HERE	NCZV x1xx x0xx xx1x xx0x xx0x xxx1	NCZV	NCZV
	JRGE HERE JRLE HERE JRGT HERE	0xx0 1xx1 0xx1 1xx0 0x00 1x01	xx1x	JRNV JRN JRNN	HERE HERE HERE	xxx0 1xxx 0xxx		

Note:

The TMS34010 assembler will take the jump when any one or more of the *Flags for Branch* listed above are set as indicated.

JRcc Jump Relative Conditional - <u>+32K Words</u>

JRcc

Execution If condition *True* then Address \rightarrow PC If condition *False* then go to next instruction

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	0	0		co	de		0	0	0	0	0	0	0	0
							D	ispla	ceme	nt						

Operands cc is a condition mnemonic such as UC, LO, etc. (see condition codes table).

Address is a 32-bit relative address, ±32K words (excluding 0).

Fields Code is a 4-bit digit (see condition codes table below).

Description If the specified condition is true, then jump to the location at the address specified by the sum of the next instruction address (PC') and the signed word displacement. If the specified condition is false, then continue execution at the next sequential instruction.

The displacement is the number of words relative to the PC and is computed by the assembler as (Address - PC')/16. The assembler will use this opcode if the displacement is in the range -32,768 to 32,767 words (except for 0). If the displacement is 0, the assembler will automatically substitute a NOP opcode instead. If the address is out of range, the assembler will use the JAcc instruction instead. The assembler will not accept an address which cannot be resolved at assembly time, that is, an address which is externally defined or which is relative to a different section than the current PC. Note that the four LSBs of the program counter are always 0 (word aligned).

These instructions are usually used in conjunction with the CMP and CMPI instructions. The JRV and JRNV instructions can also be used to detect window violations or CPW status.

Mnemonic [†]	Code	Condition	Status Bits
JRUC	0000	Unconditional	No conditions
		Unsigned Compare)
JRLO (JRC)	1000	Lower than	C
JRLS	0010	Lower or same	C + Z
JRHI	0011	Higher than	<u>C</u> ·Z
JRHS (JRNC)	1001	Higher or same	<u></u>
JREQ (JRZ)	1010	Equal	Z
JRNE (JRNZ)	1011	Not equal	Z
		Signed Compare	
JRLT	0100	Less than	$(\mathbf{N}\cdot\overline{\mathbf{V}})$ + $(\overline{\mathbf{N}}\cdot\mathbf{V})$
JRLE	0110	Less than or equal	$(N \cdot \overline{V}) + (\overline{N} \cdot V) + Z$
JRGT	0111	Greater than	$(N \cdot V \cdot \overline{Z}) + (\overline{N} \cdot \overline{V} \cdot \overline{Z})$
JRGE	0101	Greater than or equal	$(N \cdot V) + (\overline{N} \cdot \overline{V})$
JREQ (JRZ)	1010	Equal	Z
JRNE (JRNZ)	1011	Not equal	Z

Condition Codes

Condition Codes

(continued)

Mnemonic†	Code	Condition	Status Bits		
Compare to Zero					
JRZ	1010	Zero	Z		
JRNZ	1011	Nonzero	Z		
JRP	0001	Positive	Ν·Ζ		
JRN	1110	Negative	N		
JRNN	1111	Nonnegative	Ñ		
		General Arithmetic			
JRZ	1010	Zero	Z		
JRNZ	1011	Nonzero	Z		
JRC	1000	Carry	С		
JRNC	1001	No carry	C		
JRB (JRC)	1000	Borrow	С		
JRNB (JRNC)	1001	No borrow	C		
JRV [‡]	1100	Overflow	V		
JRNV [‡]	1101	No overflow	∇		

[†] Jump instructions in parentheses indicate equivalent instructions

[‡] Also window clipping

+ Logical OR

Logical AND

Logical NOT

Words

Machine States

3,6	(Jump)
2,5	(No jump)

2

Status Bits	Ν	Unaffected
	С	Unaffected
	Z	Unaffected
	v	Unaffected

Examples	<u>Code</u>		<u>Flags</u>	for Bra	anch	<u>Code</u>		<u>Flags</u>	<u>for Bra</u>	anch
			NCZV	NCZV	NCZV			NCZV	NCZV	NCZV
	JRUC	HERE	XXXX			JRZ	HERE	xx1x		
	JRP	HERE	0x0x			JRNZ	HERE	xx0x		
	JRLS	HERE	xx1x	x1xx		JRV	HERE	xxx1		
	JRHI	HERE	x 00 x			JRNV	HERE	xxx0		
	JRLT	HERE	0x x 1	1 x x 0		JRN	HERE	1xxx		
	JRGE	HERE	0xx0	1 x x 1		JRNN	HERE	0xxx		
	JRLE	HERE	0xx1	1 x x 0	xx1x	JRB	HERE	x1xx		
	JRGT	HERE	0x00	1x01		JRNB	HERE	x0xx		
	JRC	HERE	x1xx			JRLO	HERE	x1xx		
	JRNC	HERE	x0×x			JRHS	HERE	x00x	xx1x	

Note:

The TMS34010 assembler will take the jump when any one or more of the *Flags for Branch* listed above are set as indicated.

JUMP

Jump Indirect

JUMP

_									
Syntax	JUMP <r< th=""><th>s></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></r<>	s>							
Execution	$(Rs) \rightarrow PC$								
Encoding	15 14 13	12 11 1	09	87	65	4	32	1	0
	0 0 0	0 0	0 0	1 0	1 1	R		Rs	
Operands	Rs contains	the new P	C value.						
Description	JUMP jumps TMS34010 se This instructions.	ets the four	LSBs of	the prog	ram cour	iter to	0 (word	l aligr	
Words	1								
Machine States	2,5								
Status Bits	 N Unaffecte C Unaffecte Z Unaffecte V Unaffecte 	ed ed							
Examples	Code	Before				<u>Afte</u>	<u>r</u>		
	JUMP A1 JUMP A1 JUMP A1	A1 >0000 1 E >0000 1 E >FFFF FF	EO > E5 >	PC 0055 555 0055 555 0055 555	50 :	PC >0000 >0000 >FFFF	1 EEO		

LINE Line Draw with XY Addressing

Syntax	LINE {0,1}
Execution	The two execution algorithms for the LINE instruction are explained below. These algorithms are similar, varying only in their treatment of $d=0$.
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operands	 Z is the algorithm select bit: Z=0 selects algorithm 0.

Z=1 selects algorithm 1.

Description LINE performs the inner loop of Bresenham's line-drawing algorithm. This type of line draw plots a series of points (x_i, y_i) either diagonally or laterally with respect to the previous point. Movement from pixel to pixel always proceeds in a dominant direction. The algorithm may or may not also increment in the direction with the smaller dimension (this produces a diagonal movement). Two XY-format registers supply the XY increment values for the two possible movements. The LINE instruction maintains a decision variable, d, that acts as an error term, controlling movement in either the dominant or diagonal direction. The algorithm operates in one of two modes, depending on how the condition d=0 is treated. During LINE execution, some portion of a line $[(x_0,y_0)(x_1,y_1)]$ will be drawn. The line is drawn so that the axis with the largest extent has dimension a and the axis with the least extent has dimension b. Thus, a is the larger (in absolute terms) of $y_1 - y_0$ or $x_1 - x_0$ and b is the smaller of the two. This means that $a \ge b \ge 0$.

The following values must be supplied to draw a line from (x_0,y_0) to (x_1,y_1) :

- 1) Set the XY pointer (x_i, y_i) in the DADDR register to the initial value of (x_0, y_0) .
- 2) Use the line endpoints to determine the major and minor dimensions (*a* and *b*, respectively) for the line draw; then set the DYDX register to this value (*b*:*a*).
- Place the signed XY increment for a movement in the diagonal (or minor) direction (d ≥ 0 for Z=0, d > 0 for Z=1) in the INC1 register.
- Place the signed XY increment for a movement in the dominant (or major) direction (d < 0 for Z=0, d ≤ 0 for Z=1) in the INC2 register.
- 5) Set the initial value of the decision variable in register B0 to 2b a.
- 6) Set the initial count value in the COUNT register to a + 1.
- 7) Set the LINE color in the COLOR1 register.
- 8) Set the PATTRN register to all 1s.

The LINE instruction may use one of two algorithms, depending on the value of \mathbf{Z} .

Algorithm 0 (Z=0):

While COUNT > 0 Draw the next pixel If $d \ge 0$ d = d + 2b - 2aPOINTER = POINTER + INC1 Else d = d + 2b; POINTER = POINTER + INC2

Algorithm 1 (Z=1):

While COUNT > 0 Draw the next pixel If d > 0 d = d + 2b - 2aPOINTER = POINTER + INC1 Else d = d + 2b; POINTER = POINTER + INC2

Implied Operands

B File Registers					
Register	Name	Format	Description		
B0†	SADDR	Integer	Decision variable, d		
B2†	DADDR	XY	Starting point $(y_i:x_i)$, usually $(y_0:x_0)$		
B4	OFFSET	Linear	Screen origin (0,0)		
B5	WSTART	XY	Window starting corner		
B6	WEND	XY	Window ending corner		
B7	DYDX	XY	b:a mi⊓or :major line dimensions		
B9	COLOR1	Pixel	Pixel color to be replicated		
B10†	COUNT	Integer	Loop count		
B11	INC1	XY	Minor axis (diagonal) increment, INC1		
B12	INC2	XY	Major axis (dominant) increment, INC2		
B13†	PATTRN	Pattern	Future pattern register, must be set to all 1s		
B15	ТЕМР	-	Temporary register		
		I/O I	Registers		
Address	Name	C	Description and Elements (Bits)		
>C00000B0	CONTROL	PP-Pixel processing operations W - Window clipping operation T - Transparency operation			
>C0000140	CONVDP	XY-to-lin	ear conversion (destination pitch)		
> C0000150	PSIZE	Pixel size	Pixel size (1,2,4,8,16)		
>C0000160	PMASK	Plane ma	sk – pixel format		

[†] These registers are changed by instruction execution

Pixel Processing	The PP field in the CONTROL I/O register specifies the operation to be applied to the pixel as it is written. There are 22 operations; the default case at reset is the pixel processing <i>replace</i> ($S \rightarrow D$) operation. For more information, see Section 7.7, Pixel Processing, on page 7-15.				
Window Checking	Window clipping or pick is selected by setting the W bits in the CONTROL I/O register to the appropriate value. The WSTART and WEND registers define the window in XY-coordinate space.				
	Options include:				
	0 No window clipping. LINE draws the entire line. Neither the WVP or V bit are affected. WSTART and WEND are ignored.				
	1 Window hit. The instruction calculates points but no pixels are actually drawn. As soon as the pixel to be drawn lies inside the window, the WVP bit is set, the V bit is cleared, and the instruction is aborted. If the line lies entirely outside the window, then the WVP bit is not affected, the V bit in the status is set, and the instruction completes execution.				
	2 <i>Clip and set WVP</i> . LINE draws pixels until the pixel to be drawn lies outside the window. At this point, the WVP bit is set, the V bit is set, and the instruction is aborted. If the entire line lies within the window, then the WVP bit is not affected, the V bit is cleared and the instruction completes execution. The initial value of WVP does not affect instruction execution.				
	3 <i>Clip</i> . LINE calculates all the points, but only draws the points that lie inside the window. The V bit tracks the state of the last pixel. If the pixel was outside the window, V is set to 1; otherwise, it is 0. The instruction will traverse the entire line.				
	The default case at reset is no window clipping. For more information, see Section 7.10, Window Checking, on page 7-25.				
Transparency	Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels <i>after</i> it processes the source data. At reset, the default case for transparency is <i>off</i> .				
Plane Mask	The plane mask is enabled for this instruction.				
Interrupts	LINE may be interrupted after every pixel in the line draw except for the last pixel. If the instruction is interrupted, the PC is decremented by 16 to point back to the LINE instruction (the one being executed) before the PC is pushed on the stack. Thus, the LINE instruction will be resumed upon re- turn from the interrupt. In order for the LINE to be resumed correctly, any B-file registers that are modified by the interrupting routine must be re- stored, and the RETI or RETS instruction must be executed. Note that a LINE instruction that is aborted because of window checking options 1 or 2 does not decrement the PC before pushing it on the stack. In this case, the LINE is not resumed after returning from the interrupt service routine.				
Words	1				

Machine							
States	See Secti	See Section 13.6, The LINE Instruction.					
Status Bits	C Und Z Und	C Undefined Z Undefined					
Linedraw Cod	de						
	The follo struction.		shows setup and execution of the LINE in-				
	.file .globl .globl	'LineDraw' _draw_line _xyorigin					
_draw_line:	ммтм	SP,B2,B7,B10,B1	L1,B12,B13,B14				
	MOVE MOVE MOVE SLL	A14,B14 *-B14,B2,1 *-B14,B11,1 16,B11	; Get starting x ; Get starting y				
	MOVY MOVE MOVE SLL	B11,B2 *-B14,B10,1 *-B14,B11,1 16,B11	; B2 = (y0,x0) ; Get ending x ; Get ending y				
	MOVY MOVE	B11,B10 B14,A14	; $B10 = (y1, x1)$				
	MOVE ADDXY ADDXY	@_xyorigin,B11, B11,B2 B11,B10	1 ; Add viewport offset ; Add viewport offset				
draw_line:	CLR SUBXY JRZ JRN JRNC	B7 B2,B10 horiz_line vert_line bpos	<pre>; Draw line from (y0,x0) to (y1,x1) ; B2 = (y0,x0), B10 = (y1,x1) ; B10 = (y1-y0,x1-x0) = (b,a)</pre>				
bneg_ane g:	JRNV SUBXY MOVI JRUC	bneg_apos B10,B7 -1,B11 cmp_b_a	; B7 = (b , a) ; B11 = (-1,-1)				
bneg_apos:	SUBXY MOVX MOVI JRUC	B10,B7 B10,B7 >FFFF0001,B11 cmp_b_a	; B7 = (b , a) ; B11 = (-1,1)				
bpos: bpos_aneg:	JRNV SUBXY MOVY MOVI	>0001FFFF,B11	; B7 = (b , a) ; B11 = (1,-1)				
bpos_apos:	JRUC MOVE MOVI	cmpba B10,B7 >00010001,B11	; $B7 = (b , a)$; $B11 = (1,1)$				

cmp_b_a:	CLR MOVI	B12 -1,B13	; B13 = FFFFFFFF (set pattern to ; all 1s)
a_lt_b:	MOVE SRL CLR MOVX CMP JRGT MOVE MOVX RL MOVY SLL SUB ADDK MOVE	B7, B0 16, B0 B10 B7, B10 B0, B10 a_ge_b B0, B10 B7, B0 16, B7 B11, B12 1, B0 B10, B0 1, B10 B11, B11	<pre>; B0 = b ; B10 = a ; a and b swapped ; B0 = 2b - a ; If drawing in +Y direction, use</pre>
line0:	JRN LINE JRUC	line1 0 done	; LINE 0, otherwise use LINE 1
a_ge_b: linel:	MOVX SLL SUB MOVE JRNN LINE JRUC	B11,B12 1,B0 B10,B0 B11,B11 line0 1 done	; B0 = 2b - a ; If drawing in -Y direction, use ; LINE 1, otherwise use LINE 0
horiz_line;	JRN JRNV SUBXY MOVE ADDXY	pixel do-fill B10,B7 B7,B10 B10,B2	; Make DX positive ; Change start to (y1,x1)
vert_line:	JRNC NEG ADDXY	do-fill B10 B10,B2	; Make DY positive ; Change start to (y1,x1)
do_fill:	MOVE ADDI FILL JRUC	B10,B7 >10001,B7 XY đone	
pixel:	DRAV	B12,B2	
done:	MMFM RETS	SP,B2,B7,B10,E 2	311,B12,B13,B14 ; Return to calling routine

Example 1 This example draws a line from (3,52) to (19,55). Window checking is off, transparency and the pixel processing replace operation are selected, and plane masking is disabled. Assume the following registers have been loaded with these values:

B0	= > FFFF FFF1	Decision variable $d = 2b - a = -15$
B2	= >0052 0003	DADDR
B3	= >0000 0800	DPTCH (CONVDP=13)
B4	= >0000 0100	OFFSET
B5	= >0030 0003	WSTART
B6	= >0055 0025	WEND
B7	= >0003 0016	<i>b</i> : <i>a</i> ; <i>b</i> =3 and <i>a</i> =22
B9	= >4444 4444	COLOR1 (color of the line)
B10	= >0000 0017	COUNT (a+1)
B11	= >0001 0001	Diagonal increment (+1,+1)
B12	= >0000 0001	Nondiagonal increment (0,+1)
B13	= >FFFF FFFF	PATTRŇ (all 1s)

This line is shown in Figure 12-11, represented by ●s.

Before LINE execution, DADDR contains the first pixel to be drawn. During LINE execution, DADDR is updated so that it always points to the next pixel to be drawn. After this example is completed, DADDR will equal >0055 001A. Register B7 contains the X and Y dimensions of the line. Register B10 indicates the number of pixels that will be drawn; if you want the endpoint to be drawn (in this case, (19,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line progressing in a diagonal direction when it moves from (6,52) to (7,53); it is incremented by 1 in both the X and the Y dimensions. B12 contains the XY increment for nondiagonal moves. You can see the line progressing in a nondiagonal direction when it moves from (3,52) to (4,52); it is incremented by 1 in the X dimension.

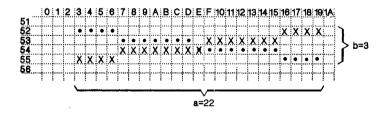


Figure 12-11. LINE Examples

LINE

Example 2 This example draws a line from (19,52) to (3,55). Window checking is off, transparency and the pixel processing replace operation are selected, and plane masking is disabled. Assume the following registers have been loaded with these values:

B0	= >FFFF FFF1	Decision variable $d = 2b - a = -15$
B2	= >0052 0019	DADDR
B3	= >0000 0800	DPTCH (CONVDP=13)
B4	= >0000 0100	OFFSET
B5	= >0030 0003	WSTART
B6	= >0055 0025	WEND
B7	= >0003 0016	<i>b</i> : <i>a</i> ; <i>b</i> =3 and <i>a</i> =22
B9	= >2222 2222	COLOR1 (color of the line)
B10	= >0000 0017	COUNT (a+1)
B11	= >0001 FFFF	Diagonal increment (+1,-1)
B12	= >0000 FFFF	Nondiagonal increment (0,-1)
B13	= > FFFF FFFF	PATTRŇ (all 1s)

This line is shown in Figure 12-11, represented by Xs.

Before LINE execution, DADDR contains the first pixel to be drawn. During LINE execution, DADDR is updated so that it always points to the next pixel to be drawn. After this example is completed, DADDR will equal $>0055\ 0002$. Register B7 contains the X and Y dimensions of the line. Register B10 indicates the number of pixels that will be drawn; if you want the endpoint to be drawn (in this case, (3,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line progressing in a diagonal direction when it moves from (F,53) to (E,54); it is decremented by 1 in the X dimension and incremented by 1 in the Y dimension. B12 contains the XY increment for nondiagonal moves. You can see the line progressing in a nondiagonal direction when it moves from (14,53) to (13,53); it is decremented by 1 in the X dimension.

LMO

Leftmost One

LMO

Syntax	LMO < <i>Rs</i> >,<	<rd></rd>								
Execution	3 1 - (Bit numbe	er of leftmost	1 bit	in Rs) →	Rd					
Encoding	15 14 13 1	2 11 10	9	87	65	4	3	2	1	0
	0 1 1	0 1 0	1	Rs		R	Τ	R	d	
Operands	Rs is the regis	ster to be eva	luate	d.						
Description	LMO locates the loads the 1's co five LSBs of the ister are loaded LSB. If there ar is 0 and status b	mplement of destination with 0s. Bit e no 1 bits ir	the b regist 31 of	oit numb ter. The 2 Rs is the	er of th 7 MSBs MSB (I	e left s of t eftmo	tmost he de ost) a	-1 bi estina ind b	t inte tion it 0 i	o the reg- s the
	The source register contents can be normalized by following this instruction by executing the RL Rs, Rd instruction, where Rs is the destination register of the LMO instruction and Rd is the source register.									
	The source and destination registers must be in the same register file.									
Words	1									
Machine States	1,4									
Status Bits	 N Unaffected C Unaffected Z 1 if the sou V Unaffected 	rce register c	onten	its are 0, <i>0</i>	otherw	vise.				
Examples	Code	<u>Before</u>		After						
	LMO A0,A1 LMO A0,A1 LMO A0,A1 LMO A0,A1 LMO A0,A1	A0 >0000 000 >0000 000 >0000 000 >0800 000 >8000 000	01 10 00	NCZV xx1x xx0x xx0x xx0x xx0x xx0x	A1 >0000 >0000 >0000 >0000 >0000) 001) 001) 000	F B)4			

MMFM Move Multiple Registers from Memory MMFM

Syntax	MN	ΛFN	1 <	Rs>,	[<i><re< i=""></re<></i>	gister	list>	>]								
Execution			er <i>n</i> i or <i>n</i>			er list	> th	en *F	{s+ -	→ R/	7					
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	0	0	1	1	0	1	R		R	ls	
								Ma	ask							

Operands Rs points to the first location in a block of memory.

Register list is a list of registers to be moved (such as A0,A1,A9).

Fields Mask is a binary representation of the register list.

Description MMFM loads the contents of a specified list of *either* A or B file registers (not both) from a block of memory. Rs points to the first location in the memory block. Rs and the registers in the list must be in the same register file.

The MMFM and MMTM instructions can be thought of as "stack" instructions for storing and retrieving multiple registers in memory. MMTM stores the registers in memory, using Rs as a "stack pointer." The stack "shrinks" in the direction of increasing linear address, with Rs containing the bit address of the top of the stack. MMFM reverses the action of the MMTM instruction. Rs is postincremented by 32 when popping off the stack. Each register is removed from the stack LSW first, with higher order registers moved first. (The alignment of Rs affects the instruction timing as indicated in **Machine States**, below.) If a 0 mask is supplied, the SP will be popped from memory and loaded. Note that including Rs in the register list produces unpredictable results.

The bit assignments in the mask are:

	If Rs is in file A:
	SP A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
	15(MSB) 0(LSB)
	If Rs is in file B:
	SP B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
	15(MSB) 0(LSB)
Words	2
Machine States	Cache EnabledCache DisabledAligned:3 + 4n + (2) extended states9 + 4nNonaligned:3 + 8n + (6) extended states9 + 8(n + 1)
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected

Examples Assume that memory contains the following values before instruction execution:

Address	Data	Address	Data
>000100F0	>1111	>00010070	>CCCC
>000100E0	>B1B1	>00010060	>BCBC
>000100D0	>2222	>00010050	>DDDD
>000100C0	>B2B2	>00010040	>BDBD
>000100B0	>3333	>00010030	>EEEE
>000100A0	>B3B3	>00010020	>BEBE
>00010090	>7777	>00010010	>FFFF
>00010080	>B7B7	>00010000	>BFBF

Register $B0 = >0001 \ 0000$

MMFM B0,B1,B2,B3,B7,B12,B13,B14,SP or MMFM B0,>710F

Register contents after instruction execution:

$B0 = >0010\ 0100$	B12 = >CCCC BCBC
B1 = >1111 B1B1	B13 = >DDDD BDBD
B2 = >2222 B2B2	B14 = >EEEE BEBE
B4 = >3333 B3B3	SP = >FFFFBFBF
B8 = >7777 B7B7	Others unchanged

MMTM Move Multiple Registers to Memory

Syntax	MN	ЛТN	<	Rd>,	<reg< th=""><th>ister</th><th>list></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></reg<>	ister	list>									
Execution				in <r = 0 t</r 		er list	> th	en R	n →	-*R	d					
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	0	0	1	1	0	0	R		R	ld	
								М	ask					_		

Operands Register list is a list of registers to be moved (such as A0,A1,A9).

Fields Mask is a binary representation of the register list.

.

Description MMTM stores the contents of a specified list of *either* A or B file registers (not both) from a block of memory. Rs points to the first location in the memory block. Rs and the registers in the list must be in the same register file.

The MMFM and MMTM instructions can be thought of as "stack" instructions for storing and retrieving multiple registers in memory. MMTM stores the registers in memory, using Rs as a "stack pointer." The stack "shrinks" in the direction of increasing linear address, with Rs containing the bit address of the top of the stack. MMFM reverses the action of the MMTM instruction. Rs is postincremented by 32 when popping off the stack. Each register is removed from the stack LSW first, with higher order registers moved first. (The alignment of Rs affects the instruction timing as indicated in **Machine States**, below.)

When execution of the MMTM instruction is complete, the contents of the lowest-numbered register in the list will reside at the highest address in the memory block. Rd will have been decremented to point to the contents of the highest-numbered register in the list.

If a register list is not specified, the GSP will store **all** the registers of a register file, starting at the location specified by Rs. Rs indicates the register file that will be affected. For example, MMTM A3 stores the A-file registers in memory, beginning at the address in register A3. Similarly, MMTM B0 stores the B-file registers in memory, beginning at the address in register B0. If you use SP as the pointer register in this manner, the GSP will assume you want to store the A-file registers inm memory. If you want to use the stack pointer but intend to store the B-file registers, use B15 instead of SP.

MMTM Move Multiple Registers to Memory MMTM

The GSP uses a mask to indicate which registers will be affected. Registers in the list are indicated by a 1 in the appropriate location within the mask. If a 0 mask is supplied, A0 or B0 will be pushed on the stack. The bit assignments in the mask are:

	If Rs is in file A:								
	A0 A1 A2 A3 A4 A5	A6 A7 A8 A9	A10 A11 A12 A13 A14 SP 0(LSB)						
	If Rs is in file B:		· · ·						
	B0 B1 B2 B3 B4 B5	B6 B7 B8 B9	B10 B11 B12 B13 B14 SP						
	15(MSB)		0(LSB)						
Words Machine	2								
States	Cache Enabled Aligned: 2 + 4n + Nonaligned: 2 + 10n +	Cache Disabled 8 + 4n + 2 10(n + 1)							
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 								
Examples	Assume that these registers contain the following values before instruction execution:								
	$A1 = >0010\ 0000$ $A12 = >CCCC\ ACAC$ $A0 = >0000\ A0A0$ $A13 = >DDDD\ ADAD$ $A2 = >2220\ A2A2$ $A14 = >EEEE\ AEAE$ $A4 = >4444\ A4A4$ $SP = >FFFF\ AFAF$ $A8 = >8888\ A8A8$								
	MMTM A1,A0,A2,A4,P or MMTM A1,>A88F	8,A12,A13,A14,	SP						
	After instruction execution are not changed.	register A1 = >000)F FF00. The other registers						
	Memory will contain the fo	llowing values after	instruction execution:						
	Address Data >000FFF00 >AFAF >000FFF10 >FFFF >000FFF20 >AEAE >000FFF30 >EEEE >000FFF40 >ADAD >000FFF50 >DDDD >000FFF60 >ACAC >000FFF70 >CCCC	Address >000FFF80 >000FFF90 >000FFFA0 >000FFFB0 >000FFFC0 >000FFFD0 >000FFFE0 >000FFFF0	Data >A8A8 >8888 >A4A4 >4444 >A2A2 >2222 >A0A0 >0000						

Syntax	MC	DS	< <i>R</i>	s>,<	Rd>											
Execution	(Rd) mc	d (R	s) →	Rd											
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	1	0		R	s		R		R	d	
Description	nati 32-l as ti	MODS performs a 32-bit signed divide of the 32-bit dividend in the destination register by the 32-bit value in the source register, and returns a 32-bit remainder in the destination register. The remainder is the same sign as the dividend. The original contents of the destination register will always be overwritten.										ns a sign				
	The	sou	rce ar	nd de	stina	ation	regis	ters i	nust	be in	the	sam	e reg	ister	file.	
Words	1															
Machine States	41,4	44 if	norma resul s = 0			0000										
Status Bits	N C Z V	 C Unaffected Z 1 if the remainder is 0, 0 otherwise. 														
		•	The	e quo	tient	cann	iot b	e cor	ntaine	ed wi	thin	32 b	its			
Examples	<u>Co</u>	de			B	efor	<u>e</u>					<u>Aft</u>	<u>ər</u>			
	MOI MOI MOI MOI MOI MOI MOI MOI MOI	DS D DS D	A0, A A0, A	1 1 1 1 1 1 1 1 1 1 1 1	>00 >00 >00 >00 >00 >00 >00 >F >F >F >F	0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 FFF F FFF F FFF F	0000 0004 0004 0004 0004 0004 0004 FFC FFC FFC	> > > > > > > > > > > > > > > > > > >	A1 00000 FFFF 00000 00000 FFFF FFFF 00000 00000 FFFF FFFF FFFF	0000 FFF 0000 0000 FFF FFF 0000 0000 0	7 9 8 7 0 9 8 7 0 9 8 8 7 0 9 8 8 7 0 9 8 8 7 0 9 8 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 0 9 8 7 9 8 7 0 9 8 7 9 9 8 7 9 9 8 7 9 9 8 7 9 9 8 8 7 9 9 8 8 7 9 9 8 8 7 9 9 8 9 9 9 8 8 7 9 9 8 7 9 9 8 8 7 9 9 8 7 9 9 8 8 7 9 9 8 8 7 9 9 8 8 7 9 9 8 8 9 9 8 8 7 9 9 8 8 9 9 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 9 9 9 9 8 9 9 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 9	NCZ 0×0 0×0 0×1 0×0 0×1 1×0 0×1 0×1 0×1 0×1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A0 > 000 > 000 > FFF > 000 > 000 > 000 > 000 > FFF > 000 > 000 > 000 > FFF > 000 > 000 > 000 > 000 > FFF > 000	0 00 F FF 0 00 0 00 F FF 0 00 0 00 0 00	07 F9 00 03 00 FD 00 00 03 00 FD

MODU	M	odulus - Ur	nsigned		MODU
Syntax Execution	MODU <rs>, (Rd) mod (Rs) -</rs>	-			
Encoding	15 14 13 12 0 1 1 0		8 7 6 5 Rs	4 3 R	2 1 0 Rd
Description	MODU performs destination regist 32-bit remainder destination registe	er by the 32-bit in the destination	value in the sou on register. The	rce registe	r, and returns a
	The source and d	estination regist	ers must be in th	e same reg	gister file.
Words	1				
Machine States	35,38 3,6 if Rs = 0				
Status Bits		nder is 0, 0 othe Rs) equals 0, 0 o			
Examples	<u>Code</u>	<u>Before</u>		<u>After</u>	
	MODU AO,A1 MODU AO,A1 MODU AO,A1 MODU AO,A1 MODU AO,A1 MODU AO,A1 MODU AO,A1	A0 >0000 0000 >0000 0000 >0000 0000 >0000 0004 >0000 0004 >0000 0004 >0000 0004	A1 >0000 0000 >0000 0007 >FFFF FFF9 >0000 0008 >0000 0007 >0000 0000 >FFFF FFF9	xx01 xx01 xx10 xx00 xx10	A1 >0000 0000 >0000 0007 >FFFF FF9 >0000 0000 >0000 0003 >0000 0000 >0000 0001

MOVB Move Byte - Register to Indirect MOVB

Syntax	MOVB < <i>Rs</i> >,*< <i>Rd</i> >
Execution	Rs → *Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 0 0 1 1 0 Rs R Rd
Operands	Rs The source byte is the eight LSBs of the register.
	*Rd The destination location is the memory address contained in the specified register:
Description	MOVB moves a byte from the source register to the memory address con- tained in the destination register. The source operand byte is right justified in the source register and it is the eight LSBs of the register which are moved. The memory address is a bit address and the field size for the move is eight bits. The source and destination registers must be in the same re- gister file.
Words	1
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data >5000 >0000 >5010 >0000
	Code Before After
	A0A1@>5000@>5010MOVB A0,*A1>89AB CDEF>0000 5000>00EF>0000MOVB A0,*A1>89AB CDEF>0000 5001>01 DE>0000MOVB A0,*A1>89AB CDEF>0000 5009>DE00>0001MOVB A0,*A1>89AB CDEF>0000 5000>F000>000E

MOVB	Move Byte - <u>Register to Indirect with Displacement</u> MOVB						
Syntax	MOVB <rs>,*<rd(displacement)></rd(displacement)></rs>						
Execution	Rs \rightarrow *(Rd + Displacement)						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	1 0 1 0 1 1 0 Rs R Rd						
	Displacement						
Operands	Rs The source byte is the eight LSBs of the register.						
	*Rd(Displacement) The destination location is the memory address formed by the sum of the specified register contents and the signed 16-bit displace- ment, contained in the extension word following the opcode.						
Description	MOVB moves a byte from the source register to the destination memory address. The source operand byte is right justified in the source register; it is the eight LSBs of the register which are moved. The destination memory address is a bit address and is formed by adding the contents of the speci- fied register to the signed 16-bit displacement. This is a field move, and the field size for the move is eight bits. The source and destination registers must be in the same register file.						
Words	2						
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.						
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 						
Examples	Assume that memory contains the following values before instruction exe- cution:						
	Address Data >10000 >0000 >10010 >0000						
	<u>Code</u> <u>Before</u> <u>After</u>						
	A0A1@>10000@>10010MOVB A0,*A1(0)>89AB CDEF>00010000>00EF>0000MOVB A0,*A1(1)>89AB CDEF>00010000>01DE>0000MOVB A0,*A1(9)>89AB CDEF>00010000>DE00>0001MOVB A0,*A1(12)>89AB CDEF>00010000>E000>000EMOVB A0,*A1(32767)>89AB CDEF>00008001>00EF>0000MOVB A0,*A1(-32768)>89AB CDEF>00018000>00EF>0000						

MOVB Move Byte - Register to Absolute MOVB

Syntax	MOVB <rs>,@<daddress></daddress></rs>								
Execution	Rs → @DAddress								
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 1 1 1 Rs								
	Destination Address (LSW)								
	Destination Address (MSW)								
Operands	Rs The source byte is the eight LSBs of the register.								
	DAddress The destination location is the linear memory address contained in the two extension words following the instruction.								
Description	MOVB moves a byte from the source register to the destination memory address. The source operand byte is right justified in the source register and it is the eight LSBs of the register which are moved. The specified desti- nation memory address is a bit address and the field size for the move is eight bits. The source and destination registers must be in the same register file.								
Words	3								
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.								
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 								
Examples	Assume that memory contains the following values before instruction exe- cution:								
	Address Data >5000 >0000 >5010 >0000								
	<u>Code</u> <u>Before</u> <u>After</u>								
	A0 @>5000 @>5010 MOVB A0,@>5000 >89AB CDEF >00EF >0000 MOVB A0,@>5001 >89AB CDEF >01DE >0000 MOVB A0,@>5009 >89AB CDEF >DE00 >0001 MOVB A0,@>500C >89AB CDEF >DE00 >0001 MOVB A0,@>500C >89AB CDEF >F000 >000E								

Move B	yte - Indirect (to Register	MOVB	
MOVB * < <i>Rs</i> > *Rs → Rd	>, <rd></rd>			
			4 3 2 1 0 R Rd	
*Rs The source byte location is the memory address contained in the specified register.				
MOVB moves a byte from the memory address contained in the source re- gister to the destination register. The source memory address is a bit ad- dress and the field size for the move is eight bits. When the byte is moved into the destination register, it is right justified and sign extended to 32 bits. This instruction also performs an implicit compare to 0 of the field data. The source and destination registers must be in the same register file.				
1				
See MOVE and MOVB Instructions Timing, Section 13.2.				
 N 1 if the sign-extended data moved into register is negative, 0 otherwise. C Unaffected Z 1 if the sign-extended data moved into register is 0, 0 otherwise. V 0 				
Assume that memory contains the following values before instruction exe- cution:				
Address >5000 >5010	Data >00EF >89AB			
Code MOVB *A0,A1 MOVB *A0,A1 MOVB *A0,A1 MOVB *A0,A1	<u>Before</u> A0 >0000 5000 >0000 5001 >0000 5008 >0000 500C	After A1 >FFFF FFEF >0000 0077 >0000 0000 >FFFF FFB0	NCZ V 1 x 00 0 x 00 0 x 10 1 x 00	
	MOVB *< <i>Rs</i> ^{>} *Rs → Rd 15 14 13 12 1 0 0 0 *Rs The source specified r MOVB moves a gister to the dest dress and the fie into the destination This instruction The source and 0 1 See MOVE and 1 N 1 if the sign C Unaffected Z 1 if the sign C Unaffected Z 1 if the sign V 0 Assume that met cution: Address > 5000 > 5010 Code MOVB *A0, A1 MOVB *A0, A1	MOVB* <rs>,<rd>*Rs → Rd151413121110981001111*RsThe source byte location is the specified register.MOVB moves a byte from the memorigister to the destination register. The dress and the field size for the move into the destination register, it is right This instruction also performs an im The source and destination registers of 1See MOVE and MOVB Instructions TN1See MOVE and MOVE And An an anotacion is the following t</rd></rs>	*Rs → Rd 15 14 13 12 11 10 9 8 7 6 5 4 1 0 0 0 1 1 1 1 Rs F *Rs The source byte location is the memory address contain gister to the destination register. The source memory dress and the field size for the move is eight bits. Which the destination register, it is right justified and sig This instruction also performs an implicit compare to The source and destination registers must be in the sat 1 See MOVE and MOVB Instructions Timing, Section 1 N 1 if the sign-extended data moved into register is 1 C Unaffected Z 1 if the sign-extended data moved into register is 1 Address Data >5000 >00EF >5010 >89AB Code Before After MOVB *A0,A1 >0000 5000 >FFFFF FFEF MOVB *A0,A1 >0000 5001 >0000 0077 MOVB *A0,A1 >0000 5008 >0000 0000	

MOVB Move Byte - Indirect to Indirect MOVB

Syntax	MOVB *< <i>Rs</i> >,*< <i>Rd</i> >					
Execution	*Rs → *Rd					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 1 1 0 Rs R Rd					
Operands	 *Rs The source byte location is the memory address contained in the specified register. *Rd The destination location is the memory address contained in the 					
Description	MOVB moves a byte from the source memory address to the destination memory address. Both memory addresses are bit addresses and the field size for the move is eight bits. The source and destination registers must be in the same register file.					
Words	1					
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.					
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 					
Examples	Assume that memory contains the following values before instruction exe- cution:					
	Address Data >5000 >CDEF >5010 >89AB >6000 >0000 >6010 >0000					
	<u>Code</u> <u>Before</u> <u>After</u>					
	A0A1@>6000@>6010MOVB *A0,*A1>0000 5000>0000 6000>00EF>0000MOVB *A0,*A1>0000 5000>0000 6001>01 DE>0000MOVB *A0,*A1>0000 5000>0000 6009>DE00>0001MOVB *A0,*A1>0000 5000>0000 6000>0F7>0000MOVB *A0,*A1>0000 5001>0000 6000>00F7>0000MOVB *A0,*A1>0000 5001>0000 6001>01 EE>0000MOVB *A0,*A1>0000 5001>0000 6000>00F7>0000MOVB *A0,*A1>0000 5001>0000 6000>00E6>0001MOVB *A0,*A1>0000 5001>0000 6000>0E60>000FMOVB *A0,*A1>0000 5009>0000 6000>0E60>000FMOVB *A0,*A1>0000 5009>0000 6001>01CC>0000MOVB *A0,*A1>0000 5009>0000 6009>CC00>0001MOVB *A0,*A1>0000 5009>0000 6000>00BC>0000MOVB *A0,*A1>0000 500C>0000 6001>0178>0000MOVB *A0,*A1>0000 500C>0000 6001>0178>0001MOVB *A0,*A1>0000 500C>0000 6009>7800>0001MOVB *A0,*A1>0000 500C>0000 6000>00BC>0001MOVB *A0,*A1>0000 500C>0000 6001>0178>0000MOVB *A0,*A1>0000 500C>0000 6000>000B>0001MOVB *A0,*A1>0000 500C>0000 6000>000B>0001					

Move Byte -MOVB Indirect with Displacement to Register MOVB

Syntax	MOVB *< <i>Rs(Displacement)</i> >,< <i>Rd</i> >						
Execution	*(Rs + Displacement) → Rd						
Encoding	<u>15 14 13 12 11 10 9 8</u>	7 6 5	4 3 2	1 0			
		Rs	R F	ld			
	Displa	Displacement					
Operands	*Rs(Displacement) The source byte location is the memory address specified by the sum of the specified register contents and the signed 16-bit displace- ment, contained in the extension word following the opcode.						
Description	MOVB moves a byte from the source memory address to the destination register. The source memory address is a bit address and is formed by adding the contents of the specified register to the signed 16-bit displacement. The field size is eight bits. When the byte is moved into the destination register, it is right justified and sign extended to 32 bits. This instruction also performs an implicit compare to 0 of the field data. The source and destination registers must be in the same register file.						
Words	2						
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.						
Status Bits	 N 1 if the sign-extended data moved into register is negative, 0 otherwise. C Unaffected Z 1 if the sign-extended data moved into register is 0, 0 otherwise. V 0 						
Examples	Assume that memory contains the following values before instruction exe- cution:						
	Address Data >10000 >00EF >10010 >89AB						
	Code Bet	ore	<u>After</u>	:			
	MOVB *A0(1),A1 >000 MOVB *A0(8),A1 >000 MOVB *A0(12),A1 >000 MOVB *A0(12),A1 >000 MOVB *A0(32767),A1 >000	1 0000 > 1 0000 > 1 0000 > 0 8001 >	A1 > FFFF FFEF >0000 0077 >0000 0000 > FFFF FFB0 > FFFF FFEF > FFFF FFEF	NCZV 1×00 0×00 0×10 1×00 1×00 1×00			

MOVB	Move Byte - Indirect with Displacement to Indirect with Displacement MOVB				
Syntax	MOVB *< <i>Rs(Displacement)</i> >, *< <i>Rd(Displacement)</i> >				
Execution	*(Rs + Displacement) \rightarrow *(Rd + Displacement)				
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 0 1 1 1 1 0 Rs R Rd				
	Source Displacement Destination Displacement				
Operands	*Rs(Displacement) The source byte location is the memory address specified by the sum of the specified register contents and the signed 16-bit displace- ment, contained in the first of two extension words following the opcode.				
	*Rd(Displacement) The destination location is the memory address specified by the sum of the specified register contents and the signed 16-bit displace- ment, contained in the second of two extension words following the opcode.				
Description	MOVB moves a byte from the source memory address to the destination memory address. Both the source and destination memory addresses are bit addresses and are formed by adding the contents of the specified register to its respective signed 16-bit displacement. The field size is eight bits. The source and destination registers must be in the same register file.				
Words	3				
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.				
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 				

he following values be	fore instruction exe-
ore	After
A1	@>11000 @>11010
$\begin{array}{llllllllllllllllllllllllllllllllllll$	>00EF >0000 >01DE >0000 >DE00 >0001 >F000 >000E >00EF >0000 >00BC >0000 >00BC >0000 >0178 >0000 >7800 >0001 >C00BC >0000 >00BC >0000 >00BC >0000 >00BC >0000 >00BC >0000 >00BC >0000 >00EF >0000 >0E00 >0001 >DE00 >0001 >F000 >000E >0DE00 >0001 >F000 >000E >00E0 >0001 >DE00<
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Move Byte - Absolute to Register MOVB MOVB

Syntax	MOVB @ <saddress>,<rd></rd></saddress>
Execution	@SAddress → Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 0 1 1 1 1 1 R Rd
	Source Address (LSW)
	Source Address (MSW)
Operands	SAddress The source byte location is the linear memory address contained in the two extension words following the instruction.
Description	MOVB moves a byte from the source memory address to the destination register. The specified source memory address is a bit address and the field size for the move is eight bits. When the byte is moved into the destination register, it is right justified and sign extended to 32 bits. This instruction also performs an implicit compare to 0 of the field data. The source and destination registers must be in the same register file.
Words	3
Machine State s	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N 1 if the sign-extended data moved into register is negative, 0 otherwise. C Unaffected Z 1 if the sign-extended data moved into register is 0, 0 otherwise. V 0
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data >10000 >00EF >10010 >89AB
	<u>Code</u> <u>After</u>
	A1NCZVMOVB @>10000,A1>FFFF FFEF1x00MOVB @>10001,A1>0000 00770x00MOVB @>10008,A1>0000 00000x10MOVB @>1000C,A1>FFFF FFB01x00

ŵ

MOVB Move Byte - Absolute to Absolute

Syntax	MC	VB	@<	SAa	dres	s>,@	〕 <d.< th=""><th>Addri</th><th>ess></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></d.<>	Addri	ess>							
Execution	@S/	Addre	ess -	• @D	Add	ress										
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0
									iress ress	<u> </u>	<u> </u>					
									ddres	<u>`</u>						
						·	_		ddres	<u> </u>	<u> </u>					{
Operands		th ddre Tl	ne so e firs ss ne de	st set estina	of tv ation	loca vo ex locat	tens tion	ion w is the	vords e line	follo ear m	owing nemo	g the ry ad	instr dress	uctio s cor	on. ntaine	ed in
Description	men	nory	addro	ess.	Éoth	from the s e fiel	ourc	e and	d des	tinat	ion a	ddre	sses			
Words	5															
Machine States	See	мо	VE ar	nd M	OVB	Instr	uctio	ons T	imin	g, Se	ction	13.2	2.			
S tatu s Bits	N C Z V	Una Una	ffecte ffecte ffecte ffecte	ed ed												

Assume that memory contains the following values before instruction execution:

Address	Data
>10000	>CDEF
>10010	>89AB
>11000	>0000
>11010	>0000

Code

<u>After</u>

>11010
>0000
>0000
>0001
>000E
>0000
>0000
>0001
>000F
>0000
>0000
>0001
>000E
>0000
>0000
>0001
>000B

MOVE Move - Register to Register

Syntax	MOVE <rs< th=""><th>>,<rd></rd></th><th></th><th></th><th></th></rs<>	>, <rd></rd>			
Execution	(Rs) → Rd				
Encoding		12 11 10 9	876	54	3 2 1 0
	0 1 0	0 1 1 M	Rs	R	Rd
Fields	M=0 if reg	A/File B bounda gisters are in sam gisters are in diff	e file		
		le select ifies register file / ifies register file			
Des cription	MOVE moves the 32 bits of data from the source register to the destination register. Note that this is not a field move; therefore, the field size has no effect. The source and destination registers can be any of the 31 locations in the on-chip register file. Note that this is the only MOVE instruction that allows the source and destination registers to be in different files. This instruction also performs an implicit compare to 0 of the register data.				
Words	1				
Machine States	1				
Status Bits	C Unaffected	-bit data moved d -bit data moved	-		
Examples	Code	Before	After		
	MOVE A0,A1 MOVE A0,A1 MOVE A0,A1 MOVE A0,B1 MOVE A0,B1 MOVE A0,B1	>0000 000 >FFFF FFF >0000 FFF >0000 000	0 >0000 0000 F >FFFF FFFF F >xxxx xxxx 0 >xxxx xxxx		xxxx 0x10 xxxx 1x00 FFFF 0x00 0000 0x10

MOVE Move Field - Register to Indirect

Syntax	MOVE < <i>Rs</i> >,*< <i>Rd</i> >[,< <i>F</i> >]					
Execution	(field)Rs → (field)*Rd					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 0 F Rs R Rd					
Operands	Rs The source operand is the right justified field in the specified register. 1-32 bits of the register are moved, depending on the field size se- lected.					
	*Rd <i>Destination register (indirect).</i> The destination location is the memory address contained in the specified register.					
	 F is an optional operand; it defaults to 0. F=0 selects FS0. F=1 selects FS1. 					
Description	MOVE moves a field from the source register to the memory address con- tained in the destination register. This memory address is a bit address and the field size for the move is $1-32$ bits. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.					
Words	1					
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.					
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 					
Examples	Assume that memory contains the following values before instruction exe- cution:					
	Address Data >15500 >0000 >15510 >0000 >15520 >0000					
	Register A0 = >FFFF FFFF					
	Code Before After					
	A1 FS0/1 @>15500 @>15510 @>15520					
	MOVE A0,*A1,0>0001 55005/x>001F>0000>0000MOVE A0,*A1,1>0001 5503x/8>07F8>0000>0000MOVE A0,*A1,0>0001 550813/x>FF00>001F>0000MOVE A0,*A1,1>0001 550Bx/16>F800>07FF>0000MOVE A0,*A1,0>0001 550D19/x>E000>FFFF>0000MOVE A0,*A1,1>0001 550Cx/24>F000>FFFF>0000MOVE A0,*A1,0>0001 551227/x>0000>FFFC>1FFFMOVE A0,*A1,1>0001 5510x/32>0000>FFFF>FFFF					

MOVE	Move Field - <i>Register to Indirect</i> (Postincrement) MOVE
Syntax	MOVE < <i>Rs</i> >,*< <i>Rd</i> >+[,< <i>F</i> >]
Execution	(field)Rs → (field)*Rd Rd + field size → Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 0 0 F Rs R Rd
Operands	Rs The source operand is the right justified field in the specified register. 1-32 bits of the register which moved, depending on the field size selected.
	*Rd+ Destination register (indirect with postincrement). The destination location is the memory address contained in the specified register.
	 F is an optional operand; it defaults to 0. F=0 selects FS0. F=1 selects FS1.
Description	MOVE moves a field from the source register to the memory address con- tained in the destination register. The destination register is postincre- mented after the move by the field size selected. The memory address in the destination register is a bit address and the field size for the move is 1–32 bits. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.
Words	1
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data >15500 >0000 >15510 >0000 >15520 >0000
	Register A0 = >FFFF FFFF
Code	Before <u>After</u>
MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1 MOVE A0,*A1	+,1 >0001 5525 x/8 >0001 552D >0000 >1FE0 +,0 >0001 5520 13/x >0001 552D >0000 >1FFF +,1 >0001 551D x/16 >0001 552D >0000 >E000 >1FFF +,0 >0001 5516 19/x >0001 5529 >0000 >FFC0 >01FF +,1 >0001 5507 x/24 >0001 551F >FF80 >7FFF >0000 +,0 >0001 5507 27/x >0001 551F >FF80 >FFFF >0003

MOVE	Move Field - <i>Register to Indirect</i> (Predecrement) MOVE
Syntax Execution	MOVE $\langle Rs \rangle, -* \langle Rd \rangle [, \langle F \rangle]$ Rd - field size \rightarrow Rd (field) Rs \rightarrow (field)*Rd
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 0 F Rs R Rd
Operands	Rs The source operand is the right justified field in the specified register. 1–32 bits of the register are moved, depending on the field size.
	-*Rd Destination register (indirect with predecrement). The destination location is the memory address contained in the specified register predecremented by the field size selected. This is also the final value for the register.
	 F is an optional operand; it defaults to 0. F=0 selects FS0. F=1 selects FS1.
Description	MOVE moves a field from the source register to the memory address con- tained in the destination register predecremented by the field size. The memory address in the destination register is a bit address and the field size for the move is 1-32 bits. The SETF instruction sets the field size and ex- tension. Rs and Rd must be in the same register file.
Words	1
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data >15500 >0000 >15510 >0000 >15520 >0000
	Register A0 = >FFFF FFFF
<u>Code</u>	Before <u>After</u>
MOVE A0,-*A MOVE A0,-*A MOVE A0,-*A MOVE A0,-*A MOVE A0,-*A MOVE A0,-*A MOVE A0,-*A	1,1 >0001 552D x/8 >0001 5525 >0000 >0000 >1FE0 1,0 >0001 5528 13/x >0001 551B >0000 >F800 >00FF 1,1 >0001 5528 x/16 >0001 551B >0000 >FF00 >00FF 1,1 >0001 5523 19/x >0001 5510 >0000 >FFFF >0007 1,1 >0001 5520 x/24 >0001 5508 >FF00 >FFFF >0000 1,0 >0001 5524 27/x >0001 5509 >FE00 >FFFF >000F

MOVE	Move Field - <i>Register to Indirect</i> with Displacement MOVE
Syntax	MOVE Rs,* <rd(displacement)>[,< F>]</rd(displacement)>
Execution	$(field)Rs \rightarrow (field)^*(Rd + Displacement)$
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 1 1 0 0 F Rs R Rd Displacement
Operands	Rs The source operand is the right justified field in the specified register. 1–32 bits of the register are moved, depending on the field size se- lected.
	*Rd(Displacement) Destination register with displacement. The destination location is the memory address specified by the sum of the specified register contents and the signed 16-bit displacement, contained in the ex- tension word following the opcode.
	 F is an optional operand; it defaults to 0. F=0 selects FS0. F=1 selects FS1.
Description	MOVE moves a field from the source register to the destination memory memory address. The destination memory address is a bit address and is formed by adding the contents of the specified register to the signed 16-bit displacement. The field size for the move is 1-32 bits. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.
Words	2
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected

Assume that memory contains the following values before instruction execution:

Address	Data
>15530	>0000
>15540	>0000
>15550	>0000

Register A0 = >FFFF FFFF

<u>Code</u>	Before		<u>After</u>		
	A1	FS0/1	@>15530	@>15540	@>15550
MOVE A0,*A1(>0000),1	>0001 5530	x/1	>0001	>0000	>0000
MOVE A0,*A1(>0001),0	>0001 552F	5/x	>001 F	>0000	>0000
MOVE A0,*A1(>000F),0	>0001 552D	8/x	>F000	>000F	>0000
MOVE A0,*A1(>0020),1	>0001 551C	x/13	>F000	>01 FF	>0000
MOVE A0,*A1(>00FF),0	>0001 5435	16/x	>FFF0	>000F	>0000
MOVE A0,*A1(>OFFF),0	>0001 4531	19/x	>FFFF	>0007	>0000
MOVE A0,*A1(>7FFF),1	>0000 D531	x/22	>FFFF	>003F	>0000
MOVE A0,*A1(>FFF2),1	>0001 5540	x/25	>FFFC	>07F F	>0000
MOVE A0,*A1(>8000),0	>0001 D530	27/x	>F F FF	>07FF	>0000
MOVE A0,*A1(>FFFO),0	>0001 5540	31/x	>FFFF	>7FFF	>0000
MOVE A0,*A1(>FFEC),1	>0 0 01 5 548	x/31	>FFF0	>FFFF	>0007
MOVE A0,*A1(>FFEC),0	>0001 554D	32/x	>FE00	>FFFF	>01FF
MOVE A0,*A1(>001D),0	>0001 5520	32/x	> E000	>FFFF	>1FFF
MOVE A0,*A1(>0020),1	>00 01 55 20	x/32	>0000	>FFFF	>FFFF

MOVE	Move Field - Register to Absolute MOVE
Syntax	MOVE <rs>,@<daddress>[,< F>]</daddress></rs>
Execution	(field)Rs → (field)@DAddress
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 0 1 F 1 1 0 0 R Rs
	Destination Address (LSW) Destination Address (MSW)
Operands	Rs The source operand is the right justified field in the specified register.
	1-32 bits of the register are moved, depending on the field size.
	DAddress <i>Linear destination address.</i> The destination location is the memory address contained in the two extension words following the in- struction.
	 F is an optional operand; it defaults to 0. F=0 selects FS0. F=1 selects FS1.
Description	MOVE moves a field from the source register to the destination memory address. The specified destination memory address is a bit address and the field size for the move is 1-32 bits. SETF sets the field size and extension.
Words	3
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected
Examples	Assume that memory contains these values before instruction execution:
	Address Data >15500 >0000 >15510 >0000 >15520 >0000
	Register A0 = >FFFF FFFF
	<u>Code</u> <u>Before</u> <u>After</u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MOVE Move Field - Indirect to Register MOVE

Syntax	мо	VE	* <r< th=""><th>s>,<</th><th>Rd></th><th>[,<<i>F</i></th><th>>]</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></r<>	s>,<	Rd>	[,< <i>F</i>	>]									
Execution	(fiel	d)*R	s →	Rd												
Encoding	15 1	14 0	13 0	12 0	11 0	10 1	9 F	8	7 Rs	6	5	4 R	3	2 R	1	0
Operands	 *Rs The source operand location is the memory address contained in the specified register. F is an optional operand; it defaults to 0. F=0 selects the FS0, FE0 parameters for the move. 															
Description	F=1 selects the FS1, FE1 parameters for the move. MOVE moves a field from the memory address contained in the source re- gister to the destination register. The source memory address is a bit ad- dress and the field size for the move is 1–32 bits. When the field is moved into the destination register, it is right justified and sign extended or zero extended to 32 bits according to the value of FE. This instruction also performs an implicit compare to 0 of the field data. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.															
Words	1															
Machine States	See	MO	/E an	id M	оνв	Instr	uctic	ons Ti	ming	, Se	ction	13.2	<u>2</u> .			
Status Bits	C Z	Unaf	fecte	d				noveo noveo		-		-				ise.
Examples	Assu cutio		that r	nemo	ory c	ontai	ns tł	ne foli	lowin	ig va	lues	befo	ore in:	struc	tion	exe-
	>1	lress 550(551()		Dat >777 >777	0										
	Reg	ister	A0 =	>00	001 5	5500										
	Cod	le				<u>Bef</u>	ore			ł	Afte	<u>r</u>				
	MOV MOV MOV MOV MOV MOV MOV MOV MOV	EEEEEEEEEE	AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i> AO, <i>I</i>	A1,0 A1,1 A1,C A1,1 A1,0 A1,1 A1,0 A1,1 A1,0 A1,1) - -) -) -	5 x/ 12 x/ 18 x/ 27 x/ 31 x/	0/1 5/x 5/x 12 12 12 12 12 12 12 12 12 12 12 12 12	×, 0, ×, 1, ×,	/1 /x /1 /x /0 /x /1 /x /0 /x /1	>(>(>(>(>(>(>) >(>)	0000 FFF 0000 0003 FFF F77 0777 7777 777	000 001 FFF 077 777 777 777 777 777 777 777 777		NCZ V 0×10 0×00 0×00 0×00 0×00 1×00 0×00 0×0		

MOVE	Move Field - Indirect to Indirect MOVE								
Syntax	MOVE *< <i>Rs</i> >,*< <i>Rd</i> >[,< <i>F</i> >]								
Execution	(field)*Rs → (field)*Rd								
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 1 0 F Rs R Rd								
Operands	*Rs The source operand location is the memory address contained in the specified register.								
	*Rd The destination location is the memory address contained in the specified register.								
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 								
Description	MOVE moves a field from the source memory address to the destination memory address. Both memory addresses are bit addresses and the field size for the move is 1-32 bits. The field size is determined by the value of FS for the specified F bit. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.								
Words	1								
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.								
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 								
Examples	Assume that memory contains the following values before instruction exe- cution:								
	AddressDataAddressData>15500>FFFF>15530>0000>15510>FFFF>15540>0000>15520>FFFF>15550>0000								
<u>Code</u>	Before After								
MOVE *A0,*A MOVE *A0,*A	1,0 >0001 5500 >0001 5534 5/x >01F0 >0000 >0000 1,1 >0001 5500 >0001 553A x/10 >FC00 >000 F >0000 1,0 >0001 5500 >0001 553F 19/x >8000 >FFFF >0000 1,1 >0001 5504 >0001 5530 x/7 >007F >0000 >0000 1,1 >0001 550A >0001 5530 13/x >1FFF >0000 >0000 1,1 >0001 550D >0001 5533 13/x >1FFF >0000 >0000 1,1 >0001 550D >0001 5534 x/8 >0FF0 >0000 >0000 1,1 >0001 550D >0001 55330 28/x >FFFF >0FFF >0000 1,0 >0001 5508 >0001 5535 x/23 >FFFF >0FFF >0001 1,0 >0001 5508 >0001 5531 x/31 >FFFF >001F 1,1 >0001 550A >0001 5530 32/x >FFFF >0000 1,1 >0001 5508 >0001 5531 x/31 >FFFF >0001 1,0								

ľ

MCVE

Syntax	MOVE *< <i>Rs</i> >+,< <i>Rd</i> >[,< <i>F</i> >]				
Execution	(field)*Rs → Rd (Rs) + field size → Rs				
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 0 0 1 0 1 F Rs R Rd				
Operands	*Rs+ Source register (indirect with postincrement). The source operand location is the memory address contained in the specified register. The register is incremented after the move by the field size selected.				
	Rd The destination location is the specified register.				
	 F is an optional operand; it defaults to 0. F=0 selects the FS0, FE0 parameters for the move. F=1 selects the FS1, FE1 parameters for the move. 				
Description	MOVE moves a field from the memory address contained in the source re- gister to the destination register. The source register is incremented after the MOVE by the field size selected. The source memory address is a bit address and the field size for the move is $1-32$ bits. When the field is moved into the destination register, it is right justified and sign extended or zero extended to 32 bits according to the value of FE for the particular F bit se- lected. This instruction also performs an implicit compare to 0 of the field data. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.				
Words	1				
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.				
Status Bits	 N 1 if the field-extended data moved to register is negative, 0 otherwise. C Unaffected Z 1 if the field-extended data moved to register is 0, 0 otherwise. V 0 				

Assume that memory contains the following values before instruction execution:

Address	Data
>15500	>7770
>15510	>7777

Register A0 = >0001 5500

<u>Code</u>		<u>Before</u>		<u>After</u>		
		FS0/1	FE0/1	A0	A1	NCZV
MOVE	*AO+,A1,1	x/1	x/0	>0001 5501	>0000 0000	0x10
MOVE	*A0+,A1,1	x/5	x /0	>0001 5505	> 0000 0 010	0x00
MOVE	*A0+,A1,0	5/x	1/x	>0001 55 05	>FFFF FFF0	1 x0 0
MOVE	*A0+,A1,0	12/x	0/x	>0001 550C	>0000 0770	0x00
MOVE	*A0+,A1,1	x/12	x/1	>0001 550C	>0000 0770	0x00
MOVE	*A0+,A1,0	18/x	1/x	>0001 5512	>FFFF 7770	1x00
MOVE	*A0+,A1,1	x/18	x/0	>0001 5512	>0003 7770	0x00
MOVE	*A0+,A1,0	27/x	0/x	>0001 551B	>0777 7770	0x00
MOVE	*A0+,A1,1	x/27	x/1	>0001 551B	>FF77 7770	1x00
MOVE	*A0+,A1,0	31/x	1/x	>0001 551F	>F777 7770	1x00
MOVE	*A0+,A1,1	x/31	x/0	>0001 551F	>7777 7770	0 x00
MOVE	*A0+,A1,O	32/x	x/x	>0001 5520	>7777 7770	0 x0 0

ľ

MOVE	Move Field - Indirect (Postincrement) to Indirect (Postincrement) MOVE				
Syntax	MOVE *< <i>Rs</i> >+, *< <i>Rd</i> >+[,< <i>F</i> >]				
Execution	(field)*Rs → (field)*Rd (Rs) + field size → Rs (Rd) + field size → Rd				
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 0 0 1 1 0 F Rs R Rd				
Operands	*Rs+ Source Register (indirect with postincrement). The source operand location is the memory address contained in the specified register. The register is incremented after the move by the field size selected.				
	*Rd+ Destination register (indirect with postincrement). The destination location is the memory address contained in the specified register. The register is postincremented after the move by the field size selected. If Rs and Rd specify the same register, then the destination location is the original contents of the register incremented by twice the FS.				
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 				
Description	MOVE moves a field from the source memory address to the destination memory address. Both registers are incremented after the move by the field				

memory address. Both registers are incremented after the move by the field size selected. Both memory addresses are bit addresses and the field size for the move is 1-32 bits. The field size is determined by the value of FS for the F bit specified. The SETF instruction sets the field size and extension. If Rs and Rd specify the same register, the data read from the location pointed to by the original contents of Rs will be written to the location pointed to by the incremented value of Rs (Rd). The source and destination registers must be in the same register file.

Words

Machine States

See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits N Unaffected

- C Unaffected
 - Z Unaffected
 - V Unaffected

Assume that memory contains the following values before instruction execution:

Address	Data	Address	Data
>15500	>FFFF	>15530	>0000
>15510	>FFFF	>15540	>0000
>15520	>FFFF	>15550	>0000

MOVE *A0+,*A1+,F

B	efore			<u>After</u>				
F	A0	A1	FS0/1	A0	A1			@>15550
1	> 0001 5500	> 0001 5530) x/1	> 0001 5501	>0001 553E	>2000	>0000	>0000
0	> 0001 5505	> 0001 5538	5/x	>0001 550A	>0001 553D	>1F 0 0	>00 0 0	>0000
1	>0001 550A	>0001 553F	x/10	> 0001 5514	> 0001 5549	>8000	>01FF	>0000
0	> 0001 550D	>0001 5530	19/x	>0001 5520	>0001 5543	> FF F F	>0007	>0000
1	> 0001 5510	> 0001 5532	x/7	> 0001 5517	>0001 5539	>01 FC	>0000	>0000
0	> 0001 5511	>0001 553A	13/x	>0001 551E	> 0001 5547	>FC00	>007F	>0000
1	>0001 5513	>0001 553F	x/8	>0001 551B	> 00 01 5547	> 8 00 0	>007F	>00 00
0	>0001 5510	>0001 553A	28/x	>0001 552C	>00 0 1 555 6	> FC00	>FFFF	>0 03F
1	>0001 5518	> 0001 5534	x/23	>00 01 552F	>0001 55 4B	>FFF0	>07FF	>0000
0	> 0001 5510	>0001 5530	31/x	>0001 552F	>0001 554F	> F F F F	>7FFF	>0000
1	> 0001 5511	>0001 5530) x/31	> 0001 5530	> 0001 555C	>E000	> F F F F	>0FFF
0	> 0001 5510	>0001 553F	32/x	>0001 55 3 0	>0001 555F	> 8 000	>FFFF	>7FFF
1	>0001 5500	>0001 5530	x/32	>0001 5520	>0001 5550	>FFFF	>FFFF	>0000

)

Move Field - Indirect (Predecrement) MOVE to Register

Syntax	MOVE -*< <i>Rs</i> >,< <i>Rd</i> >[,< <i>F</i> >]						
Execution	(Rs) - field size → Rs (field)*Rs → Rd						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	1 0 1 0 0 1 F Rs R Rd						
Operands	-* Rs Source Register (indirect with predecrement). The source operand location is the memory address contained in the specified register decremented by the field size selected. This is also the final value for the register.						
	 F is an optional operand; it defaults to 0. F=0 selects the FS0, FE0 parameters for the move. F=1 selects the FS1, FE1 parameters for the move. 						
Description	MOVE moves a field from the memory address contained in the source re- gister to the destination register. The source register is predecremented before the move by the field size selected. The source memory address is a bit address and the field size for the move is 1–32 bits. The field size is determined by the value of FS for the F bit specified. The SETF instruction sets the field size and extension. When the field is moved into the desti- nation register, it is right justified and sign extended or zero extended to 32 bits according to the value of FE for the particular F bit selected. This in- struction also performs an implicit compare to 0 of the field data.						
	The source and destination registers must be in the same register file. If Rs and Rd are the same register, the pointer information is overwritten by the data fetched.						
Words	1						
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.						
Status Bits	 N 1 if the field-extended data moved to register is negative, 0 otherwise. C Unaffected Z 1 if the field-extended data moved to register is 0, 0 otherwise. V 0 						

Assume that memory contains the following values before instruction execution:

Address	Data
>15500	>7770
>15510	>7777

Register A0 = >00015520

Code Before After FS0/1 FE0/1 A0 NCZV A1 >0000 0000 >0001 551F 0x10 MOVE -*A0,A1,1 x/1x/0MOVE -*A0,A1,0 5/x 1/x>0001 551B >0000 000E 0x00 x/5 >0000 000E 0x00 MOVE -*A0,A1,1 x/0 >0001 551 B 12/x0/x>0001 5514 >0000 0777 0x00 MOVE -*A0,A1,0 x/12 >0001 5514 >0000 0777 0x00 -*A0,A1,1 x/1 MOVE >0001 DDDD MOVE -*A0,A1,0 18/x 1/x>0001 550E 0x00 x/18 >0001 550E >0001 DDDD 0x00 MOVE -* A0, A1, 1 x/0 MOVE -*A0,A1,0 27/x 0/x >0001 5505 >03BBBBBB 0x00 >0001 5505 >03BBBBBB 0x00 MOVE -*A0,A1,1 x/27 x/1 >0001 5501 31/x >3BBBBBBB 0x00 MOVE -*A0,A1,0 1/x>3BBBBBB8 0x00 >0001 5501 MOVE -*A0,A1,1 x/31 x/0 >0001 5500 >7777 7770 0x00 MOVE -*A0,A1,0 32/x \mathbf{x}/\mathbf{x}

MOVE	Move Byte - Indirect (Predecrement) to Indirect (Predecrement) MOVE					
Syntax	MOVE -*< <i>Rs</i> >,-*< <i>Rd</i> >[,< <i>F</i> >]					
Execution	(Rs) - field size → Rs (Rd) - field size → Rd (field)*Rs → (field)*Rd					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 1 0 F Rs R Rd					
Operands	-*Rs Source Register (indirect with predecrement). The source operand location is the memory address contained in the specified register decremented by the field size selected. This is also the final value for the register.					
	-*Rd Destination register (indirect with predecrement). The destination location is the memory address contained in the specified register decremented by the field size selected. This is also the final value for the register. If Rs and Rd specify the same register, then the destination location is the original contents decremented by twice the FS.					
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 					
Description	MOVE moves a field from the source memory address to the destination memory address. Both registers are decremented before the move by the field size selected. Both memory addresses are bit addresses and the field size for the move is 1-32 bits. The field size is determined by the value of FS for the F bit specified. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file. If Rs and Rd are the same register, then the final contents of the register are its original contents decremented by twice the field size.					
Words	1					
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.					
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 					

Exa	mp	les
-----	----	-----

Assume that memory contains the following values before instruction execution:

Address	Data	Address	Data
>15500	>FFFF	>15530	>0000
>15510	>FFFF	>15540	>0000
>15520	>FFFF	>15550	>0000

MOVE -*A0,-*A1,F

B	<u>efore</u>			<u>After</u>				
F	A0	A1	FS0/1	A0	A1	@>15530	@>15540	@>15550
1010101010101	<pre>> 0001 5501 > 0001 5505 > 0001 550A > 0001 5513 > 0001 550B > 0001 5517 > 0001 5517 > 0001 5517 > 0001 5529 > 0001 5527 > 0001 5527 > 0001 5527 > 0001 5527</pre>	> 0001 5531 > 0001 5539 > 0001 5544 > 0001 5552 > 0001 5537 > 0001 553D > 0001 553D > 0001 554C > 0001 554C > 0001 5550 > 0001 5550 > 0001 5550	x/8 28/x	 > 0001 5500 > 0001 5500 > 0001 5500 > 0001 5500 > 0001 5504 > 0001 550D > 0001 550D > 0001 550D > 0001 5505 > 0001 5508 > 0001 5508 > 0001 5508 > 0001 5500 > 0001 5508 > 0001 5500 	 > 0001 5530 > 0001 5534 > 0001 5534 > 0001 5530 > 0001 5536 > 0001 5536 > 0001 5531 > 0001 5531 > 0001 5530 > 0001 5530 > 0001 5530 > 0001 5531 > 0001 5530 > 0001 5530 > 0001 5530 	>0001 >01F0 >8000 >007F >0FF0 >FFFF >FFE0 >FFF0 >FFFC >FFFF >FFFF	>0000 >000F >FFFF >0000 >0000 >0000 >0FFF >FFFF >FFFF >FFFF >FFFF	>0000 >0000 >0003 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000

1

Ì

MOVE	Move Field - <i>Indirect with Displacement</i> to Register MOVE					
Syntax Execution	MOVE * <rs(displacement)>,< Rd>[,<f>]</f></rs(displacement)>					
	(field)*(Rs + Displacement) → Rd					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 1 0 1 F Bs B B Bd					
	Displacement					
Operands	*Rs(Displacement) Source register with displacement. The source operand location is the memory address specified by the sum of the specified register contents and the signed 16-bit displacement. The source displace- ment is contained in the extension word following the instruction.					
	 F is an optional operand; it defaults to 0. F=0 selects the FS0, FE0 parameters for the move. F=1 selects the FS1, FE1 parameters for the move. 					
Description	MOVE moves a field from the source memory address to the destination register. The source memory address is a bit address and is formed by adding the contents of the specified register to the signed 16-bit displacement. The field size for the above is 1-32 bits. When the field is moved into the destination register, it is right justified and sign extended or zero extended to 32 bits, according to the value of FE for the particular F bit selected. This instruction also performs an implicit compare to 0 of the field data. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.					
Words	2					
Machine States	See Section 13.2, MOVE and MOVB Instructions Timing.					
Status Bits	 N 1 if the field-extended data moved to register is negative, 0 otherwise. C Unaffected Z 1 if the field-extended data moved to register is 0, 0 otherwise. V 0 					

Examples Assume that memory contains the following values before instruction execution:

	Address >15530 >15540 >15550	Data >3333 >4444 >5555				
<u>Code</u>		Before			<u>After</u>	
		A0	FS0/1 F		A1	NCZV
MOVE	*A0(>0000),A1,1	>0001 5530	x/1	x/1	>FFFF FFFF	1 x 00
MOVE	*A0(>0003),A1,1	>0001 552F	x/2	x/0	>0000 0000	0x10
MOVE	*A0(>0001),A1,O	>0001 552F	5/x	0/x	>0000 0013	0x00
MOVE	*A0(>000F),A1,0	>0001 552D	8/x	1/x	>0000 0043	0x00
MOVE	*A0(>0020),A1,1	>0001 551C	x/13	x/0	>0000 0443	0x00
MOVE	*A0(>00FF),A1,0	>0001 5435	16/x	1/x	>0000 4333	0x00
MOVE	*A0(>0FFF),A1,0	>0001 4531	19/x	1/x	>FFFC 3333	1x00
MOVE	*AO(>7FFF),A1,1	>0000 D531	x/22	x/1	>0004 3333	0x00
MOVE	*AO(>FFF2),A1,1	>0001 5540	x/25	x/0	>0111 0CCC	0x00
MOVE	*AO(>8000),A1,0	>0001 D 5 30	27/x	1/x	>F C44 3333	1 x 00
MOVE	*A0(>FFF0),A1,0	>0001 554 0	31/x	0/x	> 4444 3 33 3	0 x00
MOVE	*AO(>FFEO),A1,1	>0 0 01 555 8	x/31	x/1	>D544 4433	1x00
MOVE	*A0(>FFEC),A1,0	>0001 554D	32/x	0/x	>AAA2 2219	1x00
MOVE	*A0(>001D),A1,0	>0001 5520	32/x	1/x	>AAAA 2221	1x00
MOVE	*A0(>0020),A1,1	>0001 5520	x/32	x/0	>5555 4444	0x00
	110 (1 0 0 1 0 / / 11 1 / 1		, •••	, +		

MOVE	Move Field - Indirect with Displacement to Indirect (Postincrement) MOVE				
Syntax	MOVE *< <i>Rs(Displacement)</i> >, *< <i>Rd</i> >+[,< <i>F</i> >]				
Execution	(field)*Rs(Displacement) → (field)*Rd (Rd) + field size → Rd				
Encoding	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>				
	1 1 0 1 0 0 F Rs R Rd				
	Displacement				
Operands	*Rs(Displacement) Source register with displacement. The source operand location is the memory address specified by the sum of the source register contents and the signed 16-bit displacement, contained in the ex- tension word following the instruction.				
	*Rd+ Destination register (indirect with postincrement). The destination location is the memory address contained in the specified register.				
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move F=1 selects the FS1 parameter for the move. 				
Description	MOVE moves a field from the source memory address to the destination memory address contained in the destination register; both the source and destination memory addresses are bit addresses. The source memory address is formed by adding the contents of the source register to the signed 16-bit displacement. The destination register is incremented following the move by the field size selected. The field size for the move is 1–32 bits. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.				
Words	2				
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.				
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 				

Examples	Assume that cution:	memory contain	ns the follow	ing values b	efore instru	uction exe-
	Address >15500 >15510 >15520	Data >0000 >0000 >0000	Address >15530 >15540 >15550) >3:) >44	ata 333 444 555	
<u>Code</u>		Before		<u>After</u>		
				a) >15500	@>15520
MOVE *A0(>00 MOVE *A0(>00 MOVE *A0(>00 MOVE *A0(>07 MOVE *A0(>7F MOVE *A0(>7F MOVE *A0(>FF MOVE *A0(>FF MOVE *A0(>FF MOVE *A0(>FF MOVE *A0(>FF	00),A1+,1 01),A1+,1 0F),A1+,1 FF),A1+,1 FF),A1+,1 FF),A1+,1 FF),A1+,1 FC),A1+,1 FO),A1+,1 EC),A1+,1 1D),A1+,1 20),A1+,1	$\begin{array}{cccc} A0 & A' \\ > 00015530 &> 00 \\ > 0001552F &> 00 \\ > 0001552D &> 00 \\ > 0001551C &> 00 \\ > 00015535 &> 00 \\ > 00015531 &> 00 \\ > 000015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015540 &> 00 \\ > 00015520 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 0001550 &> 00 \\ > 00$	0015500 x/1 0015504 5/x 001550C 8/x 001550C x/13 001550C 16/x 0015500 x/25 0015500 x/25 0015500 x/25 0015500 327/x 001550A 32/x 001550A 32/x	A1 > 00015501 > 00015509 > 00015514 > 00015514 > 00015512 > 00015512 > 00015519 > 00015518 > 00015518 > 00015524 > 00015528 > 00015520 > 00015530 > 00015530	>0001 >00 >0130 >00 >3000 >00 >300 >00 >300 >00 >300 >00 >300 >00 >40 >000 >00 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >40 >000 >20 >20 >40 >000 >20 >40 >000 >20 >20 >40 >000 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >000 >20 >20 >40 >00 >00 >20 >20 >00 >00 >00 >20 >00 >0	000 >0000 004 >0000 088 >0000 333 >0004 433 >0000 233 >0004 433 >0000 221 >0000 888 >0000 444 >0055

MOVE	Move Field - Indirect with Displacement to Indirect with Displacement MOVE					
Syntax	MOVE *< <i>Rs(Displacement)</i> >, *< <i>Rd</i> >(Displacement)>[,< <i>F</i> >]					
Execution	$(field)^*Rs(Displacement) \rightarrow (field)^*Rd(Displacement)$					
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
	1 0 1 1 1 0 F · Rs R Rd					
	Source Displacement					
	Destination Displacement					
Operands	*Rs(Displacement) Source register with displacement. The source operand location is the memory address specified by the sum of the specified register contents and the signed 16-bit displacement, contained in the first of two extension words following the instruction.					
	*Rd(Displacement) Destination register with displacement. The destination location is the memory address specified by the sum of the specified register contents and the signed 16-bit displacement, contained in the sec- ond of two extension words following the instruction.					
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 					
Description	MOVE moves a field from the source memory address to the destination memory address. Both the source and destination memory addresses are bit addresses and are formed by adding the contents of the specified register to its respective signed 16-bit displacement. The field size for the move is 1–32 bits. The SETF instruction sets the field size and extension. The source and destination registers must be in the same register file.					
Words	3					

Words

Machine See MOVE and MOVB Instructions Timing, Section 13.2. States

- **Status Bits** N Unaffected
 - Unaffected Unaffected Unaffected C Z V

Examples	Assume that memory contains the following values before instruction execution:						
	Address >15500 >15510 >15520	Data >0000 >0000 >0000	Address >15530 >15540 >15550	Da >333 >444 >55	33 44		
Before		<u>After</u>					
				0	∂ >15500	@>15520	
MOVE *A0(>00 MOVE *A0(>00 MOVE *A0(>00 MOVE *A0(>00 MOVE *A0(>07 MOVE *A0(>7F MOVE *A0(>FF MOVE *A0(>FF MOVE *A0(>FF MOVE *A0(>FF	00),*A1(>0000) 01),*A1(>0000) 0F),*A1(>000F) 20),*A1(>001D) FF),*A1(>FFF8) FF),*A1(>FFF8) FF),*A1(>FFF8) FF),*A1(>FFF8) 00),*A1(>0010) F0),*A1(>0010) E0),*A1(>FFE0) 1D),*A1(>0020)	,0 > 0001552F ,0 > 0001552D ,1 > 0001551C ,0 > 00015435 ,0 > 00014531 ,1 > 0000531 ,1 > 00015540 ,0 > 00015540 ,0 > 00015588 ,0 > 00015584	<pre>> 00015500 > 00015504 > 000154FD > 00015514 > 00015514 > 00014511 > 00010508 > 00000501 > 000154E3 > 000154E3 > 00015528</pre>	5/x > 8/x > x/13 > 16/x > 19/x > x/22 > x/25 > 27/x > 31/x > x/31 > 32/x >	<pre>@>155 >0001 >0000 >0130 >0000 >3000 >0004 >6000 >0088 >3000 >0433 >0000 >3333 >0CCC >0111 >9998 >2221 >6666 >8888 >3300 >4444 >3200 >24444<</pre>	>0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0005 >0155	

MOVE Move Field - Absolute to Register MOVE

Syntax	MOVE @ <saddress>,<rd>[,<f>]</f></rd></saddress>					
Execution	(field)@SAddress → Rd					
Encoding	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>					
	0 0 0 0 0 1 F 1 1 0 1 R Rd					
	Source Address (LSW)					
	Source Address (MSW)					
Operands	SAddress Source address. The source operand location is the linear memory address contained in the two extension words following the in- struction. It is 1-32 bits in size.					
	 F is an optional operand; it defaults to 0. F=0 selects the FS0, FE0 parameters for the move. F=1 selects the FS1, FE1 parameters for the move. 					
Description	MOVE moves a field from the source memory address to the destination register. The specified source memory address is a bit address and the field size for the move is $1-32$ bits. When the field is moved into the destination register, it is right justified and sign extended or zero extended to 32 bits according to the value of FE for the particular F bit selected. This instruction also performs an implicit compare to 0 of the field data. The SETF instruction sets the field size and extension.					
Words	3					
Machine States Status Bits	 See MOVE and MOVB Instructions Timing, Section 13.2. N 1 if the field-extended data moved to register is negative, 0 otherwise. C Unaffected Z 1 if the field-extended data moved to register is 0, 0 otherwise. V 0 					
	V U					

Assume that memory contains the following values before instruction execution:

Addre: >155 >155	00 >7770				
<u>Code</u>		<u>Before</u>		<u>After</u>	
MOVE MOVE MOVE MOVE MOVE	<pre>@>15500,A1,1 @>15500,A1,0 @>15503,A1,1 @>15500,A1,0 @>15500,A1,1 @>15504,A1,0 @>15500,A1,1</pre>	FE0/1 x/0 0/x x/1 0/x x/1 1/x x/0	FS0/1 x/1 5/x x/5 12/x x/12 18/x x/18	A1 >0000 0000 >0000 0010 >0000 000E >0000 0770 >FFFF FBBB >FFFF 7777 >0003 7770	NCZV 0x10 0x00 0x00 0x00 1x00 1x00 0x00
MOVE MOVE MOVE	<pre>@>15500,A1,0 @>15500,A1,1 @>15501,A1,0 @>15501,A1,1 @>15500,A1,0</pre>	0/x x/1 0/x x/1 x/x	27/x x/27 30/x x/30 32/x	>0777 7770 >FF77 7770 >3BBB BBB8 >FBBB BBB8 >7777 7770	0x00 1x00 0x00 1x00 0x00

MOVE	Move Field - Absolute to Indirect (Postincrement) MOVE				
Syntax	MOVE @ <saddress>, *<rd>+[,F]</rd></saddress>				
Execution	(field)@SAddress → (field)*Rd (Rd) + field size → Rd				
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
	1 1 0 1 0 1 F 0 0 0 0 R Rd Source Address (LSW)				
	Source Address (LSW)				
Operands	SAddress Source address. The source operand location is the linear memory address contained in the two extension words following the in- struction.				
	*Rd+ Destination register (indirect with postincrement). The destination location is the memory address contained in the specified register.				
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 				
Description	MOVE moves a field from the source memory address to the memory ad- dress contained in the destination register. The source memory address is contained in the two extension words following the instruction. The des- tination register is incremented following the move by the field size se- lected. The source and destination registers must be in the same register file.				
Words	5				
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.				
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 				

.

Examples	Assume that memo cution:	ry contains t	the following va	lues before	instruction exe-
	>15500 > >15510 >	Data FFFF FFFF	Address >15530 >15540	Data >0000 >0000	
Code	>15520 > <u>Before</u>	FFFF	>15550 <u>After</u>	>0000	
MOVE @15500 MOVE @15500	A0),A1+,1 > 00015530),A1+,0 > 00015534),A1+,1 > 0001553A),A1+,0 > 00015530 1,A1+,0 > 00015530),A1+,1 > 00015530),A1+,1 > 00015536),A1+,1 > 00015535 3,A1+,0 > 00015535	> 00015539 > 00015544 > 00015552 > 00015537 > 00015530 > 00015536 > 0001554C > 0001554C > 00015555	5/x >0001 x/10 >0001 19/x >0001 x/7 >0001 13/x >0001 x/8 >0001 28/x >0001 28/x >0001 x/23 >0001 31/x >0001	5539 >01F0 5544 >FC00 5552 >8000 5537 >007F 5530 >1FFF 5536 >0FF0 554C >FFFF 554D >FFE0 5555 >FFC0	@>15510 >0000 >0000 >0000 >0000 >FFFF >0003 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0FFF >0000 >FFFF >001F
MOVE @1550A	8,A1+,1 >00015531 A,A1+,0 >00015530 D,A1+,1 >0001553A		32/x > 0001	5550 >FFFF	>FFFF >0000 >FFFF >0000 >FFFF >03FF

MOVE Move Field - Absolute to Absolute

Syntax	MOVE @ <saddress>, @<daddress>[,<f>]</f></daddress></saddress>			
Execution	(field)@SAddress → (field)@DAddress			
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	0 0 0 0 0 1 F 1 1 1 0 0 0 0 0 0			
	Source Address (LSW)			
	Source Address (MSW)			
	Destination Address (LSW)			
	Destination Address (MSW)			
Operands	SAddress Source address. The source operand location is the linear memory address contained in the first set of two extension words following the instruction.			
	DAddress Destination address. The destination location is the linear memory address contained in the second set of two extension words follow ing the instruction.			
	 F is an optional operand; it defaults to 0. F=0 selects the FS0 parameter for the move. F=1 selects the FS1 parameter for the move. 			
Description	MOVE moves a field from the source memory address to the destination memory address. Both memory addresses are bit addresses and the field size for the move is 1-32 bits. The SETF instruction sets the field size and extension.			
Words	5			
Machine States	See MOVE and MOVB Instructions Timing, Section 13.2.			
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 			

Examples Assume that memory contains the following values before instruction execution:

Address	Data
>15500	>FFFF
>15510	>FFFF
>15520	>FFFF
>15530	>0000
>15540	>0000
>15550	>0000

Code		Before	<u>After</u>		
		FS0/1	@>15530	@>15540	@>15550
MOVE	@>15500,@>15530,1	x/1	>0001	>0000	>0000
MOVE	@>15500,@>15534,0	5/x	>01F0	>0000	>0000
MOVE	@>15500,@>1553A,1	x/10	>FC00	>000F	>0000
MOVE	@>15500,@>1553F,0	19/x	>8000	>FFFF	>0003
MOVE	@>15504,@>15530,1	x/7	>007F	>0000	>0000
MOVE	@>1550A,@>15530,0	13/x	>1FFF	>0000	>0000
MOVE	@>1550D,@>15534,1	x/8	>0FF0	>0000	>0000
MOVE	@>1550D,@>15530,0	28/x	>FFFF	>0FFF	>0000
MOVE	@>15505,@>15535,1	x/23	>FFE0	>0FFF	>0000
MOVE	@>15508,@>15536,0	31/x	>FFC0	>FFFF	>001F
MOVE	@>15508,@>15531,1	x/31	>FFFE	>FFFF	>0000
MOVE	@>1550A,@>15530,0	32/x	>FFFF	>FFFF	>0000
MOVE	@>15500,@>1553A,0	x/32	>FC00	>FFFF	>03FF

•

Move Immediate - 16 Bits

MOVI

Syntax	MOVI , <rd>[,W]</rd>			
Execution	IW → Rd			
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 0 1 1 0 R Rd IW			
Operands	IW is a 16-bit immediate value.			
Description	MOVI stores a 16-bit, sign-extended immediate value in the destination register.			
	The assembler will use the short form if the immediate value has been pre- viously defined and is in the range $-32,768 \le IW \le 32,767$. You can force the assembler to use the short form by following the register specification with ,W :			
	MOVI IW,Rd,W			
	The assembler will truncate the upper bits and issue an appropriate warning message.			
Words	2			
Machine States	2,8			
Status Bits	 N 1 if the data being moved is negative, 0 otherwise. C Unaffected Z 1 if the data being moved is 0, 0 otherwise. V 0 			
Examples	<u>Code</u> <u>After</u>			
	A0NCZVMOVI32767,A0>0000 7FFF0x00MOVI1,A0>0000 00010x00MOVI0,A0>0000 00000x10MOVI-1,A0>FFFF FFFF1x00MOVI-32768,A0>FFFF 80001x00MOVI>0000,A0>0000 00000x10MOVI>7FFF,A0>0000 7FFF0x00			

MOVI Move Immediate - 32 Bits

MOVI

Syntax	MOVI , <rd>[,L]</rd>			
Execution	IL → Rd			
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 1 1 1 1 Rd Rd			
	IL (LSW)			
Operands	IL is a 32-bit immediate value.			
Description	MOVI stores a 32-bit immediate value in the destination register. The assembler will use this opcode if it cannot use the MOVI IW, Rd opcode, or if the long opcode is forced by following the register specification with ,L:			
	MOVI IL,Rd,L			
Words	3			
Machine States	3,12			
Status Bits	 N 1 if the data being moved is negative, 0 otherwise. C Unaffected Z 1 if the data being moved is 0, 0 otherwise. V 0 			
Examples	Code <u>After</u>			
	A0NCZVMOVI2147483647,A0>7FFF FFFF0x00MOVI32768,A0>0000 80000x00MOVI-32769,A0>FFFF 7FFF1x00MOVI-2147483648,A0>8000 00001x00MOVI>8000,A0>0000 80000x00MOVI>FFFFFFFF,A0>FFFF FFFF1x00MOVI>FFFFF,A0,L>FFFF FFFF1x00			

,

MOVK Move Constant (5 Bits) MOVK

Syntax	MOVK <k>,<rd></rd></k>			
Execution	$K \rightarrow Rd$			
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	0 0 0 1 1 0 K R Rd			
Operands	K is a constant from 1 to 32.			
Description	MOVK stores a 5-bit constant in the destination register. The constant is treated as an unsigned number in the range 1–32, where $K = 0$ in the opcode corresponds to a value of 32. The resulting constant value is zero extended to 32 bits. Note that you cannot set a register to 0 with this instruction. You can clear a register by XORing the register with itself; use CLR Rd (an alternate mnemonic for XOR) to accomplish this. Both these methods alter the Z bit (set it to 1).			
Words	1			
Machine States	1,4			
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 			
Examples	<u>Code</u> <u>After</u>			
	A0 MOVK 1,A0 >0000 0001 MOVK 8,A0 >0000 0008 MOVK 16,A0 >0000 0010 MOVK 32,A0 >0000 0020			

.

Move X Half of Register MOVX

Syntax	MOVX <rs>,<</rs>	Rd>		
Execution	(RsX) → RdX			
Encoding	15 14 13 12	11 10 9	8 7 6 5	
	1 1 1 0	1 1 0	Rs	R Rd
Description	MOVX moves the X half of the source register (16 LSBs) to the X half of the destination register. The Y halves of both registers are unaffected.			
	MOVX and MOVY instructions can be used for handling packed 16-bit quantities and XY addresses. The RL instruction can be used to swap the contents of X and Y.			
	The source and de	estination registe	ers must be in th	e same register file.
Words	1			
Machine States	1,4			
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 			
Examples	Code	Before		After
	MOVX A0,A1 MOVX A0,A1 MOVX A0,A1	A0 >0000 0000 >1234 5678 >FFFF FFFF	A1 >FFFF FFFF >0000 0000 >0000 0000	A1 >FFFF 0000 >0000 5678 >0000 FFFF

.

MOVY Move Y Half of Register MOVY

Syntax	MOVY < <i>Rs</i> >,<,	Rd>		
Execution	(RsY) → RdY			
Encoding	15 14 13 12		8 7 6 5	4 3 2 1 0
	1 1 1 0	1 1 1	Rs	R Rd
Description				B MSBs) to the Y half of sters are unaffected.
		addresses. The		handling packed 16-bit can be used to swap the
	The source and de	stination registe	ers must be in the	e same register file.
Words	1			
Machine States	1,4			
Status Bits	N UnaffectedC UnaffectedZ UnaffectedV Unaffected			
Examples	<u>Code</u>	<u>Before</u>		After
	MOVY A0,A1 MOVY A0,A1 MOVY A0,A1	A0 >0000 0000 >1234 5678 >FFFF FFFF	A1 >FFFF FFFF >0000 0000 >0000 0000	A1 >0000 FFFF >1234 0000 >FFFF 0000

Multiply Registers - Signed MPYS

Syntax	MPYS	<rs>,<rd></rd></rs>
--------	------	---------------------

Rd Even: (Rs) \times (Rd) \rightarrow Rd:Rd+1 Execution Rd Odd: (Rs) \times (Rd) \rightarrow Rd

Encoding	15	14	13	12	11	10_	9	8	7	6	5_	4	3	2	1	0
	0	1	0	1	1	1	0		F	ls		R		F	ld	

Description There are two cases:

> Rd Even MPYS performs a signed multiply of the source register by the destination register, and stores the 64-bit result in the two consecutive registers starting at the destination register. The 32 MSBs of the result are stored in the specified even-numbered destination register. The 32 LSBs of the result are stored in the next consecutive register, which is odd-numbered. Avoid using A14 or B14 as the destination register, since this overwrite the SP. The assembler will issue a warning in this case.

> Rd Odd Perform a signed multiply of the source register by the destination register, and store the 32 LSBs of the result in the destination register. Note that overflows are not detected. The Z and N bits are set on the full 64-bit result, even though only the lower 32 bits are stored in Rd.

> FS1 controls the width of the multiply; the portion of Rs by which Rd is multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS will produce unpredictable results. The MSB of the source operand field supplies the source operand's sign. The source and destination registers must be in the same register file.

Words

States

Machine 20,23

1

Status Bits

- N 1 if the result is negative, 0 otherwise.
 - С Unaffected
 - ž 1 if the result is 0, 0 otherwise.
 - Unaffected

Examples MPYS A1, AO

Before			<u>After</u>		
A0 >0000 0000 >0000 0000 >7FFF FFF >FFFF FFFF >7FFF 0000 >7FFF 0000 >7FFF 0000 >FFFF FFFF >8000 0000 >FFFF FFFF >8000 0000 >8000 0001	A1 >0000 0000 >7FFF FFFF >0000 0000 >0000 0000 >1000 0000 >1000 0000 >1000 0000 >1000 0000 >1000 0000 >1000 0000 >7FFF FFFF >7FFF 0000 >FFFF FFFF >8000 0000 >8000 0000	FS1 32 32 32 32 32 32 32 32 32 32 32 32 32	A0 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 007F >0000 7FFF >FFFF FFFF >C000 007F >FFFF 8001 >0000 0000 >4000 0000 >3FFF FFFF	A1 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >7FFF 0000 >FFF0 0000 >FFFF FFFF >8000 0000 >0000 0000 >1000 0000 >0000 0000 >8000 0000	NCZ V 0×1x 0×1x 0×1x 0×1x 0×1x 0×0x 0×0x 0×0x 1×0x 1×0x 1×0x 1×0x 0×0x 0×0x 0×0x 0×0x 0×0x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×1x 0×0x 0×1x 0×1x 0×1x 0×0x 0×1x 0×0x
MPYS A0,A1					
<u>Before</u>			<u>After</u>		
A0 >0000 0000 >FFFF FFF >0000 0000 >7FFF 0000 >7FFF 0000 >FFFF 0000 >FFFF FFF >FFFF 0000 >FFFF FFF >8000 0001 >8000 0000	A1 >0000 0000 >07FF FFFF >1000 0000 >1000 0000 >1000 0000 >1000 0000 >7FFF 0000 >FFFF FFFF >8000 0000 >8000 0000	FS1 32 32 32 32 32 32 32 32 32 32 32 32 32	A0 >0000 0000 >FFFF FFFF >0000 0000 >007F FF00 >007F FF00 >07F FF00 >FFFF FFFF >FFFF 0000 >FFFF FFFF >8000 0001 >8000 0000	A1 >0000 0000 >0000 0000 >7FFF 0000 >FF00 0000 >FFF0 0000 >0000 0000 >FFFF FFFF >0000 0000 >1000 0000 >8000 0000	NCZ V 0x1x 0x1x 0x0x 0x0x 0x0x 1x0x 1x0x 1x0x 0x0x 0x0x 0x0x 0x1x

Multiply Registers - Unsigned MPYU

Syntax	MPYU	<rs>,<rd></rd></rs>
Oyntax		~//3~, ~// <i>U</i> ~

Execution Rd Even: (Rs) \times (Rd) \rightarrow Rd:Rd+1 Rd Odd: (Rs) \times (Rd) \rightarrow Rd

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	1	1	1	1		F	ls		R		R	d	

Description There are two cases:

> Rd Even MPYU performs an unsigned multiply of the source register by the destination register, and stores the 64-bit result in the two consecutive registers starting at the destination register. The 32 MSBs of the result are stored in the specified even-numbered destination register. The 32 LSBs of the result are stored in the next consecutive register, which is odd-numbered. Avoid using A14 or B14 as the destination register, since this overwrites the SP. The assembler will issue a warning in this case.

> Rd Odd Perform an unsigned multiply of the source register by the destination register, and store the 32 LSBs of the result in the destination register. Note that overflows are not detected. The Z and N bits are set on the full 64-bit result, even though only the lower 32 bits are stored in Rd.

> FS1 controls the width of the multiply; the portion of Rs by which Rd is multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS will produce unpredictable results.

The source and destination registers must be in the same register file.

Words

Machine

21.24 States

Status Bits N Unaffected

1

- С Unaffected
- Ζ 1 if the result is 0, 0 otherwise.
- v Unaffected

Examples MPYU A1,AO

Before

After A0 FS1 Α0 A1 NCZV A1 >0000 0000 >0000 0000 32 >0000 0000 >0000 0000 xx1x>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 $x \times 1 x$ >FFFF FFFF >0000 0000 32 >0000 0000 >0000 0000 $1 \times 1 \times 1$ >FFFF 0000 >1000 0000 32 >0000 0000 >FFFF 0000 xx0x >FFFF 0000 >1000 0000 >0000 00FF >FF00 0000 32 $x \times 0 x$ >FFFF 0000 >1000 0000 32 >0000 FFFF >0000 0000 xx0x MPYU A0,A1

Before

Before			<u>After</u>		
A0	A1	FS1	A0	A1	NCZV
>0000 0000	>0000 0000	32	>0000 0000	>0000 0000	xx1x
>FFFF FFFF	>0000 0000	32	>FFFF FFFF	>0000 0000	xx1x
>0000 0000	>FFFF FFFF	32	>0000 0000	>0000 0000	1x1x
>FFFF 0000	>1000 0000	32	>00FF FF00	>FFFF 0000	x x O x
>FFFF 0000	>1000 0000	32	>00FF FF00	>FF00 0000	x x 0 x
>FFFF 0000	>1000 0000	32	>00FF FF00	>0000 0000	x x 0 x

NEG

Negate Register

NEG

Syntax	NEG < <i>Rd</i> >							
Execution	-(Rd) → Rd							
Encoding	15 14 13 0 0 0	12 11 10 9 0 0 0	8 7 1 1 1	6 5 0 1	4 R	3	2 Rd	1 0
Description		e 2's compleme destination regis		ntents of	the c	destin	ation	register
Words	1							
Machine States	1,4							
Status Bits	C 1 if there i Z 1 if the res	sult is negative, (is a borrow (Rd sult is 0, 0 other is an overflow (F	≠ 0), <i>0</i> othe vise.	erwise.	othe	erwise).	
Examples	<u>Code</u>	Before	After					
	NEG AO NEG AO NEG AO NEG AO	A0 > 0000 0000 > 5555 5555 > 7FFF FFFF > 8000 0000 > 8000 0001 > FFFF FFFF	NCZV 0010 1100 1100 1101 0100 0100	A0 >0000 (0 >AAAA / >8000 (0 >8000 (0 >7FFF F >0000 (0	AAB 0001 0000 FFFF			

NEGB Negate Register with Borrow

Syntax	NEGB <ro< th=""><th>/></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ro<>	/>								
Execution	-(Rd) - (C) -	→ Rd								
Encoding	15 14 13	12 11 10	9 8	3 7 6	5	4	3	2	1	0
	0 0 0	0 0 0	1	1 1 1	0	R		R	d	
Description	NEGB takes t decrements by tination regist with the NEG	1 if the borre er. This instruction	ow bit a uction	(C) is set; can be use	the res ed in se	ult is eque	s stor	red in with	the	des-
Words	1									
Machine States	1,4									
Status Bits	C 1 if there Z 1 if the re	sult is negativ is a borrow, 0 sult is 0, 0 oth is an overflow	otherw nerwise	/ise.						
Examples	Code	Before		<u>After</u>						
•	NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO NEGB AO	A0 >0000 0000 >5555 5555 >5555 5555 >7FFF FFFF >8000 0000 >8000 0000 >8000 0001 >8000 0001 >FFFF FFFF >FFFF FFFF	1 0 1 0 1 0 1 0 1 0	NCZV 0010 1100 1100 1100 1100 1100 0100 01	A0 >000 >FFF >AAA >800 >800 >7FF >7FF >000 >000	F F A A 0000 F F F 0000 F F F 0000 F F F 0000 F F F F F F F 0000 F	FFF AAB AAA 001 000 000 FFF FFF FFE 001			

NOP

No Operation

Syntax	NOP							
Execution	No operation							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0							
Description	The program counter is incremented to point to the next instruction. The processor status is otherwise unaffected.							
	This instruction can be used to pad loops and perform other timing func- tions.							
Words	1							
Machine States	1,4							
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 							
Example	Code Before After							
	PC PC NOP >00020000 >00020010							

NOT Complement Register NOT

Syntax	NOT < <i>Rd</i> >						
Execution	NOT(Rd) → Rd						
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	0 0 0 0 0 0 1 1 1 1 1 R Rd						
Description	NOT stores the 1's complement of the destination register's contents back into the destination register.						
Words	1						
Machine States	1,4						
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 						
Examples	Code Before After						
	A0 NCZV A0 NOT A0 >0000 xx0x >FFFF FFF NOT A0 >5555 5555 xx0x >AAAA AAAA NOT A0 >FFFF FFFF xx1x >0000 0000 NOT A0 >8000 0000 xx0x >7FFF FFFF						

OR		OR Reg	isters	OR			
Syntax	OR $\langle Rs \rangle, \langle r \rangle$						
Execution	(Rs) OR (Rd)			5 4 3 2 1 0			
Encoding	15 14 13	12 11 10 9	876 0 Rs	5 4 3 2 1 0			
Description	This instruction bitwise-ORs the contents of the source register with the contents of the destination register; the result is stored in the destination register.						
	The source an	d destination req	gisters must be in	the same register file.			
Words	1						
Machine States	1,4						
Status Bits	 N Unaffected C Unaffected Z 1 if the res V Unaffected 	d sult is 0 <i>, 0</i> other	wise.				
Examples	Code	<u>Before</u>		After			
	OR AO,A1 OR AO,A1 OR AO,A1 OR AO,A1	A0 > FFFF FFFF > 0000 0000 > 5555 5555 > 0000 0000	A1 >0000 0000 >FFFF FFFF >AAAA AAAA >0000 0000	A1 NCZV >FFFF FFFF >FFFF XX0x >FFFF FFFF >0000 0000			

ORI

OR Immediate (32 Bits)

ORI

Syntax	ORI < <i>L</i> >.< <i>Rd</i> >				
Execution	$L OR (Rd) \rightarrow Rd$				
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	ł			
	L (LSW)				
	L (MSW)				
Operands	L is a 32-bit immediate value.				
-					
Description	This instruction bitwise-ORs the 32-bit immediate value, L, with the con- tents of the destination register; the result is stored in the destination reg- ister.				
Words	3				
Machine States	3,12				
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 				
Examples	Code Before After				
	A0 A0 NCZV ORI >FFFFFFFF,A0 >0000 0000 >FFFF FFFF xx0x ORI >0000000,A0 >FFFF FFFF >FFFF FFFF xx0x ORI >AAAAAAAA,A0 >5555 5555 >FFFF FFFF xx0x ORI >00000000,A0 >0000 0000 >0000 0000 xx1x				

PIXBLT Pixel Block Transfer - Binary to Linear PIXBLT

Syntax	PIX	BLT	• В,	L												
Execution	Bin	ary s	ourc	e pix	el arı	ray →	Des	tinati	on p	ixel a	rray	(with	n pro	cessi	ng)	
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0

Operands B specifies that the source pixel array is treated as a binary array whose starting address is given in linear format.

- L specifies that the destination pixel array starting address is given in linear format.
- **Description** PIXBLT expands, transfers, and processes a binary source pixel array with a destination pixel array. This instruction operates on two-dimensional arrays of pixels using linear starting addresses for both the source and the destination. The source pixel array is treated as a one bit per pixel array. As the PixBlt proceeds, the source pixels are expanded and then combined with the corresponding destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT B, L. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

Implied Operands	B File Registers						
	Register	Name	Format	Description			
	B0 [†]	SADDR	Linear	Source pixel array starting address			
	B1	SPTCH	Linear	Source pixel array pitch			
	B2†	DADDR	Linear	Destination pixel array starting address			
	B3	DPTCH	Linear	Destination pixel array pitch			
	B7	DYDX	XY	Pixel array dimensions (rows:columns)			
	B8	COLORO	Pixel	Background expansion color			
	B9	COLOR1	Pixel	Foreground expansion color			
	B10-B14 [†]			Reserved registers			
		I/O Registers					
	Address	Name	D	escription and Elements (Bits)			
	>C00000B0	CONTROL		processing operations (22 options) parency operation			
	>C0000150	PSIZE	Pixel size	(1,2,4,8,16)			
	>C0000160	PMASK	Plane mas	sk – pixel format			

[†] These registers are changed by PIXBLT execution.

Source Array The source pixel array for the expand operation is defined by the contents of the SADDR, SPTCH, and DYDX registers:

 At the outset of the instruction, SADDR contains the linear address of the pixel with the lowest address in the array.

	• SPTCH contains the linear difference in the starting addresses of ad- jacent rows of the source array. SPTCH can be any pixel-aligned va- lue for this PIXBLT.
	• DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.
	During instruction execution, SADDR points to the address of the next set of 32 pixels to be read from the source array. When the transfer is complete, SADDR points to the linear address of the first pixel on the next row of pixels that would have been moved had the block transfer continued.
Source Expansion	The actual source pixel values which are to be written or processed with the destination array are determined by the interaction of the source array with the contents of the COLOR1 and COLOR0 registers. In the expansion operation, a 1 bit in the source array selects a pixel from the COLOR1 register for operation on the destination array. A 0 bit in the source array selects a COLOR0 pixel for this purpose. The pixels selected from the COLOR1 and COLOR0 registers are those that align directly with their intended position in the destination array word.
Destination Array	The location of the destination pixel block is defined by the contents of the DADDR, DPTCH, and DYDX registers:
	• At the outset of the instruction, DADDR contains the linear address of the pixel with the lowest address in the array.
	• DPTCH contains the linear difference in the starting addresses of ad- jacent rows of the destination array (typically this is the screen pitch). DPTCH must be a multiple of 16.

DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.

During instruction execution, DADDR points to the next pixel (or word of pixels) to be modified in the destination array. When the block transfer is complete, DADDR points to the linear address of the first pixel on the next row of pixels that would have been moved had the block transfer continued.

Corner Adjust No corner adjust is performed for this instruction; PBH and PBV are ignored. The pixel transfer simply proceeds in the order of increasing linear addresses.

Window

Checking Window checking cannot be used with this PixBlt instruction. The contents of the WSTART and WEND registers are ignored.

Pixel Processing

Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to expanded pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset

PIXBLT Pixel Block Transfer - Binary to Linear PIXBLT

is the *replace* ($S \rightarrow D$) operation. Note that the data is *first expanded* and *then processed*. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.

- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off*.
- Plane Mask The plane mask is enabled for this instruction.

Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the interrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

> Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt correctly. You can inhibit the TMS34010 from resuming the PixBlt by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Shift Register

- **Transfers** If the SRT bit in the DPYCTL I/O register is set, each memory read or write initiated by the PixBlt generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.)
- Words

Machine

States See PIXBLT Expand Instructions Timing, Section 13.5.

Status Bits N Undefined

1

- C Undefined
- Z Undefined
- V Undefined

Examples Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.

Register File	B:	I/O Registers:
SADDR (BO)	= >0000 2030	PSIZE = >0010
SPTCH (B1)	= >0000 0100	
DADDR (B2)	= >0003 3000	
DPTCH (B3)	= >0000 1000	
DYDX (B7)	= >0002 0010	
COLORO (B8)	= >FEDC FEDC	
COLOR1 (B9)	= > BA98 BA98	

Example 1

For this example, assume that memory contains the following data before instruction execution.

Linear Address	Data
>02000	>xxxx, >xxxx, >xxxx, >1234, >xxxx, >xxxx, >xxxx, >xxxx
>02080	>XXXX, $>$ XXXX, $>$ XXXX
>02000	>xxxx, $>$ xxxx, $>$ xxxx, $>$ 5678, $>$ xxxx, $>$ xxxx, $>$ xxxx, $>$ xxxx
>02180	> XXXX, $>$ XXXX
202100	~*****, ~*****, ~*****, ~*****, ~*****, ~*****, ~*****, ~*****
>33000	>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>33080	>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>34000	>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>34080	>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
	····, ···, ···, ···, ···, ···, ···, ··
	nple uses the <i>replace</i> $(S \rightarrow D)$ pixel processing operation. Before n execution, PMASK = >0000 and CONTROL = >0000 (T=0, 00).
After inst	ruction execution, memory will contain the following values:
Linear	
Address	Data
>33000	>FEDC,>FEDC,>BA98,>FEDC,>BA98,>BA98,>FEDC,>FEDC
>33080	>FEDC,>BA98,>FEDC,>FEDC,>BA98,>FEDC,>FEDC,>FEDC,
. 00000	
>34000	>FEDC,>FEDC,>FEDC,>BA98,>BA98,>BA98,>BA98,>FEDC
>33080	>FEDC,>BA98,>BA98,>FEDC,>BA98,>FEDC,>BA98,>FEDC
- 00000	
This exan	nnle uses the $(D - S) \rightarrow D$ nixel processing operation. Before in-

Example 2 This example uses the $(D - S) \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4800 (T=0, PP=10010).

Linear Address >33000 >33080	Data >0123, >0123, >4567, >0123, >4567, >0123, >0
	>0123, >0123, >0123, >4567, >4567, >4567, >4567, >0123 >0123, >4567, >4567, >0123, >4567, >0123, >4567, >0123

PIXBLT Pixel Block Transfer - Binary to Linear PIXBLT

Example 3 This example uses transparency with COLOR0 = >00000000. Before instruction execution, PMASK = >0000 and CONTROL = >0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Data Address Data >33000 >FFFF, >FFFF, >BA98, >FFFF, >BA98, >BA98, >FFFF, >FFFF >33080 >FFFF, >BA98, >FFFF, >FFFF, >BA98, >FFFF, >FFFF >34000 >FFFF, >FFFF, >FFFF, >BA98, >BA98, >BA98, >BA98, >FFFF >34080 >FFFF, >BA98, >BA98, >FFFF, >BA98, >FFFF, >BA98, >FFFF

Example 4 This example uses plane masking; the four LSBs are masked. Before instruction execution, PMASK = >000F and CONTROL = >0000 (T=0, W=00, PP=00000).

Linear Address >33000 >33080	Data >FEDF, >FEDF, >BA9F, >FEDF, >BA9F, >FEDF, >FEDF >FEDF, >BA9F, >FEDF, >FEDF, >BA9F, >FEDF, >FEDF, >FEDF
>34000	>FEDF, >FEDF, >FEDF, >BA9F, >BA9F, >BA9F, >BA9F, >FEDF
>34080	>FEDF, >BA9F, >BA9F, >FEDF, >BA9F, >FEDF, >BA9F, >FEDF

graphics operations.

Syntax	PIXBLT B,XY
Execution	Binary source pixel array \rightarrow Destination pixel array (with processing)
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 1 1 1 1 1 0 1 0 0 0 0
Operands	 B specifies that the source pixel array is treated as a binary array whose starting address is given in linear format. XY specifies that the destination pixel array starting address is given in XY format.
Description	PIXBLT expands, transfers, and processes a binary source pixel array with a destination pixel array. This instruction operates on two-dimensional ar- rays of pixels using a linear starting address for the source and an XY ad- dress for the destination. The source pixel array is treated as a one bit per pixel array. As the PixBlt proceeds, the source pixels are expanded and then combined with the corresponding destination pixels based on the selected

Note that the instruction is entered as PIXBLT B,XY. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

B File Registers					
Register	Name	Format	Description		
B0 [†]	SADDR	Linear	Source pixel array starting address		
B1	SPTCH	Linear	Source pixel array pitch		
B2†‡	DADDR	XY	Destination pixel array starting address		
B3	DPTCH	Linear	Destination pixel array pitch		
B4	OFFSET	Linear	Screen origin (0,0)		
B5	WSTART	XY	Window starting corner		
B6	WEND	XY	Window ending corner		
B7‡	DYDX	XY	Pixel array dimensions (rows:columns)		
B8	COLOR0	Pixel	Background expansion color		
B9	COLOR1	Pixel	Foreground expansion color		
B10-B14 [†]			Reserved registers		
		1/0 1	Registers		
Address	Name	C	Description and Elements (Bits)		
>C00000B0	CONTROL	PP-Pixel processing operations (22 options) W - Window clipping or pick operation T - Transparency operation			
>C0000130	CONVSP	XY-to-linear conversion (source pitch) Used for source preclipping.			
>C0000140	CONVDP	XY-to-lin	ear conversion (destination pitch)		
>C0000150	PSIZE	Pixel size (1,2,4,6,8,16)			
>C0000160	PMASK	Plane ma	Plane mask – pixel format		

[†] These registers are changed by PIXBLT execution.

[‡] Used for common rectangle function with window hit operation ($W \approx 1$).

PIXBLT

- **Source Array** The source pixel array for the expand operation is defined by the contents of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:
 - At the outset of the instruction, SADDR contains the **linear** address of the pixel with the lowest address in the array.
 - SPTCH contains the linear difference in the starting addresses of adjacent rows of the source array. SPTCH can be any pixel-aligned value for this PIXBLT. For window clipping, SPTCH must be a power of two, and CONVSP must be set to correspond to the SPTCH value.
 - CONVSP is computed by operating on the SPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing and window clipping.
 - DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.

During instruction execution, SADDR points to the address of the next set of 32 pixels to be read from the source array. When the block transfer is complete, SADDR points to the linear address of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Source Expansion

Expansion The actual source pixel values which are to be written or processed with the destination array are determined by the interaction of the source array with contents of the COLOR1 and COLOR0 registers. In the expansion operation, a **1** bit in the source array selects a pixel from the COLOR1 register for operation on the destination array. A **0** bit in the source array selects a COLOR0 pixel for this purpose. The pixels selected from the COLOR1 and COLOR0 registers are those that align directly with their intended position in the destination array word.

Destination Array

The location of the destination pixel block is defined by the contents of the DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

- At the outset of the instruction, DADDR contains the XY address of the pixel with the lowest address in the array. It is used with OFFSET and CONVDP to calculate the linear address of the array.
- DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array (typically this is the screen pitch).
 DPTCH must be a power of two (greater than or equal to 16) and CONVDP must be set to correspond to the DPTCH value.
- CONVDP is computed by operating on the DPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing and window clipping.
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.

During instruction execution, DADDR points to the **linear address** of next pixel (or word of pixels) to be modified in the destination array. When the block transfer is complete, DADDR points to the **linear address** of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Corner Adjust No corner adjust is performed for this instruction. The transfer executes in the order of increasing linear addresses. PBH and PBV are ignored.

Window

- **Checking** Window checking can be used with this instruction by setting the two W bits in the CONTROL register to the desired value. If window checking mode 1, 2, or 3 is selected, the WSTART and WEND registers define the XY starting and ending corners of a rectangular window.
 - **0** No windowing. The entire pixel array is drawn and the WVP and V bits are unaffected.
 - 1 *Window hit*. No pixels are drawn. The V bit is set to 0 if any portion of the destination array lies within the window. Otherwise, the V bit is set to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to correspond to the common rectangle formed by the intersection of the destination array with the rectangular window. DADDR is set to the XY address of the pixel in the starting corner of the common rectangle. DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the values of DADDR and DYDX are indeterminate.

- **2** *Window miss.* If the array lies **entirely** within the active window, it is drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V and WVP bits are set to 1, and the instruction is aborted.
- **3** Window clip. The source and destination arrays are preclipped to the window dimensions. Only those pixels that lie within the common rectangle (corresponding to the intersection of the specified array and the window) are drawn. If any preclipping is required, the V bit is set to 1.
- Pixel
- **Processing** Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to *expanded pixels* as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the S \rightarrow D operation. Note that the data is *first expanded* and *then processed*. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off*.

- Plane Mask The plane mask is enabled for this instruction.
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the interrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt correctly. You can inhibit the TMS34010 from resuming the PixBlt by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Shift Register

- **Transfers** If the SRT bit in the DPYCTL I/O register is set, each memory read or write initiated by the PixBlt generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.)
- Words

Machine States

See PIXBLT Expand Instructions Timing, Section 13.5.

Status Bits N Undefined

1

- C Undefined
- Z Undefined
- V 1 if a window violation occurs, 0 otherwise. Undefined if window checking is not enabled (W=00).

Examples Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.

Register File	В:	I/O Registers:
SADDR (BO)	= >0000 2010	PSIZE = >0008
SPTCH (B1)	= >0000 0010	
DADDR (B2)	= >0030 0022	
DPTCH (B3)	= >0000 1000	
OFFSET (B4)	= >0001 0000	
WSTART (B5)	= >0000 0026	
WEND (B6)	= >0040 0050	
DYDX (B7)	= >0004 0010	
COLORO (B8)	= >0000 0000	
COLOR1 (B9)	= >7C7C 7C7C	

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before instruction execution.

Linear Data Address >2000 >xxxx, >0123, >4567, >89AB, >CDEF, >xxxx, >xxxx, >xxxx >40000 to >43080 >FFFF

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00, PP=00000).

Linear Address	Data
>40100	>FFFF, >7C7C, >0000, >7C00, >0000, >007C, >0000, >0000
>40180	>0000, >FFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFF
>41100	>FFFF, >7C7C, >007C, >7C00, >007C, >007C, >007C, >0000
>41180	>007C, >FFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFF, >FFFFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF,
>42100	>FFFF, >7C7C, >7C00, >7C00, >7C00, >007C, >7C00, >0000
>42180	>7C00, >FFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFFF, >FFFF, >FFFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF,
>43100	>FFFF, >7C7C, >7C7C, >7C00, >7C7C, >007C, >7C7C, >0000
>43180	>7C7C, >FFFF, >FFFFF, >FFFF, >FFFFF, >FFFF, >FFFFF, >FFFF,

PIXBLT

XY Addressing

												۱ddr										
Y		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3
		0	1	2	3	4	5	6	2 7	8	9	Α	в	С	D	Ε	F	0	1	2	3	4
Α																						
d	30	FF	FF	7C	7C	00	00	00	7C	00	00	7C	00	00	00	00	00	00	00	FF	FF	FF
d		•••	• •			••	••	•••		••	••		••	••	•••	••	••	••	•••	• •	•••	• •
- -	31	FF	FF	70	70	70	00	00	7C	7C	00	70	00	70	00	00	00	70	00	FF	FF	FF
Å	0.	• •	•••	/0	/0	/0	00	00	/0	/0	00	/0	00	/0	00	00	00	10	00	•••	••	••
~	22	C C	EE	70	70	00	70	00	7C	00	70	70	00	00	70	ሳሳ	00	00	70	CC	CC	CC
S	32	гг	1-1-	10	10	00	10	00	10	00	70	10	00	00	10	00	00	00	10	FF	гг	ГГ
S				~~	~~~	~~	~~	~~	~~		~ ~	~ ~	~~	~ ~	~~~	~~	~~	~ ~	~ ~			P** p**
	33	FF	FF	70	70	70	70	00	7C	10	70	7C	00	70	10	00	00	70	70	++	FF	FF

Example 2 This example uses the XOR pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >2800 (T=0, W=00, PP=01010).

After instruction execution, memory will contain the following values:

X Address Y 2 222 9AB 2222 BCDE 2 F 2 2 2 2 2 2 2 2 3 3 3 7 Ō 1 2 3 4 5 6 8 2 3 n 1 4 А d r 31 FF FF 83 83 83 FF FF 83 83 FF 83 FF 83 FF FF FF 83 FF FF FF е s 32 FF FF 83 83 FF 83 FF 83 FF 83 83 FF FF 83 FF FF 83 FF FF 83 FF FF FF s 33 FF FF 83 83 83 83 FF 83 83 83 FF 83 83 FF 83 83 FF FF 83 83 FF FF FF

Example 3 This example uses transparency. Before instruction execution, PMASK = >0000 and CONTROL = >0020 (T=1, W=00, PP=00000).

												ddr										
Υ		2	2	2	2	2	2	2	2	2	2	2 A	2	2	2	2	2	3	3	3	3	3
		0	1	2	3	4	5	6	7	8	9	Α	в	С	D	E	F	0	1	2	3	4
A														-								
d	30	66	۲F	70	70	۲H	۴ŀ	۴F	70	66	++	7C	۲F	ኮኮ	۲۲	۲ ۳	۲F	۲F	FF	۲F	۲F	۲۲
d					~ ~	~~		~ ~	~~		r.	~ ~						~~				
	31	۲H		10	/C	10	۴F	۲۲	10	10	۴F	7 C	FF	10	۲F	rr	۲ ۳	/C	۲۲	۲F	۲۲	FF
е	~~			~~	~~		~~	r.	~~		70	~~			~~				70	r= r=		
S	32	۲F	FF	10	/C	FF	10	F F	10	۲۲	10	7C	۲r	FF	/υ	٣٣	FF	۲r	/υ	FF	rr	FF
S	22	cc.	cc	70	70	70	70	cc	70	70	70	7C	cc	70	70		cc	70	70	EE	EC	CC.
	33	۳٣	г г	10	10	10	10	r r	10	10	10	10	гГ	10	10	ΓГ	г г	10	10	гг	гг	г г

PIXBLT _____ Pixel Block Transfer - Binary to XY _____ PIXBLT

Example 4 This example uses window operation 3 (clipped destination). Before instruction execution, PMASK = >0000 and CONTROL = >00C0 (T=0, W=11, PP=00000).

After instruction execution, memory will contain the following values:

X Address γ Α В С D Е F Δ Α 30 FF FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF d Ы 31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF r e 32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 7C FF FF FF s s 33 FE FE FE FE FE FE 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FE FE FE

Example 5 This example uses plane masking; the four LSBs of each pixel are masked. Before instruction execution, PMASK = >0F0F and CONTROL = >0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

X Address γ Α В С D E F n Α d d r e s s

PIXBLT Pixel Block Transfer - Linear to Linear PIXBLT

Syntax PIXBLT L,L

Execution Source pixel array → Destination pixel array (with processing)

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1_	0	
	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	

Operands L specifies that the source and destination pixel array starting addresses are given in linear format.

Description PIXBLT transfers and processes a source pixel array with a destination pixel array. This instruction operates on two-dimensional arrays of pixels using linear starting addresses for both the source and the destination. As the PixBlt proceeds, the source pixels are combined with the corresponding destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT L, L. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

Implied Operands

		B File	Registers							
Register	Name	Format	Description							
B0†‡	SADDR	Linear	Source pixel array starting address							
B1†	SPTCH	Linear	Source pixel array pitch							
B2†‡	DADDR	Linear	Destination pixel array starting address							
B3	B3 DPTCH Linear Destination pixel array pitch									
B7	DYDX	XY	Pixel array dimensions (rows:columns)							
B10-B14 [†]		Reserved registers								
		I/O F	Registers							
Address	Name	D	escription and Elements (Bits)							
>C00000B0	CONTROL	PP-Pixel processing operations (22 options) T - Transparency operation PBH- Bit BLT horizontal direction PBV- Bit BLT vertical direction								
>C0000150	PSIZE	Pixel size (1,2,4,8,16)								
>C0000160	PMASK	Plane ma	Plane mask – pixel format							

[†] These registers are changed by PIXBLT execution.

You must adjust SADDR and DADDR to correspond to the corner selected by the values of PBH and PBV. See Corner Adjust below for additional information.

Source Array The source pixel array for the processing operation is defined by the contents of the SADDR, SPTCH, and DYDX registers:

- At the outset of the instruction, SADDR contains the **linear** address of the pixel at the appropriate starting corner of the array as determined by the PBH and PBV bits in the CONTROL I/O register. (See **Corner Adjust** below.)
- SPTCH contains the linear difference in the starting addresses of adjacent rows of the source array. SPTCH must be a multiple of 16.

DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.

During instruction execution, SADDR points to the next pixel (or word of pixels) to be read from the source array. When the block transfer is complete, SADDR points to the starting address of the next set of 32 pixels that would have been moved had the block transfer continued.

Destination

Arrav

The location of the destination pixel array is defined by the contents of the DADDR, DPTCH, and DYDX registers:

- At the outset of the instruction, DADDR contains the linear address of the pixel at the appropriate starting corner of the array as determined by the PBH and PBV bits in the CONTROL I/O register. (See Corner Adjust below.)
- DPTCH contains the linear difference in the starting addresses of adacent rows of the destination array. DPTCH must be a multiple of 16
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, DADDR points to the next pixel (or word of pixels) to be modified in the destination array. When the block transfer is complete, DADDR points to the linear address of the first pixel on the next row of pixels that would have been moved had the block transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction of the PixBlt. If the source and destination arrays overlap, then PBH and PBV should be set to prevent any portion of the source array from being overwritten before it is moved.

> However, this instruction is unique because the corner adjust is not automatic; the starting corners of both the source and destination arrays must be explicitly set to the alternate corner before instruction execution. Only the *direction* of the move is affected by the values of the PBH and PBV bits. This facility allows you to use corner adjust for screen definitions that do not lend themselves to XY addressing (those not binary powers of two). In effect, you supply your own corner adjust operation in software and the PixBlt instruction provides directional control. To use this feature, you must set both SADDR and DADDR to correspond to the corner selected by PBH and PBV.

> For PBH = 0 and PBV = 0, SADDR and DADDR should be set as normally for linear PixBlts. Both registers should be set to correspond to the linear address of the first pixel on the first line of the array (that is, the pixel with the lowest address).

PIXBLT Pixel Block Transfer - Linear to Linear PIXBLT

• For **PBH** = **0** and **PBV** = **1**, SADDR and DADDR should be set to correspond to the linear address of the **first** pixel on the **last** line of the array. In other words,

 $SADDR = (linear address of 1st pixel in source array) + (DY \times SPTCH)$

and

 $DADDR = (linear address of 1st pixel in dest. array) + (DY \times DPTCH)$

• For **PBH** = **1** and **PBV** = **0**, SADDR and DADDR should be set to correspond to the linear address of the *pixel following* the **last** pixel on the **first** line of the array. In other words,

 $SADDR = (linear address of 1st pixel in source array) + (DX \times PSIZE)$

and

 $DADDR = (linear address of 1st pixel in dest. array) + (DX \times PSIZE)$

• For **PBH** = **1** and **PBV** = **1**, SADDR and DADDR should be set to correspond to the linear address of the *pixel following* the **last** pixel on the **last** line of the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DY × SPTCH) + (DX × PSIZE)

and

DADDR = (linear address of 1st pixel in dest. array) + (DY × DPTCH) + (DX × PSIZE)

Window

Checking Window operations are not enabled for this instruction. The contents of the WSTART and WEND registers are ignored.

Pixel Processir

- **Processing** Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the *replace* ($S \rightarrow D$) operation. Note that the data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off*.
- **Plane Mask** The plane mask is enabled for this instruction.
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10–B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the interrupt is processed. SADDR points to the address of the

next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt correctly. You can inhibit the TMS34010 from resuming the PixBlt by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Shift Register

- Transfers If the SRT bit in the DPYCTL I/O register is set, each memory read or write initiated by the PixBlt generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.)
- Words

Machine

States See Section 13.4, PIXBLT Instructions Timing.

Status Bits N Undefined

1

- C Undefined
- Z Undefined
- V Undefined
- **Examples** Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.

Register File	B:	I/O Registers:
SADDR (B0)	= >0000 2004	PSIZE = >0004
SPTCH (B1)	= >0000 0080	
DADDR (B2)	= >0000 2228	
DPTCH (B3)	= >0000 0080	
OFFSET (B4)	= >0000 0000	
DYDX (B7)	= >0002 000D	

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before instruction execution.

Linear Address	Data	
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx, >xxx	x
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx, >xxx	X
>02100	>XXXX, $>$ XXXX, $>$ XXXXX, $>$ XXXXXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXX, $>$ XXXXXXXXXX, $>$ XXXXXX, $>$ XXXXXXXXXXX, $>$ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	x
>02180	$>_{XXXX}$, $>_{X$	x
>02200	>xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxx	X
>02280	>xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxx	X
>02300	$>_{XXXX}$, $>_{X$	X

PIXBLT Pixel Block Transfer - Linear to Linear PIXBLT

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Address	Data	
>02000		XXXX
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >	XXXX
>02100	>XXXX, $>$ XXXX, $>$	·xxxx
>02180	>XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >	·XXXX
>02200	>xxxx, >xxxx, >00xx, >1110, >2221, >x332, >xxxx, >	XXXX
>02280	>xxxx, >xxxx, >00xx, >1110, >2221, >x332, >xxxx, >	XXXX
>02300	>XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >	XXXX

Example 2 This example uses the $(D - S) \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4800 (T=0, W=00, PP=10010).

After instruction execution, memory will contain the following values:

Linear Address	Data
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02100	>XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX
>02180	>XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX
>02200	>xxxx, >xxxx, >FFxx, >EEEF, >DDDE>xCCD,>xxxx, >xxxx
>02280	>xxxx, >xxxx, >FFxx, >EEEF, >DDDE>xCCD,>xxxx, >xxxx
>02300	$>_{XXXX}$, $>_{XXXX}$

Example 3 This example uses transparency. Before instruction execution, PMASK = > 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

Linear Address	Data	
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	>xxxx
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	> x x x x
>02100	$>_{XXXX}$,	> x x x x
>02180	> x x x x $> x x x x$	>xxxx
>02200	>xxxx, >xxxx, >FFxx, >111F, >2221, >x332, >xxxx,	>xxxx
>02280	>xxxx, >xxxx, >FFxx, >111F, >2221, >x332, >xxxx,	>xxxx
>02300	> XXXX, > XX	>xxxx

.

This example uses plane masking; the MSB of each pixel is masked. Before instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0, Example 4 W = 00, PP = 00000).

Linear Address	Data	
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >	
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >	XXXX
>02100	$>_{XXXX}$, $>$	XXXX
>02180	$>_{XXXX}$, $>$	XXXX
>02200	>xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >	XXXX
>02280	>xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >	·xxxx
>02300	$>_{XXXX}$, $>$	·XXXX

PIXBLT Pixel Block Transfer - Linear to XY PIXBLT

Syntax	ΡΙΧ	BLT	ΓL,2	XΥ												
Execution	Sou	urce	pixel	array	/ →	Dest	inati	on pi	xel a	rray (with	proc	essir	ıg)		
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	0

Operands L specifies that the source pixel array starting address is given in linear format.

XY specifies that the destination pixel array starting address is given in XY format.

Description PIXBLT transfers and processes a source pixel array with a destination pixel array. This instruction operates on two-dimensional arrays of pixels using a linear starting addresses for the source array and an XY address for the destination array. As the PixBlt proceeds, the source pixels are combined with the corresponding destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT L, XY. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

Implied
Operands

	B File Registers												
Register	Name	Format	Description										
B0†	SADDR	Linear	Source pixel array starting address										
B1	SPTCH	Linear	Source pixel array pitch										
B2†‡	DADDR	XY	Destination pixel array starting address										
B3	DPTCH	Linear	Destination pixel array pitch										
B4	OFFSET	Linear Screen origin (0,0)											
B5	WSTART	XY Window starting corner											
B6	WEND	XY Window ending corner											
B7‡	DYDX	XY Pixel array dimensions (rows:colu											
B10-B14 [†]	B10-B14 [†] Reserved registers												
		I/O I	Registers										
Address	Name	D	escription and Elements (Bits)										
>C00000B0	CONTROL	W - Wind T - Tran PBH- P	processing operations (22 options) dow operations sparency operation ixBIt horizontal direction ixBIt vertical direction										
>C0000130	CONVSP		ear conversion (source pitch) preclipping and corner adjust										
>C0000140	CONVDP	XY-to-lin	ear conversion (destination pitch)										
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)										
>C0000160	PMASK	Plane ma	sk – pixel format										

[†] These registers are changed by PIXBLT execution.

[‡] Used for common rectangle function with window pick.

PIXBLT ____ Pixel Block Transfer - Linear to XY

- **Source Array** The source pixel array for the processing operation is defined by the contents of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:
 - At the outset of the instruction, SADDR contains the **linear** address of the pixel with the lowest address in the array.
 - SPTCH contains the linear difference in the starting addresses of adjacent rows of the source array. SPTCH must be a multiple of 16. For window clipping or corner adjust, SPTCH must be a power of two and CONVSP must be set to correspond to the SPTCH value.
 - CONVSP is computed by operating on the SPTCH register with the LMO instruction; it is used for the XY calculations involved in window clipping and corner adjust.
 - DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of pixels per row.

During instruction execution, SADDR points to the next pixel (or word of pixels) to be accessed in the source array. When the block transfer is complete, SADDR points to the linear address of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Destination Array

The location of the destination pixel array is defined by the contents of the DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

- At the outset of the instruction, DADDR contains the XY address of the pixel with the lowest address in the array. It is used with OFFSET and CONVDP to calculate the linear address of the starting location of the array.
- DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array (typically this is the screen pitch).
 DPTCH must be a power of two (greater than or equal to 16) and
- CONVDP must be set to correspond to the DPTCH value. CONVDP is computed by operating on the DPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing, window clipping and corner adjust.
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, DADDR points to the **linear address** of next pixel (or word of pixels) to be accessed in the destination array. When the block transfer is complete, DADDR points to the **linear address** of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction of the PixBlt. If the source and destination arrays overlap, then PBH and PBV should be set to prevent any portion of the source array from being

overwritten before it is moved. This PixBlt performs the corner adjust function automatically under the control of the PBH and PBV bits. If PBV=1, SPTCH must be a power of two and CONVSP should be valid. The SADDR and DADDR registers should be set to correspond to the appropriate format address of the **first** pixel on the **first** line of the source (linear) and destination (XY) arrays, respectively.

Window Checking

Window checking can be used with this instruction by setting the two W bits in the CONTROL register to the desired value. If window checking mode 1, 2, or 3 is selected, the WSTART and WEND registers define the XY starting and ending corners of a rectangular window.

- **0** No windowing. The entire pixel array is drawn and the WVP and V bits are unaffected.
- 1 *Window hit*. No pixels are drawn. The V bit is set to 0 if any portion of the destination array lies within the window. Otherwise, the V bit is set to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to correspond to the common rectangle formed by the intersection of the destination array with the rectangular window. DADDR is set to the XY address of the pixel in the starting corner of the common rectangle. DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the values of DADDR and DYDX are indeterminate.

- 2 Window miss. If the array lies **entirely** within the active window, it is drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V and WVP bits are set to 1, and the instruction is aborted.
- **3** Window clip. The source and destination arrays are preclipped to the window dimensions. Only those pixels that lie within the common rectangle (corresponding to the intersection of the specified array and the window) are drawn. If any preclipping is required, the V bit is set to 1.

Pixel

- **Processing** Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the *replace* ($S \rightarrow D$) operation. Note that the data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off.*
- **Plane Mask** The plane mask is enabled for this instruction.
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.

DADDR points to the linear address of the next word of pixels to be modified after the insterrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt correctly. You can inhibit the TMS34010 from resuming the PixBlt by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Shift Register

Transfers If the SRT bit in the DPYCTL I/O register is set, each memory read or write initiated by the PixBIt generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.)

Words

Machine States

See PIXBLT Instructions Timing, Section 13.4.

Status Bits N Undefined

1

- C Undefined
- Z Undefined
- V If window clipping is enabled 1 if a window violation occurs, 0 otherwise. Undefined if window clipping not enabled (W=00).
- **Examples** Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.

Register File I	3:	I/O Registe	ers:
SADDR (BO)	= >0000 2004	CONVDP	= >0017
SPTCH (B1)	= >0000 0080	PSIZE	= >0004
DADDR (B2)	= >0052 0 007	PMASK	= >0000
DPTCH (B3)	= >0000 01 00	CONTROL	= >0000
OFFSET (B4)	= >0001 0000		(W=00, T=0, PP=00000)
WSTART (B5)	= >0030 000C		-
WEND (B6)	= >0053 0014		
DYDX (B7)	= >0003 0016		

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before instruction execution.

Linear Data Address Data >02000 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >02080 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >02100 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >15200 to >15480 >8888

PIXBLT Pixel Block Transfer - Linear to XY PIXBLT

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >7777 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Data Address Data >15200 >8888, >1888, >5432, >9876, >DCBA,>10FE, >5432, >8886 >15300 >8888, >1888, >5432, >9876, >DCBA,>10FE, >5432, >8886 >15400 >8888, >1888, >5432, >9876, >DCBA,>10FE, >5432, >8886

XY Addressing

Example 2 This example uses the $(D \text{ subs } S) \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4C00 (T=0, W=00, PP=10011).

After instruction execution, memory will contain the following values:

 X Address

 Y
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

Example 3 This example uses transparency with the $(D \text{ subs } S) \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4C20 (T=1, W=00, PP=10011).

															Х	A	d	dre	es	5													
Υ																																1	
-		0	1	2	3	4	5	6	7	8	9	Α	в	С	D	Ε	F	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
A		~	~	~	~	~	~	~	-	~	_		~	~		~	~	~	~	~	~	~	~	~		~	-		~	~	~	~	~
d	52	8	8	8	8	8	8	8	/	6	5	4	3	2	1	8	8	8	8	8	8	8	8	8	/	6	5	4	3	2	8	8	8
a	- 0	0	0	0	0	0	0	0		c	E	٨	2	\mathbf{r}	1	0	0	0	0	0	0	0	0	0	-7	c	E	٨	S	\mathbf{r}	0	0	0
r	53	ø	ö	ö	ö	Ö	ö	Ø	/	0	Э	4	3	Z	I	Ö	ö	0	ō	Ø	Ö	ö	Ø	0	/	o	0	4	3	Z	0	0	0
e	54	Q	o	0	0	0	Q	o	7	6	두	٨	2	\mathbf{r}	1	0	0	Q	o	0	0	0	0	o	7	6	두	Λ	2	2	Q	0	0
5	54	0	0	0	0	0	0	0	'	0	0	4	J	2	1	0	0	0	0	0	0	0	0	0	'	0	9	4	3	2	0	0	0
3																																	

PIXBLT Pixel Block Transfer - Linear to XY PIXBLT

Example 4 This example uses window operation 3 (the destination is clipped). Before instruction execution, PMASK = >0000 and CONTROL = >00C0 (T=0, W=11, PP=00000).

After instruction execution, memory will contain the following values:

 Y
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Example 5 This example uses plane masking; the most significant bit is masked. Before instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0, W=00, PP=00000).

															х	Α	dd	dre	ess	5													
Y																												1 A					
А		U	1	4	3	4	5	0	'	0	9	~	Б	C	U	Ľ	r	U	•	2	3	-	5	0	'	Ů	3		D	Č	0	-	
d	52	8	8	8	8	8	8	8	9	А	В	С	D	E	F	8	9	А	В	С	D	Е	F	8	9	А	В	С	D	Е	8	8	8
d	53	0	0	0	0	0	0	0	۵	^	D	c	n	Е	E	0	۵	٨	D	c	n	E	c	0	۵	۸	D	c	n	F	0	Q	Q
r e	53	ø	0	o	0	0	0	0	9	А	Р	C	υ	C	Г	0	Э	А	D	C	υ	E	r	0	9	A	D	C	υ	E	0	0	0
s	54	8	8	8	8	8	8	8	9	А	В	С	D	Ε	F	8	9	А	В	С	D	Е	F	8	9	А	В	С	D	Е	8	8	8
S																																	

PIXBLT Pixel Block Transfer - XY to Linear

Syntax	XBLT XY,L	
Execution	purce pixel array \rightarrow Destination pixel array (with processing)	
Encoding	<u>14</u> 13 <u>12</u> 11 10 9 8 7 6 5 4 3 2	1 0
	0 0 0 1 1 1 1 0 1 0 0 0 0	0 0
Operands	specifies that the source pixel array starting address is given i mat.	n XY for-
	specifies that the destination pixel array starting address is give ar format.	en in lin-

Description PIXBLT transfers and processes a source pixel array with a destination pixel array. This instruction operates on two-dimensional arrays of pixels using an XY starting address for the source pixel array and a linear address for the destination array. As the PixBlt proceeds, the source pixels are combined with the corresponding destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT XY, L. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

Implied Operands

		B File	Registers									
Register	Name	Format	Description									
B0†	SADDR	XY	Source pixel array starting address									
B1	SPTCH	Linear	Source pixel array pitch									
B2†	DADDR	Linear	Destination pixel array starting address									
B3	DPTCH	Linear	Destination pixel array pitch									
B4	OFFSET	Linear	Screen origin (0,0)									
B7	DYDX	XY	Pixel array dimensions (rows:columns)									
B10-B14 [†] Reserved registers												
I/O Registers												
Address	Name	D	escription and Elements (Bits)									
>C00000B0	CONTROL	T ~ Tr PBH – Pi	xel processing operations (22 options) ansparency operation xBit horizontal direction xBit vertical direction									
>C0000130	CONVSP		ear conversion (source pitch) XY operations									
>C0000140	CONVDP		ear conversion (destination pitch) XY operations									
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)									
> C0000160	PMASK	Plane ma	sk – pixel format									

[†] These registers are changed by PIXBLT execution.

- **Source Array** The source pixel array for the processing operation is defined by the contents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:
 - At the outset of the instruction, SADDR contains the **XY** address of the pixel with the lowest address in the array. It is used with OFFSET and CONVSP to calculate the linear address of the starting location of the array.
 - SPTCH contains the linear difference in the starting addresses of adjacent rows of the source array (typically this is the screen pitch). SPTCH must be a power of two (greater than or equal to 16) and
 - CONVSP must be set to correspond to the SPTCH value. CONVSP is computed by operating on the SPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing, window clipping and corner adjust.
 - DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, SADDR points to the next pixel (or word of pixels) to be accessed from the source array. When the block transfer is complete, SADDR points to the **linear address** of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Destination Array

The location of the destination pixel array is defined by the contents of the DADDR, DPTCH, DYDX, and (potentially) CONVDP registers:

- At the outset of the instruction, DADDR contains the **linear** address of the pixel with the lowest address in the array.
- DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array. DPTCH must be a multiple of 16. For window clipping or corner adjust, DPTCH must be a power of two and CONVDP must be set to correspond to the DPTCH value.
- CONVDP is computed by operating on the DPTCH register with the LMO instruction; it is used for the XY calculations involved in window clipping and corner adjust.
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, DADDR points to the next pixel (or word of pixels) to be modified in the destination array. When the block transfer is complete, DADDR points to the linear address of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

PIXBLT Pixel Block Transfer - XY to Linear

Corner Adjust	The PBH and PBV bits in the CONTROL I/O register govern the direction of the PixBlt. If the source and destination arrays overlap, then PBH and PBV should be set to prevent any portion of the source array from being overwritten before it is moved. This PixBlt performs the corner adjust function automatically under the control of the PBH and PBV bits. If PBV=1, DPTCH must be a power of two and CONVDP must be valid. The SADDR and DADDR registers should be set to correspond to the appro- priate format address of the first pixel on the first line of the source (XY) and destination (linear) arrays respectively.
	and destination (linear) arrays, respectively.

Window Checking Window operations are not enabled for this instruction. The contents of the WSTART and WEND registers are ignored. Pixel Vindow operations are not enabled for this instruction. The contents of the WSTART and WEND registers are ignored.

- Processing Processing Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the S → D operation. Note that the data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off*.
- **Plane Mask** The plane mask is enabled for this instruction.
- Interrupts This instruction can be interrupted at a word or row boundary of the destination array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modified after the insterrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is processed.

Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt correctly. You can inhibit the TMS34010 from resuming the PixBlt by executing an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.

Shift Register
TransfersIf the SRT bit in the DPYCTL I/O register is set, each memory read or write
initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)Words1

Machine States See PIXBLT Instructions Timing, Section 13.4.

- Status Bits N
 - C Undefined
 - Z Undefined
 - V Undefined

Undefined

Examples Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.

Register File	B:	I/O Registers:
SADDR (BO)	= >00400001	CONVSP = >0018
SPTCH (B1)	= >00000080	PSIZE = >004
DADDR (B2)	= >00002228	
DPTCH (B3)	= >00000080	
OFFSET (B4)	= >00000000	
DYDX (B7)	= >0002000D	

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before instruction execution.

Linear Address	Data	
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	>xxxx
	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	
>02100	$>_{XXXX}$,	>xxxx
>02180	$>_{XXXX}$,	>xxxx
>02200	>XXXX, >XXXX, >FFXX, >FFFF, >FFFF, >xFFF, >xXXX,	>χχχχ
>02280	>XXXX, >XXXX, >FFXX, >FFFF, >FFFF, >xFFF, >xXXX,	>xxxx
>02300	$>_{XXXX}$,	>xxxx

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Address	Data	
	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	
	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	
>02100	$>_{XXXX}$,	>xxxx
>02180	$>_{XXXX}$,	>xxxx
>02200	>xxxx, >xxxx, >00xx, >1110, >2221, >x332', >xxxx,	>xxxx
>02280	>xxxx, >xxxx, >00xx, >1110, >2221, >x332, >xxxx,	>xxxx
>02300	$>_{XXXX}$,	>xxxx

PIXBLT Pixel Block Transfer - XY to Linear

Example 2 This example uses the $0s \rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0C00 (T=0, W=00, PP=00011).

After instruction execution, memory will contain the following values:

Linear Data Address >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx >02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx >02080 >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX >02100 >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX >02180 >xxxx, >xxxx, >00xx, >0000, >0000, >x000, >xxxx, >xxxx >02200 >xxxx, >xxxx, >00xx, >0000, >0000, >x000, >xxxx, >xxxx >02280 >02300 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx

Example 3 This example uses transparency. Befrore instruction execution, PMASK = > 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Address	Data
	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
	$>_{XXXX}$, $>_{XXXX}$
>02180	$>_{XXXX}$, $>_{XXXX}$
>02200	>xxxx, >xxxx, >FFxx, >111F, >2221, >x332, >xxxx, >xxxx
	>xxxx, >xxxx, >FFxx, >111F, >2221, >x332, >xxxx, >xxxx
>02300	>XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX, >XXXX,

Example 4 This example uses plane masking; the two MSBs of each pixel are masked. Before instruction execution, PMASK = >CCCC and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear Address	Data	
>02000	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	>xxxx
>02080	>000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx,	>xxxx
	$>_{XXXX}$,	
	$>_{XXXX}$,	
>02200	>xxxx, >xxxx, >CCxx, >DDDC>EEED, >xFFE, >xxxx,	>xxxx
	>xxxx, >xxxx, >CCxx, >DDDC>EEED, >xFFE, >xxxx,	
>02300	$>_{XXXX}$,	>xxxx

PIXBLT Pixel Block Transfer - XY to XY

Syntax PIXBLT XY,XY

Execution Source pixel array \rightarrow Destination pixel array (with processing)

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	1	1	1	1	0	1	1	0	0	0	0	0

Operands XY specifies that the source and destination pixel array starting addresses are given in XY format.

Description PIXBLT transfers and processes a source pixel array with a destination pixel array. This instruction operates on two-dimensional arrays of pixels using XY starting addresses for both the source and destination pixel arrays. As the PixBlt proceeds, the source pixels are combined with the corresponding destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT XY, XY. the destination. The following set of implied operands govern the operation of the instruction and define the source and destination arrays.

Implied Operands

		B File	Registers								
Register	Name	Format	Description								
B0 [†]	SADDR	XY	Source pixel array starting address								
B1	SPTCH	Linear	Source pixel array pitch								
B2 ^{†‡}	DADDR	XY	XY Destination pixel array starting address								
B3	DPTCH	Linear	Destination pixel array pitch								
B4	OFFSET	Linear	Screen origin (0,0)								
B5	WSTART	XY	Window starting corner								
B6	WEND	XY	Window ending corner								
B7‡	DYDX	XY Pixel array dimensions (rows:columns)									
B10-B14 [†]		Reserved registers									
		1/0 1	Registers								
Address	Name	C	Description and Elements (Bits)								
>C00000B0	CONTROL	PP - Pixel processing operations (22 options) W - Window clipping or pick operation T - Transparency operation PBH- PixBlt horizontal direction PBV- PixBlt vertical direction									
>C0000130	CONVSP	XY-to-lin	ear conversion (source pitch)								
> C0000140	CONVDP	XY-to-linear conversion (destination pitch)									
> C0000150	PSIZE	Pixel size (1,2,4,8,16)									
>C0000160	PMASK	Plane mask – pixel format									

[†] These registers are changed by PIXBLT execution.

[‡] Used for common rectangle function with window pick.

PIXBLT Pixel Block Transfer - XY to XY

Source Array The source pixel array for the processing operation is defined by the contents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

- At the outset of the instruction, SADDR contains the XY address of the pixel with the lowest address in the array. It is used with OFFSET and CONVSP to calculate the linear address of the starting location of the array.
- SPTCH contains the linear difference in the starting addresses of adjacent rows of the source array (typically this is the screen pitch).
 SPTCH must be a power of two (greater than or equal to 16) and CONVSP must be set to correspond to the SPTCH value.
- CONVSP is computed by operating on the SPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing, window clipping and corner adjust.
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, SADDR points to the next pixel (or word of pixels) to be read from the source array. When the block transfer is complete, SADDR points to the **linear address** of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Destination Array

The location of the destination pixel array is defined by the contents of the DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

- At the outset of the instruction, DADDR contains the XY address of the pixel with the lowest address in the array. It is used with OFFSET and CONVDP to calculate the linear address of the starting location of the array.
- DPTCH contains the linear difference in the starting addresses of adjacent rows of the destination array (typically this is the screen pitch).
 DPTCH must be a power of two (greater than or equal to 16) and CONVDP must be set to correspond to the DPTCH value.
- CONVDP is computed by operating on the DPTCH register with the LMO instruction; it is used for the XY calculations involved in XY addressing, window clipping and corner adjust.
- DYDX specifies the dimensions of both the source and destination arrays in pixels. The DY portion of DYDX contains the number of rows in the array, while the DX portion contains the number of columns.

During instruction execution, DADDR points to the next pixel (or word of pixels) to be read from the destination array. When the block transfer is complete, DADDR points to the **linear address** of the first pixel on the **next** row of pixels that would have been moved had the block transfer continued.

Window Checking	Window checking can be used with this instruction by setting the two W bits in the CONTROL register to the desired value. If window checking mode 1, 2, or 3 is selected, the WSTART and WEND registers define the XY starting and ending corners of a rectangular window.
	0 No windowing. The entire pixel array is drawn and the WVP and V bits are unaffected.
	1 <i>Window hit</i> . No pixels are drawn. The V bit is set to 0 if any portion of the destination array lies within the window. Otherwise, the V bit is set to 1.
	If the V bit is set to 0, the DADDR and DYDX registers are modified to correspond to the common rectangle formed by the intersection of the destination array with the rectangular window. DADDR is set to the XY address of the pixel in the starting corner of the common rectangle. DYDX is set to the X and Y dimensions of the common rectangle.
	If the V bit is set to 1, the array lies entirely outside the window, and the values of DADDR and DYDX are indeterminate.
	2 Window miss. If the array lies entirely within the active window, it is drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V and WVP bits are set to 1, and the instruction is aborted.

- **3** Window clip. The source and destination arrays are preclipped to the window dimensions. Only those pixels that lie within the common rectangle (corresponding to the intersection of the specified array and the window) are drawn. If any preclipping is required, the V bit is set to 1.
- Pixel
- **Processing** Pixel processing can be used with this instruction. The PPOP field of the CONTROL I/O register specifies the pixel processing operation that will be applied to pixels as they are processed with the destination array. There are 16 Boolean and 6 arithmetic operations; the default case at reset is the *replace* ($S \rightarrow D$) operation. Note that the data is read through the plane mask and then processed. The 6 arithmetic operations do not operate with pixel sizes of one or two bits per pixel. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Corner Adjust** The PBH and PBV bits in the CONTROL I/O register govern the direction of the PixBlt. If the source and destination arrays overlap, then PBH and PBV should be set to prevent any portion of the source array from being overwritten before it is moved. This PixBlt performs the corner adjust function automatically under the control of the PBH and PBV bits. The SADDR and DADDR registers should be set to correspond to the appropriate format address of the **first** pixel on the **first** line of the source (XY) and destination (XY) arrays, respectively.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it expands and processes the source data. At reset, the default case for transparency is *off*.
- **Plane Mask** The plane mask is enabled for this instruction.

PIXBLT Pixel Block Transfer - XY to XY PIXBLT

Interrupts	This instruction can be interrupted at a word or row boundary of the desti- nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX bit in the status register and then pushes the status register on the stack. At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values. DADDR points to the linear address of the next word of pixels to be modi- fied after the insterrupt is processed. SADDR points to the address of the next 32 pixels to be read from the source array after the interrupt is proc- essed.
	Before executing the RETI instruction to return from the interrupt, restore any B-file registers that were modified (also restore the CONTROL register if it was modified). This allows the TMS34010 to resume the PixBlt cor- rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe- cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and B10-B14 will contain indeterminate values.
Shift Register Transfers	If the SRT bit in the DPYCTL I/O register is set, each memory read or write initiated by the PixBIt generates a shift register transfer read or write cycle at the selected address. This operation can be used for bulk memory clears or transfers. (Not all VRAMs support this capability.)
Words	1
Machine States	See Section 13.4, PIXBLT Instructions Timing.
Status Bits	 N Unaffected C Unaffected Z Unaffected V If window clipping is enabled - 1 if a window violation occurs, 0 otherwise. Unaffected if window clipping not enabled.
Examples	Before the PIXBLT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXBLT examples use the following implied operand setup.
	Register File B:I/O Registers:SADDR (B0)= >0020 0004CONVSP= >0016SPTCH (B1)= >0000 0200CONVDP= >0016DADDR (B2)= >0041 0004PSIZE= >0004DPTCH (B3)= >0000 0200PMASK= >0000OFFSET(B4)= >0001 0000CONTROL= >0000WSTART(B5)= >0030 0009(W=00, T=0, PP=00000)WEND (B6)= >0042 0012DYDX (B7)
	Additional implied operand values are listed with each example. For this example, assume that memory contains the following data before instruction execution.
	Linear Data Address Data >14000 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >14200 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >14400 >3210, >7654, >BA98, >FEDC, >3210, >7654, >BA98, >FEDC >18200 to >18680 >3333

ľ l

PIXBLT Pixel Block Transfer - XY to XY

Example 1 This example uses the *replace* $(S \rightarrow D)$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

0 1 2 3 4 5 6 7 8 9 Å B C D E F 0 1 2 3 4 5 6 7 8 9 Å B C D E F A d 41 3 3 3 3 4 5 6 7 8 9 Å B C D E F 0 1 2 3 4 5 6 7 8 9 3 3 3 3 3 3 d r 42 3 3 3 3 4 5 6 7 8 9 Å B C D E F 0 1 2 3 4 5 6 7 8 9 3 3 3 3 3 3 e s 43 3 3 3 3 4 5 6 7 8 9 Å B C D E F 0 1 2 3 4 5 6 7 8 9 3 3 3 3 3 3 s

Example 2 This example uses the (*D* adds S) \rightarrow *D* pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4400 (T=0, W=00, PP=10001).

After instruction execution, memory will contain the following values:

												Х	A	dd	dre	ess	5													
Υ		000																												
		012	3	4	5	6	7 3	89) A	в	С	D	Е	F	0	1	2	3	4	5	6	7	8	9	А	B	С	D	Е	F
А																														
d	41	333	3	7	8	9	A١	3 C	D	Е	F	F	F	F	3	4	5	6	7	8	9	А	В	С	3	3	3	3	3	3
d																														
r	42	333	3	7	8	9	A١	3 C	D	Е	F	F	F	F	3	4	5	6	7	8	9	А	В	С	3	3	3	3	3	3
е																														
s	43	333	3	7	8	9	A	ΒC	D	Е	F	F	F	F	3	4	5	6	7	8	9	А	В	С	3	3	3	3	3	3
s																														

PIXBLT Pixel Block Transfer - XY to XY PIXBLT

Example 3	This example uses transparency and the ($D SUBS S$) $\rightarrow D$ pixel processing operation. Before instruction execution, PMASK = >0000 and CONTROL = >4C20 (T=1, W=00, PP=10011).
	After instruction execution, memory will contain the following values:
	X Address Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
	d r 42 333333333333333333312333333333333333
	e s 43 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Example 4	This example uses window operation 3 (the destination is clipped). Before instruction execution, PMASK = >0000 and CONTROL = $>00C0$ (T=0, W=11, PP=00000).
	After instruction execution, memory will contain the following values:
	X Address Y 00000000000000001111111111111111 0123456789ABCDEF0123456789ABCDEF
	A d 41 3333333339ABCDEF012333333333333333
	d r 42 3 3 3 3 3 3 3 3 9 A B C D E F 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	e s 43 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Example 5	This example uses plane masking; the third least significant bit is masked. Before instruction execution, PMASK = >55555 and CONTROL = >0000 $(T=0, W=00, PP=00000)$.
	After instruction execution, memory will contain the following values:
	X Address Y 00000000000000001111111111111111
	0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F
	A d 41 3 3 3 3 1 1 3 3 9 9 B B 9 9 B B 1 1 3 3 1 1 3 3 9 9 3 3 3 3 3 3
	d r 42 3 3 3 3 1 1 3 3 9 9 B B 9 9 B B 1 1 3 3 1 1 3 3 9 9 3 3 3 3 3 3
	e s 43 3 3 3 3 1 1 3 3 9 9 B B 9 9 B B 1 1 3 3 1 1 3 3 9 9 3 3 3 3 3 3 s

PIXT Pixel Transfer - Register to Indirect PIXT

Syntax	PIXT <rs></rs>	* <rd></rd>										
Execution	$(pixel)Rs \rightarrow (pixel)^*Rd$											
				_								
Encoding	15 14 13		0 9 8		6 5 T	4 3	2 1					
	1 1 1 1 1 0 0 Rs R Rd											
Operands	Rs The source pixel is right justified in the specified register.											
	*Rd <i>Destination register indirect</i> . The destination location is at the linear memory address contained in the specified register.											
Description	PIXT transfers a pixel from the source register to the linear memory address contained in the destination register. The source pixel is the 1, 2, 4, 8, or 16 LSBs of the source register, depending on the pixel size specified in the PSIZE I/O register. The source and destination registers must be in the same register file.											
Implied Operands			1/0 1	Registers								
operande	Address	Name			n and El	ements (l	Bits)					
	>C00000B0	CONTROL		ixel proces ransparence		ations (22	options)					
	>C0000150	PSIZE		size (1,2,4	<u> </u>							
	> C0000160	PMASK	Plane	mask – piz	kel format							
Pixel Processing	The PP field of eration to be cation. The c	applied to a	the pixel a at reset is	as it is tra the pixe	ansferred	to the d sing <i>repla</i>	estinatio	n lo- ation.				
Window Checking	Window chee ignored.	cking cann	ot be use	d with th	nis instru	ction. T	he W bit	ts are				
Transparency	Transparency CONTROL I/ pixels <i>after</i> it sparency is o	O register t processes the	o 1. The	TMS340	010 che	cks for 0	(transpa	arent)				
Plane Mask	The plane ma	sk is enable	d for this	instructic	n.							
Words	1											
Machine States		P	Pixel Proce	ssing Op	eration							
	PSIZE Rep 1,2,4,8 2+(3) 16 2+(3)		04+(3),11	ADDS 5+(3),11 5+(1),9	SUB 5+(3),12 5+(1),9	SUBS 6+(3),11 6+(1),10	MIN/M 5+(3), 5+(1),	10				
Status Bits	N Unaffecte C Unaffecte Z Unaffecte V Unaffecte	ed ed										

After

Examples PIXT A0,*A1

Before

A0	A1	@>20500	PSIZE	PP	т	PMASK	@>20500
1) >0000 FFFF	>0002 0500	>0000	>0001	00000	0	>0000	>0001
1) >0000 FFFF	>0002 0500	>0000	>0002	00000	0	>0000	>0003
1) >0000 FFFF	>0002 0500	>0000	>0004	00000	0	>0000	>000F
1) >0000 FFFF	>0002 0500	>0000	>0008	00000	0	>0000	>00FF
1) >0000 FFFF	>0002 0500	>0000	>0010	00000	0	>0000	>FFFF
1) >0000 0006	>0002 0508	>0000	>0004	00000	0	>0000	>0600
2) >0000 0006	>0002 0508	>0300	>0004	01010	0	>0000	>0500
3) >0000 0006	>0002 0508	>0100	>0004	00001	0	>0000	>0000
4) >0000 0006	>0002 0508	>0100	>0004	00001	1	>0000	>0100
5) >0000 0006	>0002 0508	>0000	>0004	00000	0	>AAAA	>0400

Notes:

- 1) S replaces D
- źý
- (S XOR D) replaces D (S AND D) = 0, transparency is off, D is replaced (S + D) = 0, transparency is on, D is not replaced S replaces unmasked bits of D 3) 4) 5)

PIXT Pixel Transfer - Register to Indirect XY

PIXT	•
------	---

Syntax	ΡΙΧ	T	$\langle Rs \rangle$,* <f< th=""><th>?d>.:</th><th>XY</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></f<>	?d>.:	XY										
Execution	(pixel)Rs → (pixel)*Rd.XY															
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	0	0	Rs			R	Rd				

Operands Rs The source pixel is right justified in the specified register.

*Rd.XY Destination register indirect in XY format. The destination location is the XY address contained in the specified register. The X value occupies the 16 LSBs of the register and the Y value occupies the 16 MSBs.

Description PIXT transfers a pixel from the source register to the XY memory address contained in the destination register. The source pixel is the 1, 2, 4, 8, or 16 LSBs of the source register, depending on the pixel size specified in the PSIZE I/O register. The source and destination registers must be in the same register file.

Implied Operands

B File Registers									
Register	Name	Format	Description						
B3	DPTCH	Linear	Destination pitch						
B4	OFFSET	Linear	Screen origin (0,0)						
B5	WSTART	XY	Window starting corner						
B6	WEND	XY	Window ending corner						
I/O Registers									
Address	Name	D	escription and Elements (Bits)						
>C00000B0	CONTROL	w – w	ixel processing operations (22 options) /indow clipping or pick operation ransparency operation						
>C0000140	CONVDP	XY-to-	linear conversion (destination pitch)						
>C0000150	PSIZE	Pixel s	size (1,2,4,8,16)						
>C0000160	PMASK	Plane	Plane mask – pixel format						

Window

Checking

Window checking can be selected by setting the W bits in the CONTROL register to the desired value. If one of the three active window modes (1, 2, or 3) is selected, the WSTART and WEND registers define the starting and ending window corners. When an attempt is made to write a pixel inside or outside a window, the results depend on the selected window checking mode:

- **0** No window checking. The pixel is drawn and the WVP and V bits are unaffected.
- 1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies within the window; otherwise, it is set to 1.
- 2 Window miss. If the pixel lies outside the window, the V and WVP bits are set to 1 and the instruction is aborted (no pixels are drawn). Otherwise, the pixel is drawn and the V bit is set to 0.

Pixel Transfer - Register to Indirect XY PIXT

3 Window clip. If the pixel lies outside the window, the V bit is set to 1 and the instruction is aborted (no pixels are drawn). Otherwise, the pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

- Pixel Processing The PP field of the CONTROL I/O register specifies the pixel processing operation of that will be applied to the pixel as it is transferred to the destination location. The default case at reset is the pixel processing replace operation. For more information, see Section 7.7, Pixel Processing, on page 7-15.
- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels after it processes the source data. At reset, the default case for transparency is off.

Plane Mask The plane mask is enabled for this instruction.

Words

1

Machine States

Pixel Processing Operation										Window Violation		
PSIZE	Replace	Boolean	ADD	ADDS	SUB	SUBS	MIN/MAX	W=1	W=2	W=3		
1,2,4,8 16					7+(3),13 7+(1),11		7+(3),13 7+(1),11	6,9 6,9	6,9 6,9	4,7 4,7		

Status Bits

- Ν Unaffected Unaffected
- С ž
- Unaffected
- 1 if window clipping enabled and window violation or pick occurs, 0 if no window violation occurs. Unaffected if window clipping is not enabled.

PIXT Pixel Transfer - Register to Indirect XY

After

Examples Before the PIXT instruction can be executed, the implied operand registers must be loaded with appropriate values. These PIXT examples use the following implied operand setup.

Register File	B:	I/O Registers:
DPTCH (B3)	= >00000800	CONVDP = >0014
OFFSET (B4)	= >00000000	
WTART (B5)	= >00300020	
WEND (B6)	= >005 0 0142	

PIXT A0,*A1.XY

Before

A0	A1	@>20500	PSIZE	PP	w	т	PMASK	@>20500
1) >0000 FFFF 1) >0000 FFFF 1) >0000 FFFF 1) >0000 FFFF 1) >0000 FFFF 1) >0000 0006 2) >0000 0006 3) >0000 0006 4) >0000 0006 5) >0000 0006 6) >0000 0006 7) >0000 0006 8) >0000 0006	>0040 0500 >0040 0280 >0040 0140 >0040 00A0 >0040 0050 >0040 0142 >0040 0142 >0040 0142 >0040 0142 >0040 0142 >0040 0142 >0040 0143 >0040 0143	>0000 >0000 >0000 >0000 >0000 >0300 >0100 >0100 >0000 >0000 >0000 >0000	>0001 >0002 >0004 >0010 >0004 >0004 >0004 >0004 >0004 >0004 >0004 >0004 >0004	00000 00000 00000 00000 00000 01010 00001 00001 00000 00000 00000 00000	00 00 00 00 00 00 00 00 00 11 11	0000000010000	>0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >0000 >AAAA >0000 >0000 >0000	>0001 >0003 >000F >FFFF >0600 >0500 >0000 >0100 >0400 >0600 >0000 >0000
0) - 0000 0000	- 00-0 0143	- 0000	~ 0004	00000	10	0	- 0000	- 0000

XY Address in A1 = Linear Address > 20500

Notes:

- 1) S replaces D
- 2) (S XOR D) replaces D
- 3) (S AND D) = 0, transparency is off, D is replaced
- 4) (S + D) = 0, transparency is on, D not replaced
- 5) S replaces unmasked bits of D
- 6) Window Option = 3, D inside window, S replaces D
- Window Option = 3, D outside window, D not replaced, V bit set in status register
- Window Option = 2, D outside window, D not replaced, WV interrupt generated, V bit set in status register

PIXT Pixel Transfer - Indirect to Register PIXT

Syntax	PIXT *< <i>Rs</i> >,< <i>Rd</i> >										
Execution	(pixel)*Rs → (pixel)Rd										
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Rs R Rd										
Operands	*Rs Source register indirect. The source pixel is located at the linear memory address contained in the specified register.										
Description	PIXT transfers a pixel from the linear memory address contained in the source register to the destination register. When the pixel is moved into the register, it is right justified and zero extended to 32 bits according to the pixel size specified in the PSIZE I/O register. The source and destination registers must be in the same register file.										
Implied Operands	I/O Registers										
oporunao	Address Name Description and Elements (Bits)										
	>C0000150 PSIZE Pixel size (1,2,4,6,8,16)										
	>C0000160 PMASK Plane mask - pixel format										
Window Checking	Window checking cannot be used with this instruction. The W bits are ignored.										
Pixel Processing	Pixel processing cannot be used with this instruction.										
Transparency	Transparency cannot be used with this instruction.										
Plane Mask	The plane mask is enabled for this instruction.										
Words	1										
Machine States	4,7										
Status Bits	 N Undefined C Undefined Z Undefined V Set to 1 if the pixel is 1, set to 0 if the pixel is 0. 										

Ì

Examples

Assume that memory contains the following values:

Address	Data
@>20500	>FFFF
@>20510	>3333

PIXT *A0,A1

<u>Before</u>

<u>After</u>

A0 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500 >0002 0500	PSIZE >0001 >0002 >0002 >0004 >0004 >0008 >0008 >0010	PMASK >0000 >FFFF >0000 >5555 >0000 >9999 >0000 >5454 >0000 >5454	A1 >0000 0001 >0000 0000 >0000 0002 >0000 0002 >0000 000F >0000 000F >0000 00FF >0000 00FF >0000 FFFF >0000 4567
>0002 0500	>0010	>0000	>0000 FFFF
>0002 0500	>0010	>BA98	>0000 4567
>0002 0510	>0010	>BA98	>0000 0123

PIXT Pixel Transfer - Indirect to Indirect

Syntax	PIXT * <rs< th=""><th>> * < P d ></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></rs<>	> * < P d >											
-													
Execution	pixel(*Rs) →	pixel(*F	(d)										
Encoding	15 14 13	12 11	10	9	8		6	5	4	3	_2	1	0
	1 1 1	1 1	1	0		F	≀ s		R		F	ld	
Operands	*Rs Source memor	*Rs Source register indirect. The source pixel is located at the linear memory address contained in the specified register.											
	*Rd <i>Destination register indirect.</i> The destination location is at the linear memory address contained in the specified register.										near		
Description	PIXT transfers a pixel from the linear memory address contained in the source register to the linear memory address contained in the destination register. The source and destination registers must be in the same register file.									ation			
Implied Operands		I/O Registers											
eportuneo	Address	Name			·	<u> </u>	tion a	and E	leme	nts (Bits)		
	>C00000B0	CONTRO)L	РР-Р Т -Т						22 0	otions)	
	>C0000150	PSIZE		Pixel :	size (1,2,4,	6,8,16	5)					
	>C0000160	PMASK		Plane	mask	- pix	el forr	nat		.			
Pixel Processing	The PP field eration that w tination array operation. Fo 7-15.	vill be app 7. The d	oliec efau	l to th Ilt cas	e pix e at	els a rese	s the t is t	y are he p	e tran ixel	sferr	ed to essin	the g <i>rej</i>	des- blace
Window Checking	Window cheo ignored.	cking car	not	t be u	ised	with	this	instr	uctio	n. T	he V	V bit	s are
Transparency	Transparency CONTROL I/ pixels <i>after</i> it sparency is of	O registe processes	r to	1. T	he T	MS3	4010) che	cks	for 0	(tra	nspa	rent)
Plane Mask	The plane ma	sk is enal	oled	for th	is in	struc	tion.						
Words	1												
Machine													

States

		Pi	xel Proce	ssing Ope	ration				/indov iolatic	
PSIZE	Replace	Boolean	ADD	ADDS	SUB	SUBS	MIN/MAX	W=1	W=2	W=3
	4+(3),10			7+(3),13				-	-	-
16	4+(1),8	6+(1),10	6+(1),10	7+(1),11	7+(1),11	8+(1),12	7+(1),11	-	-	-

After

Status	Bits	N	Un	affect	ed

- Unaffected С Z Unaffected
 - V Unaffected

*A0,*A1 Examples PIXT

Before

A0	A1	@>20500	PSIZE	PP	т	PMASK	@>20500	@>20510
1) >0002 0500	>0002 0508	_>000F	>0001	00000	0	>0000	>010F	XXXX
1) >0002 0500	>0002 0508	>000F	>0002	00000	0	>0000	>030F	XXXX
1) >0002 0500	>0002 0508	>000F	>0004	00000	0	>0000	>0F0F	XXXX
1) >0002 0500	>0002 0508	>00EF	>0008	00000	0	>0000	>EFEF	XXXX
1) >0002 0500	>0002 0508	>1234	>0010	00000	0	>0000	>3434	>xx12
2) >0002 0500	>0002 0508	>030F	>0004	01010	0	>0000	>0C0F	XXXX
3) > 0002 0500	>0002 0508	>010E	>0004	00001	0	>0000	>000E	XXXX
4) >0002 0500	>0002 0508	>020E	>0004	00001	1	>0000	>020E	XXXX
5) >0002 0500	>0002 0508	>000F	>0004	00000	0	>AAAA	>050F	XXXX

Notes:

- 1) S replaces D
- 2)
- (S XOR D) replaces D (S AND D) = 0, transparency is off, D is replaced (S + D) = 0, transparency is on, D not replaced 3)
- 4)
- S replaces unmasked bits of D 5)

PIXT Pixel Transfer - Indirect XY to Register

Syntax	ΡΙΧΤ	*< <i>Rs</i> >. XY ,< <i>Rd</i> >
--------	------	--

Execution $(pixel)^*Rs.XY \rightarrow (pixel)Rd$

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	0	0	1		B	s		R	Rd				

Operands *Rs.XY *Source register indirect in XY format.* The source operand is at the XY memory address contained in the specified register. The X value occupies the 16 LSBs of the register and the Y value occupies the 16 MSBs.

Description PIXT transfers a pixel from the XY memory address contained in the source register to the destination register. When the pixel is moved into the register, it is right justified and zero extended to 32 bits according to the pixel size specified in the PSIZE I/O register. The source and destination registers must be in the same register file.

Implied Operands

	B File Registers										
Register	Name	Format	Description								
B3	DPTCH	Linear	Destination pitch								
B4	OFFSET	Linear	inear Screen origin (0,0)								
I/O Registers											
Address	Name	D	Description and Elements (Bits)								
>C0000130	CONVSP	XY-to-line	ear conversion (source pitch)								
>C0000150	PSIZE	Pixel size	Pixel size (1,2,4,8,16)								
>C0000160	PMASK	Plane mas	sk – pixel format								

Window Checking Pixel	Window checking cannot be used with this instruction. The W bits are ignored.										
Processing	Pixel processing cannot be used with this instruction.										
Transparency	Transparency cannot be used with this instruction.										
Plane Mask	The plane mask is enabled for this instruction.										
Words	1										
Machine States	6,9										
Status Bits	 N Undefined C Undefined Z Undefined V Set to 1 if the pixel is 1, set to 0 if the pixel is 0. 										

PIXT Pixel Transfer - Indirect XY to Register

Examples These PIXT examples use the following implied operand setup.

Register File E	3:	I/O Registers:
DPTCH (B3)	= >800	CONVSP = >0014
OFFSET (B4)	= >00000000	

Assume that memory address @>20500 contains >CF3F before instruction execution.

PIXT *A0.XY,A1

Before

<u>After</u>

				A1 >0000 0001 >0000 0003 >0000 0001 >0000 000F >0000 0006 >0000 003F >0000 003F >0000 003F >0000 CF3F >0000 8C2F
--	--	--	--	--

Note:

The XY addresses stored in register A1 in these examples translate to the linear memory address >20500. The pitch of the source was not changed for any of these examples.

Svi	ntax	PIXT	* < Rs > .XY,	* <rd>.XY</rd>
-----	------	------	---------------	----------------

Execution $(pixel)^*Rs.XY \rightarrow (pixel)^*Rd.XY$

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	1	0	Rs			R		R	d		

Operands *Rs.XY *Source register indirect XY format.* The source pixel is at the XY memory address contained in the specified register. The X value occupies the 16 LSBs of the register and the Y value occupies the 16 MSBs.

*Rd.XY Destination register indirect XY format. The destination location is the XY address contained in the specified register. The X value occupies the 16 LSBs of the register and the Y value occupies the 16 MSBs.

ΡΙΧΤ

Description PIXT transfers a pixel from the XY memory address contained in the source register to the XY memory address contained in the destination register. The source and destination registers must be in the same register file.

Implied Operands

B File Registers								
Register	Name	Format	Description					
B1	SPTCH	Linear	near Source pitch					
B3	DPTCH	Linear	Linear Destination pitch					
B4	OFFSET	Linear	Linear Screen origin (0,0)					
B5	WSTART	XY	XY Window starting corner					
B6	WEND	XY	Window ending corner					
I/O Registers								
Address	Name	Description and Elements (Bits)						
>C00000B0	CONTROL	W – Wind	PP-Pixel processing operations (22 options) W - Window clipping or pick operation T - Transparency operation					
>C0000130	CONVSP	XY-to-lin	XY-to-linear conversion (source pitch)					
>C0000140	CONVDP	XY-to-lin	XY-to-linear conversion (destination pitch)					
>C0000150	PSIZE	Pixel size	(1,2,4,8,16)					
>C0000160	PMASK	Plane ma	sk – pixel format					

Window

Checking

Window clipping can be selected by setting the W bits in the CONTROL I/O register to 2 or 3. Pick can be selected by setting the W bits to 1. The WSTART and WEND registers define the window in XY-coordinate space. If window clipping or pick is not selected, then the WSTART and WEND registers are ignored. The default case at reset is no window clipping. For more information, see Section 7.10, Window Checking, on page 7-25.

Pixel Processi

Processing The PP field of the CONTROL I/O register specifies the pixel processing operation to be applied to pixels as they are transferred to the destination array. The default case at reset is the pixel processing *replace* operation. For more information, see Section 7.7, Pixel Processing, on page 7-15.

- **Transparency** Transparency can be enabled for this instruction by setting the T bit in the CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent) pixels *after* it processes the source data. At reset, the default case for transparency is *off*.
- **Plane Mask** The plane mask is enabled for this instruction.

Words

Machine States

Pixel Processing Operation							-	Vindov iolatic		
PSIZE	Replace	Boolean	ADD	ADDS	SUB	SUBS	MIN/MAX	W=1	W=2	W=3
1,2,4,8 16							10+(3),16 10+(1),14	-	8,11 8,11	6,9 6,9

Status Bits N Unaffected

1

- C Unaffected
- Z Unaffected
- V 1 if window clipping enabled and window violation occurs, 0 if no window violation occurs. Unaffected if window clipping is not enabled.

Examples

These PIXT examples use the following implied operand setup.

Register File I	B:	I/O Registers:
SPTCH (B1)	= >800	CONVSP = >0014
DPTCH (B3)	= >800	CONVDP = >0014
OFFSET (B4)	= >00000000	
WSTART (B5)	= >00300020	
WEND (B6)	= >00500142	

PIXT *A0.XY,*A1.XY

Refore

Derore				AILEI
A0 A1	@>20500 PSIZE PF	P WTF	MASK @>20500	@>20510
1) >0040 0500 >0040 0508	>000F >0001 00	000 00 00 >	-0000 ->010F	XXXX
1) >0040 0280 >0040 0284	>000F >0002 00	> 0 00 000 >	>0000 >030F	XXXX
1) >0040 0140 >0040 0142	>000F >0004 00	> 0 00 0000	>0000 >0F0F	XXXX
1) >0040 00A0 >0040 00A1	>00EF >0008 00	> 0 00 0000	>0000 >EFEF	XXXX
1) >0040 0050 >0040 0051	>CDEF >0010 00	> 000 000 >	-0000 > CDEF	>CDEF
2) >0040 0140 >0040 0142	>0306 >0004 01	010 00 0 >	-0000 >0506	XXXX
3) >0040 0140 >0040 0142	>0106 >0004 00	0001 00 0 >	>0000 >0006	XXXX
4) >0040 0140 >0040 0142	>0106 >0004 10	001 001 >	>0000 >0106	XXXX
5) >0040 0140 >0040 0142	>0006 >0004 00	> 0 00 000 >	AAAA >0406	XXXX
6) >0040 0140 >0040 0142	>0006 >0004 00	0000 11 0 >	>0000 >0606	XXXX
7) >0040 0140 >0040 0143	>0006 >0004 00	0000 11 0 >	>0000 >0006	XXXX
8) >0040 0140 >0040 0143	>0006 >0004 00)000 1 0 0 >	>0000 >0006	XXXX

XY Address in A0 = Linear Address > 20500

Aftor

Notes:

- 1) S replaces D
- 2) (S XOR D) replaces D
- 3) (S AND D) = 0, transparency is off, D is replaced
- 4) (S + D) = 0, transparency is on, D not replaced
- 5) S replaces unmasked bits of D
- 6) Window Option = 3, D inside window, S replaces D
- 7) Window Option = 3, D outside window, D not replaced, V bit set in status register
- Window Option = 2, D outside window, D not replaced, WV interrupt generated, V bit set in status register

POPST Pop Status Register from Stack

Syntax	POPST
Execution	*SP+ → ST
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
Description	POPST pops the status register from the stack and increments the SP by 32 after the status register is removed from the stack.
	31 30 29 26 27 26 25 24 23 22 21 20 19 16 17 16 15 14 13 12 11 10 9 6 7' 6 5 4 3 2 1 0
	N C Z V Res B Res L Reserved F FS1 F FS0
	Status Register
Words	1
Machine States	8,11 (SP aligned) 10,13 (SP nonaligned)
Status Bits	 N Set from bit 31 of stack status. C Set from bit 30 of stack status. Z Set from bit 29 of stack status. V Set from bit 28 of stack status. IE Set from bit 21 of stack status.
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data > 0FF0 0000 > 0010 > 0FF0 0010 > C000
	Code Before After
	SP ST SP POPST >0FF0 0000 >C000 0010 >0FF0 0020

PUSHST	Push Status Register onto Stack PUSHS	<u>ST</u>
Syntax	PUSHST	
Execution	ST → -*SP	
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
	0 0 0 0 0 0 0 1 1 1 1 0 0 0 0	0
Description	PUSTST pushes the status register onto the stack and then decrements SP by 32.	the
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
	N C Z V Res B Res L Reserved F F61 F F80	
	Status Register	
Words	1	
Machine States	2+(3),8 (SP aligned) 2+(8),13 (SP nonaligned)	
Status Bits	 N Unaffected C Unaffected Z Unaffected V Unaffected 	
Example	<u>Code</u> <u>Before</u> <u>After</u>	
	SP ST SP >0FF0 0020 >C000 0010 >0FF0 0000	
	Memory will contain the following values after instruction execution:	

.

Address	Data
>0FF0 0010	>0010
>0FF0 0020	>C000

ł

12-206

PUTST Copy Register into Status

Syntax	PUTST < <i>Rs</i> >
Execution	(Rs) → ST
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 0 0 0 0 1 1 0 1 R Rs
Description	PUTST copies the contents of the specified register into the status register.
	31 30 29 26 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	Status Register
Words	1
Machine States	3,6
Status Bits	 N Set to value of bit 31 in source register C Set to value of bit 30 in source register Z Set to value of bit 29 in source register V Set to value of bit 28 in source register IE Set to value of bit 21 in source register
Example	<u>Code</u> <u>Before</u> <u>After</u>
	A0 ST ST PUTST A0 >C000 0010 >xxxx xxxx >C000 0010

Syntax	RETI
Execution	*SP+ → ST
	*SP+ → PC
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
Description	RETI returns from an interrupt routine. It pops the status register and then the program counter from the stack. Execution then continues according to the values loaded.
	The stack is located in external memory and the top is indicated by the stack pointer (SP). The stack grows in the direction of decreasing linear address. The ST and PC are popped from the stack and the SP is incremented by 32 after each register is removed from the stack.
	Note:
	If the PBX status bit is set in the restored ST value, then the bit is cleared and a PIXBLT or FILL will be resumed, depending on the values stored in the B-file registers.
	The CONTROL register and any B-file registers modified by an interrupt routine should be restored before RETI is executed. Otherwise, interrupted PIXBLT and FILL instructions may not resume execution correctly.
Words	1
Machine States	11,14 (aligned stack) 15,18 (nonaligned stack)
Status Bits	 N Copy of corresponding bit in stack location C Copy of corresponding bit in stack location Z Copy of corresponding bit in stack location V Copy of corresponding bit in stack location IE Copy of corresponding bit in stack location
Examples	Assume that memory contains the following values before instruction exe- cution:
	Address Data >0CCC 0000 >0010 >0CCC 0010 >C000 >0CCC 0020 >FFF0 >0CCC 0030 >0044
	<u>Code</u> <u>Before</u> <u>After</u>
	SP ST PC SP RETI >0CCC 0000 >C000 0010 >0044 FFF0 >0CCC 0040

)

ı.

RETS

Return from Subroutine

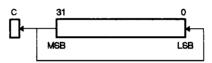
Syntax	RETS [<n< th=""><th>>]</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></n<>	>]										
Execution	*SP \rightarrow PC (N defaults to 0) (SP) + 32+ (16N) \rightarrow SP											
Encoding	15 14 13	12 11	10 9	8	7	6	5	4	3	2	1	0
	0 0 0	0 1	0 0	1	0	1	1			N		
Fields	N Optional s	stack poir	nter adjus	tment	(0 to	o 31	wor	ds)				
Description	RETS returns from a subroutine by popping the program counter from the stack and incrementing the stack pointer by $N + 2$ words. If N is specified, the stack pointer is incremented by $32 + 16N$. If N is not specified, the stack is incremented by 32. Execution then continues according to the PC value loaded.											
Words	1											
Machine States	7,10 (Aligned 9,12 (Unalign											
Status Bits	N UnaffecteC UnaffecteZ UnaffecteV Unaffecte	d d										
Examples	Assume that r cution:	nemory c	ontains t	he fol	lowin	ıg va	lues	befo	re in	struc	tion	exe-
	Address >0FF0 0000 >0FF0 0010	Dat > FFF >000	0									
	<u>Code</u>	Befor	e	<u>A</u> 1	fter							
	RETS RETS 1 RETS 2 RETS 16 RETS 31	SP >0FF0 (>0FF0 (>0FF0 (>0FF0 (>0FF0 (0000 0000 0000	>00 >00 >00	2)01 F 001 F 001 F 001 F 001 F	FF0 FF0 FF0	> >	SP 0FF0 0FF0 0FF0 0FF0 0FF0) 003) 004) 012	80 40 20		

	F \ /
ĸ	FV

Syntax	REV < <i>Rd</i> >						
Execution	Revision num	er → Rd					
Encoding	15 14 13	12 11 10	98	76	54	32	1 0
	0 0 0	0 0 0	0 0	0 0	1 R	F	₹d
Description	REV stores th nation registe format:						
	31 30 29				4	3 2	1 0
	0 0 0				0	1 Re	eserved
Words	1						
Machine States	1,4						
Status Bits	 N Unaffecte C Unaffecte Z Unaffecte V Unaffecte 	d d					
Examples	<u>Code</u>	<u>Before</u>	<u>A</u>	<u>fter</u>			
	REV A1	A1 >FFFF FFI	₹F >00	1 200 0008			

Rotate Left - Constant

Syntax RL <K>,<Rd>


RL

Execution (Rd) rotated left by $K \rightarrow Rd$

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	1	0	0	К			R		R	d			

Operands K is a rotate count from 0 to 31.

Description RL rotates the destination register contents by left the number of bits specified by K. This is a circular rotate so that bits shifted out the MSB are shifted into the LSB.

The left rotate count is contained in the 5-bit K field of the instruction word. The assembler will only accept absolute expressions as valid K operand values. If the value specified is greater than 31, the assembler will issue a warning and set the value of the K field equal to the five LSBs of the K operand value specified.

The rotate count of 0 can be used to clear the carry and test a register for 0 simultaneously.

Words

Machine

Stat**es**

Status Bits N Unaffected

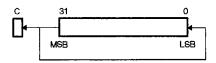
1

1.4

- **C** Set to value of last bit rotated out, *0* for rotate count of 0.
- Z 1 if result is 0, 0 otherwise.
- V Unaffected

Examples	Code	Before	<u>After</u>	
	RL 0,A1 RL 1,A1 RL 4,A1 RL 5,A1 RL 30,A1 RL 5,A1	A1 >0000 000F >F000 0000 >F000 0000 >F000 0000 >F000 0000 >0000 0000	NCZV ×00× ×10× ×10× ×00× ×10× ×01×	A1 >0000 000F >E000 0001 >0000 000F >0000 001E >3C00 0000 >0000 0000

RL


Rotate Left - Register

Execution (Rd) rotated left by Rs → Rd

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	0	0	Rs			R		R	d		

Operands Rs The five LSBs of the source register specify the left rotate count (a value from 0 to 31). The 27 MSBs are ignored.

Description RL rotates the destination register contents left by the number of bits specified. This is a circular rotate, so that bits shifted out of the MSB are shifted into the LSB.

Note that the you must designate Rs with a keyword or symbol which has been defined to be a register, for instance A9. Otherwise, the assembler will use the RL K, Rd instruction.

The source and destination registers must be in the same register file.

Words

Machine States

Status Bits N Unaffected

1

1,4

- **C** Set to value of last bit rotated out, 0 for rotate count of 0.
- Z 1 if result is 0, 0 otherwise.
- V Unaffected

Examples	<u>Code</u>	Before		After				
	RL A0,A1	5 LSBs A0	A1	NCZ V	A1			
	RL A0,A1	00000	>0000 000F	×00×	>0000 000F			
	RL A0,A1	00100	>F000 0000	×10×	>0000 000F			
	RL A0,A1	00101	>F000 0000	×00×	>0000 001E			
	RL A0,A1	11111	>F000 0000	×00×	>7800 0000			
	RL A0,A1	xxxxx	>0000 0000	×01×	>0000 0000			

SETC

Set Carry SETC

Syntax	SETC										
Execution	$1 \rightarrow C$										
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
Description	SETC sets the carry bit (C) in the status register to 1. The rest of the status register is unaffected.										
	This instruction is useful for returning a true/false value (in the carry bit) from a subroutine without using a general-purpose register.										
Words	1										
Machine States	1,4										
Status Bits	 N Unaffected C 1 Z Unaffected V Unaffected 										
Examples	<u>Code</u> <u>Before</u> <u>After</u>										
	ST NCZV ST NCZV SETC >0000 0000 >4000 0000 0100 SETC >B000 0010 1011 >F000 0010 1111 SETC >4000 001F 0100 >4000 001F 0100										

SETF

Set Field Parameters

SETF

Syntax	SE1	٢F	< FS	>, <f< th=""><th>E>[,</th><th>$\langle F \rangle$</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></f<>	E>[,	$\langle F \rangle$										
Execution	(FS,	FE)	→	ST												
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	1	F	1	0	1	FE		_	FS		
	FE is the field extend to be stored in status register - 0 for zero extend, 1 for sign extend.															
	 for sign extend. F is an optional operand; it defaults to 0. F=0 selects FS0, FE0 to be altered. 															
		F=	0 sel	ects	FS0,	FEO	to be	e alte	red.							
			 F=0 selects FS0, FE0 to be altered. F=1 selects FS1, FE1 to be altered. SETF loads the values specified for the field size (FS) and the field extension (FE) into the status register. The rest of ST is unchanged. The F bit specifies whether the Field 0 or Field 1 parameters are to be set. FS can 													

cified, it defaults to 0. An FS of 0 in the opcode corresponds to a field size of 32. This instruction is used to set either of the two sets of field move parameters in the status register. These determine the field size for MOVE field instructions and the field-extension rule for MOVE into a register. Either set of parameters can be chosen by an individual MOVE instruction, by specifying the F parameter.

		10		-	P	the second		F F	F	
N	C	Z	V	Res	B	Res	E	Reserved E F61	E	F60

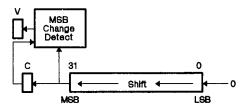
Status Register

Words 1 Machine States 1.4 fc	or F=0			
	or F=0			
	or F=1			
C U Z U	naffected naffected naffected naffected			
SETF SETF SETF SETF SETF SETF SETF	2 32,0,0 32,1,0 31,1,0 16,0,0 32,0,1 32,1,1 31,1,1 16,0,1	<u>Before</u> ST >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000 >xxxx x000	After ST >xxxx x000 >xxxx x020 >xxxx x03F >xxxx x010 >xxxx x000 >xxxx x800 >xxxx x800 >xxxx xFC0 >xxxx x400	

SEXT

Sign Extend to Long

SEXT


Syntax	SEXT < <i>Rd</i> >[,< <i>F</i> >]	
Execution	(field)Rd \rightarrow (sign-extended field) Rd	
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 F 1 0 0 R Rd]
Operands	 F Is an optional operand; it defaults to 0 0 selects FS0 for the field size 1 selects FS1 for the field size 	
Description	SEXT sign extends the right-justified field contained in the destination re- gister by copying the MSB of the field data into all the nonfield bits of the destination register. The field size for the sign extension is specified by the FS0 or FS1 bits in the status register, depending on the F bit specified.)
Words	1	
Machine States	3,6	
Status Bits	 N 1 if the result is negative, 0 otherwise. C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 	
Examples	Code Before After	
	FS0/1A0NCZVA0SEXT A0,017/x>0000 80000x0x>0000 8000SEXT A0,016/x>0000 80001x0x>FFFF 8000SEXT A0,015/x>0000 80000x1x>0000 0000SEXT A0,1x/17>0000 80000x0x>0000 8000SEXT A0,1x/16>0000 80001x0x>FFFF 8000SEXT A0,1x/16>0000 80001x0x>FFFF 8000SEXT A0,1x/15>0000 80000x1x>0000 0000	

SLA Shift Left Arithmetic - Constant

Syntax	SLA	۸ <	K>,<	<rd></rd>												
Execution	(Rd) shi	fted I	eft b	γК	→ Re	d									
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0 0 1 0 0 0 K R Rd															

Operands K is a shift value from 0 to 31.

Description SLA shifts the destination register contents left by the number of bits specified. As shown in the diagram, zeros are shifted into the least significant bits. The last bit shifted out of the destination register is shifted into the carry bit. If either the sign bit (N) or any of the bits shifted out of the register differ from the original sign bit, the overflow bit (V) is set.

SLA

The left shift count is contained in the 5-bit K field of the instruction word. The assembler accepts only absolute expressions as valid K operand values. SLA executes slower than SLL because overflow detection. If the value specified is greater than 31, the assembler issues a warning and sets the value of the K field equal to the five LSBs of the K operand value specified.

Words

1

3,6

Machine States

- Status Bits
- N 1 if the result is negative, 0 otherwise.
- C Set to the value of last bit shifted out, 0 for shift count of 0.
 - Z 1 if a 0 result generated, 0 otherwise.
 - V 1 if the MSB changes during shift operation, 0 otherwise.

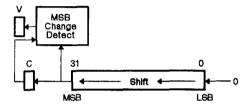
Examples	<u>Code</u>	1	Before	<u>After</u>	
			A1	A1	NCZV
	SLA	0,A1	>3333 3333	>3333 3333	0000
	SLA	0,A1	> C C C C C C C C C C C C C C C C C C C	>0000	1000
	SLA	1,A1	>000000000	>9999 9998	1100
	SLA	2,A1	>3333 3333	>0000 0000 <	1001
	SLA	2,A1	> C C C C C C C C C C C C C C C C C C C	>3333 3330	0101
	SLA	3,A1	> C C C C C C C C C C C C C C C C C C C	>6666 6660	0001
	SLA	5,A1	>0000 0000<	>999 9 9980	1101
	SLA	30,A1	> C C C C C C C C C C C C C C C C C C C	>0000 0000	0111
	SLA	31,A1	> C C C C C C C C C C C C C C C C C C C	>0000 0000	0011
	SLA	31,A1	>0000 0000	>0000 0000	0010

SLA Shift Left Arithmetic - Register

SLA

Syntax S	SLA <	Rs>, <rd></rd>
----------	-------	----------------

Execution (Rd) shifted left by (Rs) \rightarrow Rd


SLA AO,A1

SLA A0,A1

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	0	0		R	s		R		R	ld	

Operands Rs The five LSBs of the source register specify the left-shift count (a value from 0 to 31). The 27 MSBs are ignored.

Description SLA shifts the destination register contents left by the number of bits specified the source register. The last bit shifted out of the destination register is shifted into the carry bit. If either the sign bit (N) or any of the bits shifted out of the register differ from the original sign bit, the overflow bit (V) is set.

The left shift count is specified by the five LSBs of the source register.

Note that you must designate Rs with a keyword or symbol which has been defined to be a register, for instance A9. Otherwise, the assembler will use the SLA K, Rd instruction. SLA executes slower than SLL because the overflow detection. The source and destination registers must be in the same register file.

>000000000

>0000 0000

Words	1				
Machine States	3,6				
Status Bits	C Set to value Z 1 if the resu	It is 0, 0 other	ted out, 0 for shift		
Examples	<u>Code</u>	<u>Before</u>		After	
	SLA A0,A1 SLA A0,A1 SLA A0,A1 SLA A0,A1 SLA A0,A1 SLA A0,A1 SLA A0,A1 SLA A0,A1	5 LSBs A0 00000 00000 00001 00010 00010 00011 00101 11110	A1 > 3333 3333 > CCCC CCCC > CCCC CCCC > 3333 3333	A1 >3333 3333 >CCCC CCCC >9999 9998 >CCCC CCCC >3333 3330 >6666 6660 >9999 9980 >0000 0000	NCZ V 0000 1000 1001 0101 0101 0001 1101 0111

11111 11111 0011

0010

>0000 0000

>0000 0000


OLL			21111		<u> </u>		100		001	1310						JLL
Syntax	SLI	_ <,	K>,<	Rd>												
Execution	(Rd) shi	fted	left b	γК	→ R	d									
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	0	0	1			к			R		F	₹d	

Shift Left Logical - Constant

CI I

Operands K is a shift value from 0 to 31.

Description SLL shifts the destination register contents left by the number of bits specified. The last bit shifted out of the destination register is shifted into the carry bit. Zeros are shifted into the least significant bits. This instruction differs from the SLA instruction only in its effect on the overflow (V) bit.

The left shift count is contained in the 5-bit K field of the instruction word. The assembler will only accept absolute expressions as valid K operand values. If the value specified is greater than 31, the assembler will issue a warning and set the value of the K field equal to the five LSBs of the K operand value specified.

Words

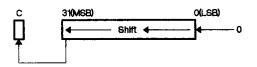
Machine States

SIL

Status Bits N Unaffected

1

- **C** 1 to the value of last bit shifted out, 0 for shift count of 0.
- **Z** 1 if the result is 0, 0 otherwise.
- V Unaffected


Examples	<u>Code</u>	Before	<u>After</u>	
	SLL 0,A1 SLL 0,A1 SLL 1,A1 SLL 4,A1 SLL 30,A1	A1 > 0000 0000 > 8888 8888 > 8888 8888 > 8888 8888	A1 >0000 0000 >8888 8888 >1111 1110 >8888 8880 >0000 0000	NCZV x01x x00x x10x x00x x11x
	SLL 31,A1	>FFFF FFFC	>0000 0000	x01x

SLL Sh<u>ift Left Logical - Register</u>

Execution (Rd) shifted left by (Rs) \rightarrow Rd

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	0	1		R	s		R		R	d	

Description SLL shifts the destination register contents left by the number of bits specified in the source register. The last bit shifted out of the destination register is shifted into the carry bit. Zeros are shifted into the least significant bits. The left shift count is specified by the five LSBs of the source register. This instruction differs from the SLA instruction only in its effect on the overflow (V) bit.

Note that you must designate Rs with a keyword or symbol which has been defined to be a register, for instance A9. Otherwise, the assembler will use the SLA K, Rd instruction.

The source and destination registers must be in the same register file.

Words

Machine

States

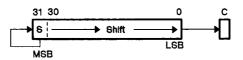
Status Bits N Unaffected

1

- **C** Set to the value of last bit shifted out, *0* for shift value of 0.
- **Z** 1 if the result is 0, 0 otherwise.
- V Unaffected

Examples	<u>Code</u>	Before		<u>After</u>	
	SLL AO,A1 SLL AO,A1 SLL AO,A1 SLL AO,A1 SLL AO,A1 SLL AO,A1	5 LSBs A0 00000 00000 00001 00100 11110 11111	A1 >0000 0000 >8888 8888 >8888 8888 >8888 8888 >FFFF FFFC >FFFF FFFC	A1 >0000 0000 >8888 8888 >1111 1110 >8888 8880 >0000 0000 >0000 0000	NCZV ×01× ×00× ×10× ×00× ×11× ×01×

SRA Shift Right Arithmetic - Constant


Syntax SRA <K>,<Rd>

Execution (Rd) shifted right by $K \rightarrow Rd$

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	0	1	0	2s Complement of K				R		R	d		

Operands K is a shift count from 0 to 31.

Description SRA shifts the destination register contents right by the number of bits specified. The last bit shifted out of the destination register is shifted into the carry bit. The sign bit (MSB) is extended into the most significant bits.

SRA

The 5-bit K field of the instruction opcode contains the 2's complement of the right shift count specified by the K operand. The assembler will only accept absolute expressions for the shift operand value. If the value specified is greater than 31, the assembler will issue a warning and set the value of the K field of the instruction opcode equal to the 2's complement of the five LSBs of the specified operand value.

- Words
- Machine States

Status Bits

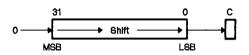
- **N** *1* if the result is negative, 0 otherwise.
 - **C** Set to the value of last bit shifted out, 0 for shift count of 0.
 - **Z** 1 if the result is 0, 0 otherwise.
 - V Unaffected

1

Examples <u>Co</u>	de	<u>Before</u>	<u>After</u>	
		A1	A1	NCZV
SR	A O,Al	>0000 0000	>0000 0000	001 x
SR	A 0,A1	>FFFF 0000	>FFFF 0 000	100x
SR	A 8,A1	>7FFF 0000	>007F FF00	000x
SR	A 8,Al	> FFFF 0000	>FFFF FF00	100x
SR	A 30,A1	>7FFF 0000	>0000 0001	010x
SR	A 31,A1	>7FFF 0000	>0000 0000	011x
SR	A 31,A1 ·	>FFFF 0000	>FFFF FFFF	110x

SRA Shift Right Arithmetic - Register

S	R	<u>A</u>


Syntax	SRA < <i>Rs</i> >,<	Rd>								
Execution	(Rd) shifted rig	ht by -(Rs) →	Rd							
Encoding		2 11 10 9		5 4 3 2	1 0					
	0 1 1	0 0 1 0	Rs	R	Rd					
Operands			ne source register's e 27 MSBs are ign		cify a shift					
Description	specified in the	source register d into the carry	gister contents rig . The last bit shif bit. The sign bit (l	ted out of the d	estination					
		31 30	0 Shift LSB	•C						
	Note: The five LSBs of the source register contain the 2's complement of the right shift count. You must specify Rs with a keyword or a symbol which has been defined to be a register, for instance A9. Otherwise, the assembler will use the SRA K, Rd instruction. The source and destination registers must be in the same register file.									
Words	1									
Machine States	1,4									
Status Bits	C Set to the v	ult is negative, 0 /alue of last bit s ult is 0, 0 otherv	shifted out, 0 for s	hift count of 0.						
Examples	<u>Code</u>	Before		After						
	SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1 SRA AO,A1	5 LSBs A0 00000 11111 11111 11000 11000 00010 00001 00001	A1 >0000 0000 >FFFF 0000 >7FFF 0000 >7FFF 0000 >FFFF 0000 >7FFF 0000 >7FFF 0000 >FFFF 0000	A1 >0000 0000 >FFFF 0000 >3FFF 8000 >FFFF 8000 >007F FF00 >FFFF FF00 >0000 0001 >0000 0000 >FFFF FFFF	NC2 V 001 x 100x 000x 100x 000x 100x 010x 011x 110x					

SRL Shift Right Logical - Constant

Syntax	SRI	L <	K>,<	<rd></rd>												
Execution	(Rd) shi	fted i	right	by K	→	Rd									
Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	1	0	1	1	2s	Com	pleme	ent of	К	R		F	۱d	

Operands K is a shift value from 0 to 31.

Description SRL shifts the destination register contents right by the number of bits specified. The last bit shifted out of the destination register is shifted into the carry bit. Zeros are shifted into the most significant bits.

SRL

The 5-bit K field of the instruction opcode contains the 2's complement of the right shift count specified by the K operand. The assembler accepts only absolute expressions for the shift operand value. If the specified value is greater than 31, the assembler issues a warning and set the value of the K field of the instruction opcode equal to the 2's complement of the five LSBs of the specified operand value.

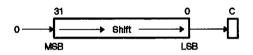
- Words
- Machine States
- States 1,4 Status Bits N Unaffected

1

- **C** Set to the value of last bit shifted out, 0 for shift count of 0.
- Z 1 if the result is 0, 0 otherwise.
- V Unaffected

Examples	<u>Code</u>	Before	<u>After</u>	
		A1	A1	NCZV
	SRL 0,A1	>0000 0000	>0000 0000	x01x
	SRL 0,A1	>7FFF FFFF	>7FFF FFFF	x00x
	SRL 1,A1	>7FFF FFFF	>3FFF FFFF	x10x
	SRL 8,A1	>7FFF 0000	>007F FF00	x00x
	SRL 30,A1	>7FFF 0000	>0000 0001	x10x
	SRL 31,A1	>7FFF 0000	>0000 0000	x11x
	SRL 31,A1	>3FFF 0000	>0000 0000	x01x

SRL Shift Right Logical - Register


SRL

Execution (Rd) shifted right by $-(Rs) \rightarrow Rd$

Encoding	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	0	1	1	Rs		R		R	d			

Operands Rs The 2's complement of the source register's five LSBs specify a shift count from 0–31 bits. The 27 MSBs are ignored.

Description SRL shifts the destination register contents right by the number of bits specified. The last bit shifted out of the destination register is shifted into the carry bit. Zeros are shifted into the most significant bits.

Note: The five LSBs of the source register contain the 2's complement of the right shift count.

You must specify Rs with a keyword or symbol which has been defined to be a register, for instance A9. Otherwise, the assembler will use the SRL K,Rd instruction. The source and destination registers must be in the same register file.

Words

Machine States

Status Bits N Unaffected

1

- **C** Set to the value of last bit shifted out, *O* for shift count of 0.
- **Z** 1 if the result is 0, 0 otherwise.
- V Unaffected

Examples	<u>Code</u>	<u>Before</u>		<u>After</u>					
	SRL AO,A1 SRL AO,A1 SRL AO,A1 SRL AO,A1 SRL AO,A1 SRL AO,A1 SRL AO,A1	5 LSBs A0 00000 11111 11000 00010 00001 00001	A1 >0000 0000 >7FFF FFFF >7FFF FFFF >7FFF 0000 >7FFF 0000 >3FFF 0000	A1 >0000 0000 >7FFF FFFF >3FFF FFFF >007F FF00 >0000 0001 >0000 0000 >0000 0000	NCZV x01x x00x x10x x00x x10x x11x x01x				

SUB

S	U	В
---	---	---

Syntax	SUB <	Rs>,<	Rd>											
Execution	(Rd) - (F	Rs) →	Rd											
Encoding	15 14	13 1		10	9	8	7	6	5	4	3	2	1	0
	0 1	0	0 0	1	0 Rs R Rd									
Operands	Rs con	tains th	ie 3 2-b	oit sub	otrah	end.								
	Rd con	tains tł	ie 32-t	oit mir	nuen	d.								
Description	destination ple-preci	SUB subtracts the contents of the source register from the contents of the destination register; the result is stored in the destination register. Multiple-precision arithmetic can be accomplished by using this instruction in conjunction with the SUBB instruction.												
	The sour	ce and	destina	ation r	egis	ters n	nust	be in	the	same	e regi	ister	file.	
Words	1													
Machine States	1,4													
Status Bits	C 1 if t Z 1 if t	he resu here is he resu here is	a borro It is 0,	ow, 0 0 oth	othe erwis	rwise se.).							
Examples	Code		Be	fore						<u>Af</u>	er			
	SUB A1 SUB A1 SUB A1 SUB A1 SUB A1 SUB A1 SUB A1 SUB A1 SUB A1 SUB A1	, A0 , A0 , A0 , A0 , A0 , A0 , A0 , A0	> 7FF > 7FF > 7FF > 7FF > FFF > FFF > FFF	FF FFF FF FFF FF FFF FF FFF FF FFF FF FFF FF FFF FF FFF FF FFF	F2 F1 FF FD FD FE FF	> 7 F > 7 F > F F > F F > F F > F F > F F > 0 0	FFFF FFFF FFFF FFFF FFFF FFFF FFFF	= F F 2 = F F 7 = F F F = F F F = F F F = F F D = F F D = F F D		NC2 000 110 010 110 110 000 100 000	00 10 00 00 01 00 10 00 00	>000 >FFI >7FI >800 >FFI >000 >000 >FFI	00 00 00 00 FF FF FF FF 00 00 FF FF 00 00 FF FF FF FF	000 FF F2 000 FE 000 001 FE

SUBB Subtract Registers with Borrow

Syntax	SUBB < <i>Rs</i> >,	<rd></rd>											
Execution	(Rd) - (Rs) - (C	C) → Rd	(C acts a	s borrow	<i>ı</i>)								
Encoding	15 14 13 1 0 1 0			7 6	5	4	3		1 0				
		0 1 0 0 0 1 1 Rs R Rd											
Operands	Rs contains th	Rs contains the 32-bit subtrahend.											
	Rd contains th	ne 32-bit m	inuend.										
Description	SUBB subtracts both the contents of the source register and the carry bit from the contents of the destination register; the result is stored in the des- tination register. This instruction can be used with the SUB, SUBK, and SUBI instructions for extended-precision arithmetic.												
	The source and	destinatior	registers	must be	in the	same	regis	ter file	Э.				
Words	1												
Machine States	1,4												
Status Bits	 N 1 if the resu C 1 if there is Z 1 if the resu V 1 if there is 	a borrow, It is 0, 0 of	0 otherwi: herwise.	se.									
Examples	<u>Code</u>	<u>Before</u>				<u>Af</u> 1	ter						
	SUBB A1, A0 SUBB A1, A0	1 >000 0 >000 1 >000 0 >7F 0 >7F 1 >7F 0 >FF 1 >FF 0 >FF 1 >FF 0 >FF 1 >FF 0 >FF 1 >FF 0 >800 1 >800	00 0002 00 0001 00 0001 00 0001	A1 >0000 >0000 >0000 >FFFF >FFFF >FFFF >FFFF >FFFF >FFFF >FFFF >0000 >0000	0001 0002 0002 0003 FFFF FFFE FFFE FFFE FFFE FFFE FFFD 0001 0001	110 001 110	00 2 2 10 2 2 10 2	>0000 >FFFF >7FFF >8000 >7FFF >0000 >FFFF >0000 >0000 >8000 >7FFF	0000 FFFF FFFF FFFF 0000 FFFF FFFF 0000 FFFF				

Subtract Immediate - 16 Bits

SUBI

Syntax	SUBI , <rd>[,W]</rd>											
Execution	(Rd) - IW → Rd											
Encoding												
Operands	IW is a signed 16-bit in	nmediate value.										
Description	SUBI subtracts the sign-extended, 16-bit immediate value from the con- tents of the destination register; the result is stored in the destination reg- ister.											
	The assembler will use the short form if the immediate value has been previously defined and is in the range $-32,768 \le IW \le 32,767$. You can force the assembler to use the short form by by following the register specification with W :											
	SUBI IW,Rd,W											
	The assembler will truncate any upper bits and issue an appropriate warning message. Multiple-precision arithmetic can be accomplished by using this instruction in conjunction with the SUBB instruction.											
Words	2											
Machine States	2,8											
Status Bits	 N 1 if the result is negati C 1 if a borrow is genera Z 1 if the result is 0, 0 or V 1 if there is an overflow 	ted, 0 otherwise therwise.	3 .									
Examples	Code	<u>Before</u>	<u>After</u>									
	SUBI 32765,A0 >1 SUBI 32766,A0 >1 SUBI 32767,A0 >1 SUBI 32766,A0 >1 SUBI 32766,A0 >1 SUBI 32767,A0 >1 SUBI 32767,A0 >1 SUBI -32766,A0 >1 SUBI -32766,A0 >1 SUBI -32767,A0 >1 SUBI -32767,A0 >1 SUBI -32767,A0 >1	A0 0000 7FFE 0000 7FFE 8000 7FFE 8000 7FFE FFFF 8001 FFFF 8001 FFFF 8001 7FFF 8000 7FFF 8000	A0 >0000 0001 >0000 0000 >FFFF FFFF >8000 0000 >7FFF FFFF >0000 0000 >0000 0001 >7FFF FFFF >8000 0000	NCZ V 0000 1100 1000 0001 1100 0010 0000 0100 1101								

1

SUBI

SUBI	Subtract Imme	ediate - 32	Bits	SUBI								
Syntax	SUBI , <rd>[,L]</rd>											
Execution	(Rd) - IL → Rd	(Rd) - IL → Rd										
Encoding	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		654 00R	3 2 1 0 Rd								
	~IL (LSW)											
		~IL (MSW)										
Operands	IL is a signed 32-bit immed	iate value.										
Description	SUBI subtracts the signed 32 destination register; the resul sembler will use this opcode or if the long opcode is force ,L:	t is stored in th if it cannot us	e destinati e the SUI	on register. The as- BI IW, Rd opcode,								
	S	SUBI IL,Rd	, L									
		Multiple-precision arithmetic can be accomplished by using this instruction in conjunction with the SUBB instruction.										
Words	3											
Machine States	3,12											
Status Bits	 N 1 if the result is negative, C 1 if there is a borrow, 0 of Z 1 if the result is 0, 0 other V 1 if there is an overflow, 	otherwise. erwise.										
Examples	Code	Before	<u>Af</u>	<u>ter</u>								
	SUBI 2147483647,A0 SUBI 32768,A0 SUBI 32769,A0 SUBI 32770,A0 SUBI 32768,A0 SUBI 32769,A0 SUBI 32769,A0 SUBI -2147483648,A0 SUBI -32769,A0 SUBI -32770,A0 SUBI -32771,A0 SUBI -32770,A0	A0 >7FFF FFFF >0000 8001 >0000 8001 >8000 8000 >8000 8000 >8000 8000 >8000 0000 >FFFF 7FFE >FFFF 7FFE >FFFF 7FFE >7FFF 7FFE	>00 >00 >FF >80 >7F >00 >FF >00 >00	NCZ V 00 0000 0010 00 0001 0000 00 0000 0010 FF FFFF 1100 00 0000 1000 FF FFFF 0001 00 0000 0010 FF FFFF 0001 00 0000 0010 FF FFFF 1100 00 0000 0010 FF FFFF 1100 00 0000 0010 FF FFFF 1100 00 0001 0010 FF FFFF 1100 00 0001 0010								

SUBI

SUBI

-32770,A0

-32771,A0

>7FFF 7FFD

>7FFF 7FFD

0100

1101

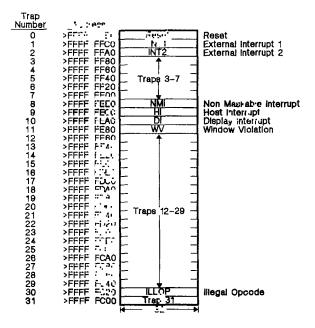
>7FFF FFFF

>8000 0000

SUBK Subtract Constant

SUBK

Syntax	SUBK <k>,<r< th=""><th>d></th><th></th><th></th><th></th><th></th><th></th><th></th></r<></k>	d>								
Execution	$(Rd) - K \rightarrow Rd$									
Encoding	15 14 13 12	11 10 9	87	65	4	3 2	1	0		
	0 0 0 1 0 1 K R Rd									
Operands	K is a constant f	K is a constant from 1 to 32.								
Description	gister; the result is as an unsigned nu responds to the va assembler issues a ple-precision arith	SUBK subtracts the 5-bit constant from the contents of the destination re- gister; the result is stored in the destination register. The constant is treated as an unsigned number in the range 1–32, where $K = 0$ in the opcode cor- responds to the value 32. The assembler converts the value 32 to 0. The assembler issues an error if you try to subtract 0 from a register. Multi- ple-precision arithmetic can be accomplished by using this instruction in conjunction with the SUBB instruction.								
Words	1									
Machine States	1,4									
Status Bits	 N 1 if the result is negative, 0 otherwise. C 1 if there is a borrow, 0 otherwise. Z 1 if the result is 0, 0 otherwise. V 1 if there is an overflow, 0 otherwise. 									
Examples	<u>Code</u>	Before	<u>After</u>							
	SUBK 5,A0 SUBK 9,A0 SUBK 32,A0 SUBK 1,A0	A0 >0000 000 >0000 000 >0000 000 >8000 000	9 >0000 (9 >FFFF f	NCV 0004 000 0000 001 FE9 110 FFFF 000	0 0 0					


SUBXY	Subtract	Registers	<u>in XY Mode</u>	SUBXY
Syntax Execution	SUBXY $\langle Rs \rangle$, \langle (RdX) - (RsX) \rightarrow (RdY) - (RsY) \rightarrow	Rd X		
Encoding	15 14 13 12 1 1 1 0	11 10 9 8 0 0 1	8 7 6 5 Rs	4 3 2 1 0 R Rd
Description	SUBXY subtracts t tion X and Y value			lually from the destina- lation register.
		cremental figure		ddresses and is partic- addresses are stored as
	The source and de	stination registe	rs must be in the	same register file.
Words	1			
Machine States	1,4			
Status Bits	C 1 if source Y f Z 1 if source Y f	ield > destinatio ield = destinatio	n X field, 0 other n Y field, 0 other n Y field, 0 other n X field, 0 other n X field, 0 other	wise. wise.
Example s	Code	<u>Before</u>		After
	SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0 SUBXY A1,A0	A0 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009 >0009 0009	A1 >0001 0001 >0009 0001 >0001 0009 >0009 0009 >0000 0010 >0010 0000 >0010 0009 >0010 0009 >0010 0010	A0NCZ V>0008 00080000>0000 00080010>0008 00001000>0000 00001010>0000 FF90001>0000 FF90011>FFF9 00090100>FFF9 00001100>FFF9 FFF90101

TRAP	
------	--

Syntax	TRA	٩P	<n></n>													
Execution	$(PC) \rightarrow -*SP$ $(ST) \rightarrow -*SP$ Trap Vector(N) \rightarrow PC															
Encoding	15	14	13	12	11	10	9	8	70	6	5 0	4	3	2 N	1	0
	L.										0]

Operands N is a trap number from 0 to 31.

Description TRAP executes a software interrupt. The return address (the address of next instruction) and then the status register are pushed onto the stack. The IE (interrupt enable) bit in ST is set to 0, disabling maskable interrupts, and ST is set to >0000 0010. Finally, the trap vector is loaded into the PC. The TMS34010 generates the trap vector addresses as shown below:

The stack is located in external memory and the top is indicated by the stack pointer (SP). The stack grows in the direction of decreasing linear address. The PC and ST are pushed on the stack MSW first, and the SP is predecremented before each word is loaded onto the stack.

		N	lotes:							
		 The level 0 trap differs from all other traps; it does not save the old status register or program counter. This may be useful in cases where the stack pointer is corrupted or uninitialized; such a situ- ation could cause an erroneous write. 								
		2	2. The NMI b	it does not affe	ect the operation	of TRAP 8.				
Words		1								
Machine States	e		,19 (SP align ,33 (SP nona							
Status E	Bits	N Z V	0 0							
Example	S Code TRAP TRAP	0 1	Before PC >xxxx xxxx >xxxx xxxx	SP >8000 0000 >8000 0000	PC @FFFF FFE0 @FFFF FFC0	After SP ST >8000 0000 >0000 0010 >7FFF FFC0 >0000 0010				

•	•	•	•	•	•
•	•	•	•	•	•
סמסידי	30 > xxxx xxxx	>8000 0000	@FEFE EC20	>7FFF FFC	0 > 0000 0010
TIVUL		× 0000 0000	WIIII 020		0 - 0000 0010
TRAP	31 > xxxx xxxx	>8000 0000	@FFFF FC00	>7FFF FFC	0 >0000 0010

XOR

Exclusive OR Registers

Syntax	XOR <rs>,<rd></rd></rs>								
Execution	(Rs) XOR (Rd) \rightarrow Rd								
Encoding		2 11 10 1 0 1	987 1 Rs	65	4 3 R	2 1 Rd	0		
Description	XOR bitwise-exclusive-ORs the contents of the source register with the contents of the destination register; the result is stored in the destination register.								
		You can use this instruction to clear registers (for example, XOR B0,B0); the CLR instruction also supports this function.							
	The source and	destination re	gisters must b	e in the s	ame reg	ister file.			
Words	1								
Machine States	1,4								
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 								
Examples	Code	Before	A	fter					
	XOR A0,A1 XOR A0,A1 XOR A0,A1	A0 >FFFF FFF >FFFF FFF >FFFF FFF	F >AAAA AA	AAA	NCZV x x 0x x x 0x x x 1 x	A1 >FFFF FI >5555 55 >0000 00	555		

XORI	Exclusive OR Immediate Value							
Syntax Execution	XORI , <rd>IL XOR (Rd) → Rd</rd>							
Encoding	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 0 1 1 1 0 R Rd IL (LSW) IL (MSW)							
Operands Description	IL is a 32-bit immediate va XORI bitwise exclusive OR of the destination register; ti	s the 32-bit imme	diate data with the contents					
Words Machine States	3 3.12							
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 							
Examples	Code XORI >FFFFFFFF,A0 XORI >FFFFFFFF,A0 XORI >FFFFFFFF,A0 XORI >0000000,A0 XORI >0000000,A0	<u>Before</u> A0 >00000000 >AAAAAAAA >FFFFFFFF >00000000 >FFFFFFFF	After NCZV A0 xx0x >FFFF FFFF xx0x >5555 5555 xx1x >0000 0000 xx1x >0000 0000 xx0x >FFFF FFFF					

ZEXT

Zero Extend to Long

ZEXT

Syntax	ZEXT < <i>Rd</i> >[,	, <f>]</f>						
Execution	(field) Rd \rightarrow (zero-extended field) Rd							
Encoding	15 14 13 1 0 0 0	2 11 10 0 0 1	9 8 7 F 1 0	6 5 4 0 1 R	3 2 1 0 Rd			
Operands	F=0 selects	al parameter, FS0 for the f FS1 for the f).				
Description	ZEXT zero extends the right-justified field contained in the destination reg- ister by zeroing all the nonfield bits of the destination register. The field size for the zero extension is specified by the FS0 or FS1 bits in the status reg- ister, depending on the value of F.							
Words	1							
Machine States	1,4							
Status Bits	 N Unaffected C Unaffected Z 1 if the result is 0, 0 otherwise. V Unaffected 							
Examples	Code	Before		Afte	<u>r</u>			
	ZEXT A0,0 ZEXT A0,0 ZEXT A0,0 ZEXT A0,0 ZEXT A0,1	FS0 FS1 32 x 31 x 1 x 16 x x 16	>FFFF FFFF >FFFF FFFF >FFFF 0000	= xx0x = xx0x) xx1x	>FFFF FFFF >7FFF FFFF >0000 0001 >0000 0000			