OOOOOOO

TMS34010
User’s Guide

Graphics Products

'J

TEXAS
INSTRUMENTS

This page intentionally left blank.

TMS34010
User’s Guide

&

EXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. TI advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, Tl assumes no liability for
Tl applications assistance, customer’s product design, or infringement of pat-
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of Tl covering or relating to any combination, ma-
chine, or process in which such semiconductor devices might be or are used.

Copyright © 1986, Texas Instruments Incorporated

Contents
Section
1 Introduction
1.1 TMS34010 Overview Ot
1.2 Key Features e e e
1.3 Typical Applications L
1.4 Architectural Overview
1.41 Other Special Processing Hardware
1.4.2 TMS34010 Block Diagram Lo
1.5 Manual Organization e e e e
1.6 References and Suggested Reading
2 Pin Functions
2.1 Pinout and Pin Descriptions e
2.2 HostInterface Bus Signals e
2.3 Local Memory Interface Signals
2.4 Video Timing Signals L
2.5 Hold and Emulator Interface Signals,
2.6 Power, Ground, and Reset Signals
3 Memory Organization
3.1 Memory Addressing L0 e e e e e
3.2 Memory Map e
3.3 Stacks e e
3.31 System Stack L L e e e
3.32 Auxiliary Stacks L L e e
4 Hardware-Supported Data Structures
41 Fields . .. e
4.2 Pixels . . e e e
4.2.1 Pixels in Memory L e
422 Pixels onthe Screen
4.2.3 Dispiay Pitch e e e
43 XY Addressing L. L e e e e e
4.31 XY-to-Linear Conversion Lo
4.4 Pixel Arrays . . L L e e e e e e e e
5 CPU Registers and Instruction Cache
5.1 General-Purpose Registers Lo
511 Register File A e
5.1.2 Register File B
5.1.3 Stack Pointer L e
51.4 Implied Graphics Operands,
5.2 Status Register Lo
5.3 Program Counter Lo o
5.4 Instruction Cache
5.4.1 Cache Hardwareo
542 Cache Replacement Algorithm L.
54.3 Cache Operation

——)
Lo hhn s

-
o

-
‘

-
|

ININTNINININE S
SN oN =
)

SOOBND

1
o

5-23
5-23
5-24
5-25

iii

544 Self-Modifying Codeo
5.4.5 Flushing the Cache
5.4.6 Cache Disable o
54.7 Performance with Cache Enabled versus Cache Disabled
5.5 Internal Parallelism Lo
6 1/O Registers

6.1 1/0 Register Addressingo
6.2 Latency of Writes to |/O Registerso
6.3 |/0 Registers Summary Lo e
6.3.1 Host Interface Registerso
6.3.2 Local Memory interface Registers
6.3.3 Interrupt Interface Registers Lo
6.3.4 Video Timing and Screen Refresh Registers
6.4 Alphabetical Listing of I/0O Registers
7 Graphics Operations

7.1 Graphics Operations Overviewo
7.2 Pixel Block Transfers
7.21 Color-Expand Operationo
7.2.2 Starting Corner Selectiono L.
7.2.3 Interrupting PixBlts and Fills
7.3 Pixel Transfers L e
7.4 Incremental Algorithm Support Lo
7.5 Transparencyo
7.6 Plane Masking L
7.7 Pixel Processing e e e e e e e e
7.8 Boolean Processing Examples L. oL
7.8.1 Replace Destination with Source
7.8.2 Logical OR of Source with Destination
7.8.3 Logical AND of NOT Source with Destination
7.8.4 Exclusive OR of Source with Destination
7.9 Muiltiple-Bit Pixel Operationso
7.91 Examples of Boolean Operations e
7.9.2 Operations On Pixel Intansity -
7.10 Window Checking L
7.10.1 W=1 Mode - Window Hit Detection
7.10.2 W=2 Mode - Window Miss Detection
7.10.3 W=3 Mode - Window Clipping
7.10.4 Specifying Window Limits 0o
7.10.5 Window Violation Interrupt Lo
7.106 Line Clipping e e e
8 Interrupts, Traps, and Reset

8.1 interrupt Interface Registers Lo Lo
8.2 External interrupts L e e e
8.3 Internal Interrupts L e e e e e
8.4 interrupt Processing L. L e
8.4.1 Interrupt Latency L e e e
8.5 Traps e e e e e
8.6 lllegal Opcode Interrupts L L e e e e e
8.7 Reset e e e
8.71 Asserting Reset
8.7.2 Suspension of DRAM-Refresh Cycles During Reset

o oo
~ N
H W

Activity Following Reset

Screen Refresh and Video Timing

—_

CEOOEOOOOOOOOO®
N_l

WOOWPOOIO G CTRWN =

N =

10 Host Interface Bus

10.1 Host Interface Bus Pins
10.2 Host Interface Registers
10.3 Host Register Reads and Writes e
10.3.1 Functional Timing Examples
10.3.2 Ready SignaltoHost
10.3.3 Indirect Accesses of Local Memory
103.4 HaltLlatency

10.3.56 Accommodating Host Byte-Addressing Conventions

10.4 Bandwidth
105 Worst-Case Delay

11 Local Memory Interface
11.

Initial State Following Reset

Video Timing Signals
Screen Sizeso
Video Timing Registers
Hotizontal Video Timing
Vertical Video Timing
Noninterlaced Video Timing
Display Interrupt
Dot Rate
External Sync Modeo
ATwo-GSP System
External Interlaced Video
Video RAM Control
Screen Refresh
Video Memory Bulk Initialization

1 Local Memory Interface Pins
11.2 Local Memory Interface Registers

3 Memory Bus Request Priorities
11.4 Local Memory Interface Timing
11.41 Local Memory Write Cycle Timing
11.4.2 Local Memory Read Cycle Timing
11.4.3 Local Shift-Register-to-Memory Cycle Timing Co
11.4.4 Local Memory-to-Shift-Register Cycle Timing R
11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing

11.4.6 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing

11.4.7 Local Memory Internal Cycles
11.48 1/0O Register Access Cycles
11.4.9 Read-Modify-Write Operations
11.4.10 Local Memory Wait States
11.4.11 Hold Interface Timing
11.412 Local Bus Timing Following Reset
11.5 Addressing Mechanisms
11.51 Display Memory Hardware Requirements
11.5.2 Memory Organization and Bank Selecting
11.5.3- Dynamic RAM Refresh Addresses

11.5.4 An Example - Memory Organization and Decoding

—

—
OOCIDOOO
OOTH NN =

—

T

—

ey

—_

10-11

-
@
-
[{o]

10-21
10-22
10-23

11-1
11-2
11-3
11-4
11-5
11-7
11-8

“11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-18
11-22
11-23
11-24
11-25
11-25
11-27

12 The TMS34010 Instruction Set

12.1 Symbols and Abbreviations Lo
12.2 Addressing Modes L e

12.2.1 immediate Addressing L. Lo
12.2.2 Indirect XYo
12.2.3 Absolute Addressing
12.2.4 Register Direct
12.2.5 Register Indirect
12.2.6 Register Indirect with Displacement
12.2.7 Register indirect with Predecrement
12.2.8 Register Indirect with Postincrement
12.3 Move Instructions Summary
12.3.1 Register-to-Register Moves
12.3.2 Constant-to-Register Moves
12.3.3 XandY Register Moves
12.3.4 Multiple Register Moves
1235 ByteMoves
12.36 FieldMoves
12.4 PIXBLT Instructions Summary

12.5 PIXT Instructions Summary

Instruction Timings

Best Case Timing - Considering Hidden States

The Effect of Interrupts on PIXBLT Instructions

N N e S N e S N Y
hwh—

TMS34010 Data Sheet

Emulation Guidelines for Prototyping
Software Compatibility with Future GSPs
Glossary

momw>

General Instructions

1
.2 Other Effects on Instruction Timing
MOVE and MOVB Instructions
1 Moves Between Registers and Memory C
.2 Memory-to-Memory Moves
3 MOVE Timing Example
FILL Instructions
1 FILL Setup Time
2 FILL Transfer Timing
3 FILL Timing Examples
4 Interrupt Effects on FILL Timing
PIXBLT Instructions
1 PIXBLT Setup Time
2 PIXBLT Transfer Timing
.3 PIXBLT Timing Examples
4

PIXBLT Expand Instructions
PIXBLT Setup Time
PIXBLT Transfer Timing
PIXBLT Timing Examples
The Effect of Interrupts

The LINE Instruction

1 LINE Setup Time

2 LINE Transfer Timing

.3 LINE Timing Example

4 Effects of Interrupts on LINE Timing

-

—
NN NNODNODNONDNNON
s
COUWWONOOUADMWWWN=

—

-

-

—

-

R

-

-

—_ s

—

—

—_

12-10
12-14
12-14

JUSCUE G ¥

—
wwwwww(l»wwwwww

P

—
|
S 2OOOOUTRWNN=

- e

-

1

—_ =

—_

-

13-16

P G N QU QI QN L G QI e G ¥
Cﬁwwwwwwwwwww

I N A
WWWWWNNNNN =
PhrhWANOOOTWO®D

13-35

llustrations

Figure
1-1 System Block Diagram
1-2. Internal Architecture Block Diagram
2-1. TMS34010 Pinout (Top View) e
2-2. TMS34010 Major Interfaces
3-1 Logical Memory Address Space
3-2. Physical Memory Addressing
3-3. TMS34010 Memory Map e
3-4. System Stack e
3-5. Stack Operations
3-6. Auxiliary Stack Grows toward Lower Addresses
3-7. Auxiliary Stack Grows toward Higher Addresses ~
4-1 Field Storage in External Memory
4-2. Field Alignmentin Memory e e
4-3. Field Insertion e
4-4. Pixel Storage in External Memory e
4-5. Mapping of Pixels to Monitor Screen
4-6. Configurable Screen Origin e
4-7 Display Memory DIimensionsttt
4-8 Display Memory Coordinates i
4-9. Pixel Addressing in Terms of XY Coordinates
4-10. Concatenation of XY Coordinates in Address ~
4-11. Conversion from XY Coordinates to Memory Address
4-12. Pixel Array . e e e
5-1 Register File A R
5-2. Register File B
5-3. Stack Pointer Register
B-4. Status Register
B-5. Program Counter e
5-6. TMS34010 Instruction Cache i,
5-7. Segment Start Address e
5-8. Internal Data Paths e
5-9. Parallel Operation of Cache, Execution Unit, and Memory Interface
6-1 /O Register Memory Map
7-1 Color-Expand Operation e
7-2. Starting Corner Selection
T-3. TransSparenCy . .t e e e e e
- 7-4. Read Cycle With Plane Maskingt
7-5. Write Cycle With Transparency and Plane Masking
7-6. Graphics Operations Interaction
7-7 Examples of Operations on Single-Bit Pixels
7-8. Examples of Boolean Operations e
7-9. Examples of Operations on Pixel Intensity ~
7-10. Specifying Window Limits ~ e
7-11. Outcodes for Line Endpoints
7-12. Midpoint Subdivision Method i i
8-1 Vector Address Map
9-1 Horizontal and Vertical Timing Relationship
9-2. Horizontal Timing e
9-3. Horizontal Timing Logic - Equivalent Circuit

vii

9-4. Example of Horizontal Signal Generation 9-7
9-5. Vertical Timing for Noninterlaced Display 9-8
9-6. Vertical Timing Logic - Equivalent Circuit 9-9
9-7. Electron Beam Pattern for Noninterlaced Video 9-9
9-8. Noninterlaced Video Timing Waveform Example 9-10
9-9. Electron Beam Pattern for interlaced Video 9-1
9-10. Interlaced Video Timing Waveform Example 9-13
9-11. External Sync Timing-Two GSP Chips 9-17
9-12. Screen-Refresh Address Registers i 9-20
9-13. Logical Pixel Address 9-22
9-14. Screen-Refresh Address Generation 9-23
10-1. Equivalent Circuit of Host Interface Control Signals 10-4
10-2. Host 8-Bit Write with HCS Used as Strobe 10-5
10-3. Host 8-Bit Read with HCS Used as Strobe 10-6
10-4. Host 16-Bit Read with HREAD Used as Strobe 10-6
10-5. Host 16-Bit Write with HWRITE Used as Strobe 10-7
10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes 10-7
10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes 10-8
10-8. Host Interface Timing - Write Cycle With Wait 10-10
10-9. Host interface Timing - Read Cycle With Wait 10-10
10-10. Host Indirect Read from Local Memory (INCR=1) 10-13
10-11. Host Indirect Write to Local Memory (INCW=1) 10-15
10-12. Indirect Write Followed by Two Indirect Reads (INCW=1, INCR=0) ... 10-16
10-13. Calculation of Worst-Case Host interface Delay 10-23
11-1. Triple Multiplexing of Addressesand Data 11-5
11-2. Row and Column Address Phases of Memory Cycle 11-6
11-3. Local Bus Write Cycle Timing i i 11-7
11-4. Local Bus Read Cycle Timing 11-8
11-5. Local Bus Shift Register to Memory Cycle Timing 11-9
11-6. Local Bus Memory to Shift Register Cycle Timing 11-10
11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing 11-11
11-8. Local Bus CAS-Before-RAS DRAM-Refresh Cycle Timing 11-12
11-9. Local Bus Internal Cycles BacktoBack 11-13
11-10.1/0 Register Read Cycle Timing i onnn. 11-14
11-11.1/0 Register Write Cycle Timing it 11-156
11-12. Local Bus Read Cycle with One Wait State 11-16
11-13. Local Bus Write Cycle with One Wait State 11-17
11-14. Local Bus Shift-Register-to- Memory Cycle with One Wait State 11-18
11-15.TMS34010 Releases Control of Local Bus 11-19
11-16.TMS34010 Resumes Control of Local Bus 11-20
11-17. Local Bus Timing Following Reset 11-22
11-18.External Address Format e 11-23
11-19. Row Address for DRAM-Refresh Cycle 11-26
11-20. Address Decode for Example System, 11-27
11-21. Display Memory Dimensions for the Example 11-28
12-1. Immediate Addressing Mode 12-3
12-2. Absolute Addressing Mode e 12-4
12-3. Register Direct Addressing Mode i 12-5
12-4. Register Indirect Addressing Mode 12-5
12-5. Register Indirect with Displacement Addressing Mode 12-6
12-6. Register Indirect with Predecrement Addressing Mode 12-7
12-7. Register indirect with Postincrement Addressing Mode 12-7
12-8. Register-to-Memory Moves e 12-11
12-9. Memory-to-Register Moves e 12-12
12-10. Memory-to-Memory MOVESottt i 12-13
12-11. LINE EXamples .. e e e e 12-93

viii

13-1. Field Alignments in Memory 13-4

13-2. MOVE Timing Example e 13-8
13-3. Pixel Block Alignment in X e 13-10
13-4. Pixel Block Alignments e 13-11
13-5. FILL XY Timing Example e 13-14
13-6. Pixel Block Alignment in X e 13-19
13-7. Pixel Block Alignments i e e 13-20
13-8. Source to Destination Alignments oo 13-21
13-9. PIXBLT XYL Timing Example e 13-24
13-10. Pixel Block Alignment in X 13-28
13-11. Pixel Block Row Alignments i, 13-28
13-12. PIXBLT B, XY Timing Examplet 13-32
13-13. LINE Timing Example e 13-35
B-1. Grounding the XDS Target Cable Assembly B-4
Tables

Table Page
1-1. Typical Applications of the TMS34010 1-4
2-1. Pin Descriptions e e 2-4
2-2. Host Interface Signals 2-5
2-3. lLocal Bus Interface Signals 2-7
2-4. Video Timing Signals e 2-9
2-5. Hold and Emulator Interface Signals 2-10
2-6. Power, Ground, and Reset Signals i 2-11
B-1. B-File Registers Summaryt e e e 5-5
5-2. Definition of Bits in Status Register 5-20
5-3. Decoding of Field-Size Bits in Status Register 5-21
6-4. Instruction Effects on the PC 5-22
6-1. 1/O Registers Summary e 6-4
7-1. Boolean Pixel Processing Options 7-16
7-2. Arithmetic (or Color) Pixel Processing Options 7-15
8-1. Interrupt Priorities 8-2
8-2. External Interrupt VECIOrS i 8-3
8-3. Interrupts Associated with Internal Events 8-4
8-4. Six Sources of Interrupt Delay L e 8-7
8-5. Sample Instruction Completion Times 8-7
8-6. lliegal Opcodes Ranges i 8-8
8-7. State of Pins Duringa Reseto 8-10
9-1. Programming GSP #2 For External Sync Mode 9-17
9-2. Screen-Refresh Latency 9-26
10-1. Host interface Register Selection 10-3
10-2. Five Sources of Halt Delay i 10-20
10-3. Sample Instruction Completion Times 10-20
10-4. Host Interface Estimated Bandwidth 10-22
11-1. Priorities for Memory Cycle Requests 11-4
12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions 12-2
12-2. Summary of Move Instructions e 12-8
12-3. MOVB Addressing Modes 12-9
12-4. Field Move Addressing Modes 12-10
12-5. PIXBLT Instruction SUMMAIY ... ittt ittt et 12-14
12-6. PIXT Addressing Modes 12-14

12-7. TMS34010 Instruction Set SUMMAry ..o oo 12-15

13-1. MOVE and MOVB Memory-to-Register Timings 13-5
13-2. MOVE and MOVB Register-to-Memory Timings 13-6
13-3. Alignment Indices for Memory-to-Memory Moves 13-6
13-4. MOVE Memory-to-Memory Timings ... e .. 13-7
13-5. FILL Setup Time e e e e e 13-9
13-6. FILL Transfer Timingt 13-10
13-7. Timing Vatues per Word for Graphics Operations (G) 13-12
13-8. PIXBLT Setup Time e e 13-16
13-9. PIXBLT Transfer Timingt 13-18
13-10. Timing Values per Word for Graphics Operations (G) 13-22
13-11. PIXBLT Expand Setup Time i 13-26
13-12. PIXBLT Expand Transfer Timingt 13-27
13-13. Timing Values per Word for Graphics Operations (G) 13-30
13-14. LINE Transfer Timing i 13-34
13-15. Per-Word Timing Values for Pixel Processing (P) 13-35

1.

Introduction

The TMS34010 Graphics System Processor (GSP) is an advanced 32-bit
microprocessor optimized for graphics systems. The GSP is a member of the
TMS340 family of computer graphics products from Texas Instruments.

A single TMS34010 provides a cost-effective solution in applications that re-
quire efficient data manipulation. The GSP can be configured to serve in ei-
ther a host-based or a stand-alone environment. Systems based on multiple
TMS34010 devices are implemented using special features of the GSP’s local
and host interfaces.

The TMS34010 is well supported by a full set of hardware and software de-
velopment tools, including a full-speed emulator, a software simulator, an
IBM-PC development board, and a C compiler.

Topics covered in this introductory section include:

Section Page
11 TMS34070 OVEIVIEBW ..uoocieiuicierreiieeie et et eseieiae st et e esrasseanaenes 1-2
1.2 Key Featurescccceeevevenn .

1.3 Typical Applications

1.4 Architectural OVEIVIEW ...occcciieeiieienriieiiesee e eeesiee e eie e 1-5
1.4 Manual Organizationcceiieriesieeririreresrae e escvesnreee e annenen 1-8
1.6 References and Suggested Readingc.cccevvieiiincieiiinccccriirieecne 1-10

1-1

Introduction - TMS34010 Overview

1.1 TMS34010 Overview

1-2

The TMS34010 combines the best features of general-purpose processors and
graphics controllers to create a powerful and flexible Graphics System Pro-
cessor. Key features of the GSP are its speed, high degree of programmability,
and efficient manipulation of hardware-supported data types such as pixels
and two-dimensional arrays of pixels.

The GSP’s unique memory interface reduces the time needed to perform tasks
such as bit alignment and masking. The 32-bit architecture supplies the large
blocks of continuously-addressable memory necessary in graphics -applica-
tions. The use of video RAMs facilitates the design of high-bandwidth frame
buffers, circumventing the bottleneck often encountered with conventional
DRAMs.

The GSP instruction set includes a full complement of general-purpose in-
structions as well as graphics functions from which a programmer can con-
struct efficient high-level functions. The instructions support arithmetic and
Boolean operators, data moves, conditional jumps, and subroutine calls and
returns.

The GSP architecture supports a variety of pixel sizes, frame buffer sizes, and
screen sizes. On-chip functions have been carefully selected so that no
functions tie the GSP to a particular display resolution. This enhances the
portability of graphics software, and allows the GSP to adapt to graphics
standards such as CGI/CGM, GKS, NAPLPS, PHIGS, and evolving display
and terminal management standards.

Introduction - Key Features

1.2 Key Features

Fully programmable 32-bit generai-purpose processor
128-megabyte address range
160-ns instruction cycle time

On-chip peripheral functions include:

- Programmable CRT control (horizontal sync, vertical sync, and
blanking)

- Direct interfacing to conventional DRAMs and multiport video
RAMs

- Automatic CRT display refresh

- Direct communications with an external (host) processor

Instruction set includes special graphics functions such as pixel
processing, XY addressing, and window clip/hit

Programmable 1, 2, 4, 8, or 16-bit pixel size with 16 Boolean and
6 arithmetic pixel-processing options

30 general-purpose 32-bit registers

256-byte LRU on-chip instruction cache

Dedicated 8/16-bit host-processor interface and HOLD/HLDA interface
32-bit and 64-bit integer arithmetic

High-level language support

Full line of hardware and software development tools including:

- C compiler

- Macro assembler

- Linker

- Archiver

- Software libraries

- XDS (Extended Development Support) in-circuit emulator
~ Software Development Board (SDB)

- ROM utility

- Simulator

68-pin PLCC package

5-V CMOS technology

1-3

Introduction - Typical Applications

1.3 Typical Applications

The TMS34010's 32-bit processing power and its ability to handle complex
data structures make it well suited for a variety of applications. These include
display systems, imaging systems, mass storage, communications, high-speed
controllers, and peripheral processing. The GSP’s efficient bit manipulation
facilitates demanding tasks such as high-quality, proportionally-spaced text.
This capability makes it especially useful in applications such as desktop
publishing. In graphics display systems, the GSP provides cost-effective per-
formance for color or black-and-white bit-mapped displays.

typical end uses of the GSP.

Table 1-1. Typical Applications of the TMS34010

Computers
Terminals and CRTs

Laser printers
Personal computers
Printers and plotters

Copiers
Document readers
FAX

Imaging

Data processing

Electronic publishing

Industrial Control

Robotics
Process control
Instrumentation
Motor control
Navigation

Engineering workstations

Telecommunications

Video phones
PBX

Consumer Electronics

Automotive displays
Information terminals
Cable TV

Home control

Video games

Table 1-1 lists

Introduction - Architectural Overview

1.4 Architectural Overview

To

Host
Progessor

Figure 1-1 illustrates the TMS34010's major internal functions and its inter-
faces to external devices. The on-chip processor executes both graphics in-
structions and general-purpose instructions. The GSP is a true 32-bit
processor, with 32-bit internal data paths, a 32-bit ALU, and a large address
space. Thirty 32-bit general-purpose registers, a 32-bit stack pointer, and a
256-byte instruction cache increase performance. Nonprocessor functions
included on the chip include CRT timing, screen refresh, and DRAM refresh.
Separate physical interfaces are provided for communicating with a host pro-
cessor, for providing the video timing signals necessary to control a CRT
monitor, and for connecting directly to dynamic RAMs and video RAMs.

Data £torage

i I
| |
ook | Host-Graphlos Graphlos Conventlonal
C:.:.,I_*.o Bun :> Interface Prooessor || DRAMS
|
1 B g
} Program and
|
|
]

Frame Buffer
r‘E i
Soreen- CRT B i To
Refrash Refresh Timing > fRT
Cortrol Control Contral ;‘!;fs: L [Manitor

Figure 1-1. System Block Diagram

1.4.1 Other Special Processing Hardware

The TMS34010 CPU functions include the following special processing
hardware:

[J Hardware for detecting whether a pixel lies within a specified display
window.

® Hardware for detecting the leftmost one in a 32-bit register.

® Hardware for expanding a black-and-white pattern to a variable pixel-
depth pattern.

Introduction - Architectural Overview

1.4.2 TMS34010 Block Diagram

Figure 1-2 illustrates the internal architecture of the TMS34010. The list that
follows describes the individual blocks shown in Figure 1-2.

1-6

External
Interrupt
Requests

Reset

Host
Interface
Bus

Sye and
Blark-ng

1/0 Registers
 — ! Instruction] Instruction
| Interrupt | Cache ——] Decode
Registers |
| | : i
i Host |
Interface
| Reglsters ?:
| ==
Program P
: | | Counter |
Video Timing (I:f i i
| Reglsters | { Status Register | le———]
| I I Microoontrol
| | ' ALU | ROM
|-
; } I| Barrel Shifter ||
II II || Register Flie A : .
Local Memo | '
I| RCO?t{m v %j (| Register Fiie B :
eglsters
| g | I Stack Pointer }1———
| V| T e
[-

Local Memory
Contro| Loglc
and Buffers

Local Memory

Interface Bus

internal Clock
Ciroultry

Figure 1-2. Internal Architecture Block Diagram

CPU Internal Functions

The main internal functions of the TMS34010 are shown in the center of Fig-
ure 1-2. Section 5 discusses the CPU registers in detail.

processor.
and PixBlt execution status bits.
extension modes of Fields 0 and 1.

The 32-bit program counter (PC) points to the next instruction word
to be fetched. The PC’s four LSBs are always O.

The 32-bit status register (ST) specifies the status of the TMS34010
It contains the sign, carry, zero, overflow, interrupt enable,
It also specifies the lengths and field

Register files A and B each contain 15 general-purpose registers,
AO-A14 and BO-B14, respectively. The B-file registers are also used as
implied operands for the graphics instructions.

Introduction - Architectural Overview

The general-purpose register files are dual ported to support parallel data
movement. Two separate internal buses route data from the registers to
the ALU, and a third bus routes results back to the registers.

- The stack pointer, or SP, is available to instructions that operate on
either register file.

- The 32-bit barrel shifter shifts or rotates 32-bit operands from 1 to 32
bit positions in a single machine state.

- The 32-bit ALU is connected to the other CPU components by 32-bit
data paths. This allows most register-to-register operations to be per-
formed in a single machine state. (Accessing external memory requires
a minimum of two states.) The following actions occur in parallel during
a single state:

1) Two operands are transferred from the selected general-purpose
register file to the ALU.

2) The ALU performs the specified operation on the operands.

3) The result is routed back to the general-purpose register file.

Instruction Cache

The TMS34010 contains a 256-byte instruction cache. The cache can contain
up to 128 instruction words (an instruction word may be an entire single-word
instruction or 16 bits of a multiple-word instruction). Section 5.3 describes
instruction cache operation.

I/O Registers

The TMS34010 has 28 16-bit 1/O registers on chip which are dedicated to
peripheral control functions. Section 6 provides individual descriptions of
each 1/0 register. The I/0 registers can be divided into four categories:

- Seven local memory interface registers are dedicated to memotry
interface control and configure the memory controller.

- Fourteen video timing and screen refresh registers generate the
sync and blanking signals used to drive a CRT, and schedule screen-
refresh cycles.

- Five host interface registers are accessibie t0 external host process-
ors as well as to the TMS34010. Status information can be communi-
cated directly through these registers. Large blocks of data in GSP
memory can be accessed indirectly through pointer registers,

- Two interrupt control registers provide status information about in-
terrupt requests.

Microcontrol ROM

The TMS34010 transfers decoded instructions to the microcontrol ROM for
interpretation. The microcontrol ROM has 166 control outputs and 808 mic-
rostates.

Clock Timing Logic

The clock timing logic converts the clock input signals to internal timing sig-
nals and generates the clock output signals, LCLK1 and LCLK2, used by ex-
ternal devices.

Introduction - Manual Organization

1.5 Manual Organization

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

1-8

The TMS34010 User's Guide describes GSP operation, focusing on the GSP’s
role in apphcatlons that involve CRT-based, bit-mapped, graphics systems
The User’s Guide is divided into four major sections:

1) General information (Section 1)

2) Architecture (Sections 2-8)

3) Timing (Sections 9-11)

4) Instruction set (Sections 7,12, and 13)

An extensive index and two reference cards are also provided.
Introduction

Provides an overview of the TMS34010, including key features and typical
applications. Provides a general overview of the TMS34010 architecture; in-
cludes a block diagram and a detailed list describing the elements in the dia-
gram. Discusses manual organization and lists suggested reading.

Pin Functions

lllustrates the TMS34010 pinout and contains general pin descriptions. Also
describes specific pin functions regarding the host interface, the local bus in-
terface, video timing signals, hold and emulator interface pins, and power,
ground, and reset pins.

Memory Organization

Discusses 32-bit addressing schemes, the TMS34010 memory map, and the
stack.

Hardware-Supported Data Structures

Discusses hardware-supported data structures such as fields and pixels. XY
addressing is also discussed in this section.

CPU Registers and Instruction Cache

Describes general-purpose register files A and B, the status register, the pro-
gram counter, and the instruction cache.

I/O Registers

Provides a detailed discussion of host interface registers, memory-interface
control registers, video timing and screen refresh registers, interrupt interface
registers, and |/0 register addressing. Full-page descriptions of each 1/0 re-
gister are presented alphabetically.

Graphics Operations

Discusses graphics instructions such as PixBlts, PIXTs, and retated topics such
as two-dimensional arrays of pixels, window checking, XY-to-linear conver-
sion, and plane masking.

Interrupts, Traps, and Reset

Describes external and internal interrupts, interrupt processing, and reset.

introduction - Manual Organization

Section 9

Section 10

Section 11

Section 12

Section 13

Screen Refresh and Video Timing

Describes the horizontal sync, vertical sync, and blanking signals, horizontal
and vertical timing, and video RAM control.

Host Interface Bus
Discusses host interface pins, registers, and timing.
Local Memory Interface Bus

Discusses local memory interface timing, addressing mechanisms, and data
manipulation at the local memory interface.

Assembly Language Instruction Set

Discusses addressing modes, summarizes move, PIXBLT, and PIXT instruction
variations, and presents the entire TMS34010 assembly language instruction
set in alphabetical order.

Instruction Timings

Contains an overview of timing for general instructions, and specific timing
information for move and graphics instructions.

Appendix A TMS34010 Data Sheet

Appendix B
Appendix C
Appendix D

Emulation Guidelines for Prototyping
Software Compatibility with Future GSPs
Glossary

1-9

Introduction - References and Suggested Reading

1.6 References and Suggested Reading

The following books and articles provide further background in graphics and
system concepts associated with graphics.

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood
Cliffs, New Jersey: Prentice-Hall, 1984.

Bresenham, J.E. “Algorithm for Computer Control of a Digital Plotter.” /BM
Systems Journal 4 No.1 (1965): 25-30.

Bresenham, J.E. “A Linear Algorithm for Incremental Display of Digital Arcs.”
Communications of the ACM 20 (Feb. 1977): 100-106.

Cody, William J. Jr.,, and William Waite. Software Manual for the Elementary
Functions. Englewood Cliffs, New Jersey: Prentice-Hall, 1980.

Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachussetts: Addison-Wesley, 1982.

Gupta, Satish. “Architectures and Algorithms for Parallel Updates of Raster
Scan Displays.” Tech. Report CMU-CS-82-111, Computer Science Dept.,
Carnegie Mellon University, 1981.

Ingalls, D.H. "The Smalltalk Graphics Kernel.” Special issue on Smalltalk,
Byte, August 1981, pp. 168-194.

Kernighan, B., and D. Ritchie The "C" Programming Language. Englewood
Cliffs, New Jersey: Prentice-Hall, 1978.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, 1983.

Newman, W.M., and R.F. Sprouil. Principles of Interactive Computer
Graphics. 2nd ed. New York: McGraw-Hill, 1979.

Pike, Rob. "Graphics in Overlapping Bitmap Layers.” ACM Transactions On
Graphics 2 (April 1983): 135-160.

Pitteway, M.L.V. "Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Plotter.” Computer Journal 10 (Nov. 1967): 24-35.

Porter, T. and T. Duff. “Composing Digital Images.” Computer Graphics, July
1984, pp. 253-259.

Sproull, R.F. and I.E. Sutherland. “A Clipping Divider.” Fall Joint Computer
Conference Washington, DC: Thompson Books, 1968.

Van Aken, Jerry R. "An Efficient Ellipse- Drawing Algorithm.” /EEE Computer
Graphics & Applications 4 (Sept. 1984): 24-35.

2. Pin Functions

This section discusses the TMS34010 pin functions. Section 2.1 contains a
TMS34010 pinout, summarizes the pin functions, and associates the pins with
various categories. Section 2.2 through Section 2.6 present details concern-
ing the individual categories. Contents of this section include:

Section
2.1 Pinout and Pin Descriptions
2.2 Host Interface Bus Signals

3 Local Memory Interface Signalscccoccevmiviiiiiiiiniiieiineie e
4 Video Timing Signalscccoccciiiiiiiiiiinniie e
5
6

Hold and Emulator Interface Signals
Power, Ground, and Reset Signalscccovveiiiinnniiciiinicnnn

2-1

Pin Functions - Pinout and Pin Descriptions

2.1 Pinout and Pin Descriptions

The TMS34010 is packaged as a 68-pin plastic leaded chip carrier (PLCC).
Figure 2-1 shows a pinout of the TMS34010 processor. Mechanica! infor-
mation is contained in Appendix A.

i
= I
> 10 ¥ v iﬂ co ERow
ekpkgsaggssﬁgggps
HIXTHd|ldE>IEX > T TITIT I >
2 1 686768656463 6261
LADO HDO
LAD1 HDA
LAD2 HD2
LADS HD3
LAD4 HD4
LADS HD§
LADS | HD8
LAD7 HD7
Vss | Ves
LADS HD8
Laps B HD9
LAD10 | HD10
LAD11 HD11
LAD12 HD12
LAD13 HD13
LAD14 HD14
LAD15 HD16

T o X a Z [0 [0 |2 W= >
85:: Ez:F $5|u.|l<i<|;|ozo
>5a > < |E!- > 0ol0lxE|o = [+
SOk fo - Q €=z
> D5 a

]o

o

[T

Figure 2-1. TMS34010 Pinout (Top View)

2-2

Pin Functions - Pinout and Pin Descriptions

The TMS34010's 68 pins are divided among several interfaces:

Host interface
Local memory interface
Video timing interface

Hold and emulator interfaces

Power and reset

25 pins
29 pins
4 pins
3 pins
7 pins

Total: 68 pins

Figure 2-2 associates the pins with the TMS34010’s major interfaces. Table
2-1 summarizes the pin functions at each interface.

Host Interface <

Video Timing {

Power, Ground
and Reset

[{38)|HDO-HD15 LADO-LAD15
2 | HFS0-HFS1

—H T DEN

————— ¥ Hn=ap DDOUT

——¥ 4WRIiT 1AL

—H AN RAS

_ T A

w

[¢———]" TR/QE

LRDY

ONT1-CINT2

LCLK1

LCLK2

) INCLK

4 1V, HELD

88 RUN/EMC

——— 4 RESET HLDA/EMUA.

Figure 2-2. TiVIS34010 Major Interfaces

Local Memory
Interface

Hold and
Emulator
Interfaoes

2-3

Pin Functions - Pinout and Pin Descriptions

2-4

Table 2-1. Pin Descriptions
Name I Pin I 1/0 I Description
Host Interface Bus Pins
HCS 66 i Host chip select
HDO-HD15 44-51,63-60 | /0 Host bidirectiona! data bus
HFS0O,HFS1 67,68 [Host function select
i 42 0 Host interrupt request
HLDS 63 | Host lower data select
HUDS 62 | Host upper data select
HRDY 43 0 Host ready
HIz- AD 64 | Host read strobe
F-A1TE 65 | Host write strobe
Local interface Bus Pins
RAS 38 0 Local row-address strobe
CAS 39 0 Local column-address strobe
DOUT 36 0 Local data direction out
[37 0 Local data enable
LADO-LAD15 | 10-17,19-26 | 1/O Local address/data bus
TAC 34 0 Local address latched
LCLK1,LCLK2 28,29 0 Local output clocks
TNT1,TINT2 6,7 | Local interrupt request pins
LRDY 9 | Local ready
TR/QE 41 0 Local shift-register transfer or output enable
W 40 0 Local write strobe
INCLK 5 I Input clock
Hold and Emulation
HOLD 8 | Hold request
RUN, ENTTT 2 [Run/Emulate
HLDA, .. JA 33 0 Hold acknowledge or emulate acknowledge
Video Timing Signals
BLANE 32 (o) Blanking
HSYNC 30 1/0 Horizontal sync
VCLK 4 | Video clock
VSYNC 31 /0 | Vertical sync
Miscelianeous
e 3 ! Device reset
Vee 27,61 | Nominal 5-volit power supply
Vss 1,18,35,562 [Ground

Pin Functions - Host Interface Bus Signals

2.2 Host Interface Bus Signals

The host interface pins are used for communication between the TMS34010
and a host processor. Signals output on these pins are assumed to be asyn-
chronous with respect to local clocks LCLK1T and LCLK2. To software running
on a host processor, the TMS34010’s host interface appears as a peripheral

device containing a block of four 16-bit registers.

Table 2-2 describes the

host interface pins. TMS34010 host interface operation is discussed in Sec-
tion 10. Host interface registers are discussed in Section 6.

Table 2-2. Host Interface Signals

Signal

1/0

Description

HCS

Host Chip Select. HCS is driven active low to enable access to the 16-bit host
interface register that is selected by HFSO u .1 HFS1. During the low-to-high
transition of RESET, the level on the T - input determines whether the
TMS34010 is halted (if HCS is high), or begins immediately executing its reset

service routine (if HCS is low).

HFSO0-HFS1

Host Function Select. The two function select pins determine which of the four
16-bit host interface registers is selected during a read or write cycle that is in-
itiated by the host processor.

HFS1HFSO Register Description
0 0 HSTADRL LSBs of pointer address
0 1 HSTADRH MSBs of pointer address
1 0 HSTDATA Data buffer register
1 1 HSTCTL Control register

Host Read Strobe. --:.:-D is driven active low during a read cycle that is ini-
tiated by the host processor. This enables the -1 ents of the selected host in-

terface register to be ¢ *, - on HDO-HD15. T :-: AD should not be active low
at the same time that |-.. - E is active low. .

HWRITE

Host Write Strobe. HWRITE is driven active low during a write cycle that is
initiated by the host processor. This enables the contents of HDO-HD15 to be
written to the selected - interface register. HWRITE should not be active low
at the same time that 1 1" "\D is active low.

Host Lower Data Select. HLDS is driven active low during a read or write cycle
that is initiated by the host. This enables the lower byte (bits 0~7) of the se-
lected host interface register to be accessed.

Host Upper Data Select. HUDS is driven active low during a read or write cycle
that is initiated by the host processor. This enables the upper byte (bits 8-15)
of the selected host interface register to be accessed.

HRDY

Host Ready. HRDY indicates when the TMS34010 is ready to complete a read
or write cycle that is initiated by the host. Except during an access of a host
interface register, HRDY is always high. HRDY will be driven low if the host
processor attempts to initiate an access of a host interface register before the
TMS34010 has had sufficient time to complete all processing resulting from an
access initiated previously by the host. HRDY always goes low briefly at the
start of a HSTCTL register access. When HRDY is driven low, the host must
wait to complete the access until HRDY is again driven high. While HACS is
high, HRDY is driven high.

2-5

Pin Functions - Host Interface Bus Signals

Table 2-2. Host Interface Signals (Concluded)

1/0

Description

o]

Host Interrupt Request. The T-"i¥ pin follows the INTOUT bit in the HSTCTL
register. INT is typically used to transmit interrupt requests from the
TMS34010 to the host processor. When INTOUT is set to 1 by the TMS34010,
HINT is driven active low. HINT remains active low until the host writes a 0 to
INTOUT, at which time HINT becomes inactive high.

HDO-HD15

1/0

Host Bidirectional Data Bus. The host data pins, HDO-HD15, form a bidirec-
tional 16-bit bus. This bus is used to transfer data between the selected 16-bit
host interface register and the host processor. HDO is the LSB and HD15 is the
MSB.

2-6

Pin Functions - Local Memory Interface Signals

2.3 Local Memory Interface Signals

The TMS34010 uses the local bus interface pins to communicate with external
memory and with external memory-mapped 1/0 devices. The signals at this
interface are used directly to control DRAMs (dynamic RAMs) and VRAMSs
(video RAMs). Local memory interface operation is discussed in Section 11.

Table 2-3. Local Bus Interface Signals

__'__Siqnal

170 Description

[N

0] Local Data Enable. T'F:. is an active-low output. It is used to drive the ac-
tive-low output-enable inputs on the bidirectional transceivers (such as the
74ALS245), which are used to buffer data input and output on the
LADO-LAD15 pins. External buffering may be required on the LADO-LAD15
pins when the TMS34010 is interfaced to a large number of local memory
devices.

DDOUT

(0] Local Data Direction Out. DDOUT drives the direction control inputs on the
bidirectional transceivers (such as the 74ALS245), which are used to buffer
data input and output on the LADO-LAD15 pins. External buffering may be
required on the LADO-LAD15 pins when the TMS34010 is interfaced to a
large number of local memory devices. During write cycles, DDOUT is . .in
high to enable data to be output from the LADO~LAD15 pins while TT1! is
driven active low. During read cycles, DDOUT goes low to enable data to be
input to the LADO-LAD15 pins while DEN is driven active low. At all other
times, DDOUT remains driven to the default high level.

~
oy
=

.0 Local Address Latched. An external latch can use the high-to-low transition
of TAL to capture the column address from the LADO~LAD15 pins. When a
transparent latch such as a 74ALS373 is used, the address remains latched as
long as TAL remains active low.

x|
w

(o} Local Row Address Strobe. The RAS output is used to drive the RAS inputs
of DRAMs and VRAMs.

O
>
ol

(0] Local Column Address Strobe. The CAS output is used to drive the CAS in-
puts of DRAMs and VRAMs.

gl

(0] Local Write Strobe. The active-low W output is used to drive the W inputs
of DRAMs and VRAMs. W can also be used as the active-low write enable
to static memories and other devices connected to the TMS34010 local inter-
face. During a local memory read cycle, W remains inactive high white CTAS
is strobed active low. During a local memory write cycle, W is strobed active
low while CAS is low. During shift-register-transfer cycles, the state of W
indicates whether the transfer is from shift register to memory (W is low) or
memory to shift register (W is high). At all other times, W is driven to the
default high level.

_|I
X
~
I'|'I|

(0] Local Shift Register Transfer or Output Enable. This pin connects directly to
the TR/QE (or DT/OE) pin of a VRAM. During local memory read cycles,
TR/QE functions as an active-low output enable to gate data from memory to
the LADO-LAD15 pins. During VRAM shift-register-transfer cycles, TR/QE
is driven active low during the high-to-low transition of RAS.

INCLK

| Input Clock. INCLK is the input clock used to generate the LCLK1 and LCLK2
outputs, to which all processor functions in the TMS34010 are synchronous.
A separate input clock, VCLK, controls the video timing registers.

2-7

Pin Functions - Local Memory Interface Signals

Table 2-3. Local Bus Interface Signals (Concluded)

Signal 1/0 Description

LCLK1,LCLK2] O Local Output Clocks. These two output clocks, 90 degrees out of phase with
each other, provide convenient synchronous control of external circuitry to the
TMS34010's internal timing. All signals output from the TMS34010, with the
exception of the CRT timing signals, are synchronous to these clocks.

LRDY | Local Ready. LRDY is driven low by external circuitry to inhibit the TMS34010
from completing a local memory cycle it has initiated. While LRDY remains low,
the TMS34010 continues to wait. When LRDY is again driven high, the
TMS34010 completes the cycle. While LRDY is low, the TMS34010 generates
internal wait states in increments of one full LCLK1 cycle in duration. LRDY
can be driven low to extend local memory read and write cycles, shift-
register-transfer cycles, and DRAM refresh cycles. During internal cycles, the
TMS34010 ignores LRDY.

LINT1,LINT2 Local Interrupt Request Pins. Interrupt requests from external devices are tran-
smitted to the TMS34010 on the LINT1 and LINT2 pins. Each pin activates the
request for one of two external interrupt request levels. An external device
generates an interrupt request by driving the appropriate interrupt request pin
to its active-low state. The pin should remain active low until the TMS34010
has recognized the request.

Transitions on the two interrupt request pins are assumed to be asynchronous
with respect to local clocks LCLK1 and LCLK2; the signals on these pins are
synchronized internally before being used internally.

The local interrupt pins are reconfigured during emulation and testing to per-
form special functions that are described in a separate emulation and testing
document.

LADO-LAD15} i/0 Local Address/Data Bus. LADO-LAD15 form the local multiplexed address/-
data bus. At the start of a memory cycle, two addresses (row and column) are
output on LADO-LAD15. During a read cycle, data are input on LADO-LAD15
during the latter part of the cycle. During a write cycle, data are output on
LADO-LAD15 during the latter part of the cycle. LADO is the LSB, and LAD15
is the MSB. During the time the row address is output on LADO-LAD14, status
bit RF is output on LAD15. RF is active low at the start of a DRAM-refresh
cycle (either RAS-only or CAS-before-RAS). During the time that the column
address is output on LADO-LAD13, status bits TR and IAQ are output on
LAD15 and LAD14, respectively. 1AQ is active high during a read cycle in
which the TMS34010 fetches an instruction word from the local memory.
During all other cycles, 1AQ is inactive low. TR is active low during shift-
register-transfer cycles. (The level output on LAD14 during_the high-to-low
transition of CAS is always the same as the level output on TR/QE during the
high-to-low transition of RAS.)

Note: The system designer must ensure that LRDY is not held low for so long that the TMS34010 is
prevented from performing the necessary number of DRAM refresh cycles or is prevented from re-
freshing the display by performing a VRAM memory-to-shift-register cycle during horizontal re-
trace.

2-8

Pin Functions - Video Timing Signals

2.4 Video Timing Signals

The video timing signals (BLANK, HSYNC, and VSYNC) are used to control the
horizontal and vertical sweep rates of the video monitor. They are also used
to synchronize the display on the monitor to video data output from the
VRAMs. Section 9 discusses video timing and screen refresh operations.

Table 2-4. Video Timing Signals

Signal

1/0

Description

1/0

Horizontal Sync. HSYNC is the horizontal sync signal used to contro! external
video circuitry. It is programmed as either an input or an output by means of
two control bits in the DPYCTL register. When configured as an output, the
active-low horizontal sync signal is generated by the TMS34010’s on-chip vi-
deo timers. When configured as an input, the TMS34010 synchronizes its video
timers to ." rnally-generated horizontal sync pulses. Immediately following
reset, HS™ ".- is configured as an input.

<
v
<
2
(@]

1/0

Vertical Sync. VSYNC is the vertical sync signal used to control external video
circuitry. It is programmed as either an input or an output by means of a control
bit in the DPYCTL register. When configured as an output, the active-iow ver-
tical sync signal is generated by the TMS34010’s on-chip video timers. When
configured as an input, the TMS34010 synchronizes its video timers to exter-
nally-generated vertical sync pulses. Immediately following reset, VSYNC is
configured as an input.

Blanking. BLANK is a composite bianking signal used to turn off the electron
beam of a CRT during both horizontal and vertical retrace intervals. This signal
may also be used to control the starting and stopping of the VRAM shift regis-
ters.

VCLK

Video Clock. VCLK is derived from the dot clock of the external video system
and is used internally to d- . _the TMS34010's video timing logic. The signals
output at the BLANK, H{ ("IT, and VSYNC pins are synchronous to VCLK.
VCLK is not required to have any timing relationship with respect to INCLK; that
is, VCLK and INCLK can be asynchronous. In order to read HCOUNT and
VCOUNT registers reliably, VCLK should be held high during the read. In sys-
tems which do not use the video timing registers or require automatic screen
refreshing, VCLK can be strapped high.

Note: During factory testing, the HSYNC and VSYNC pins are configured to scan data in and out of the
two internal shift register scan paths.

2-9

Pin Functions - Hold and Emulator Interface Signals

2.5 Hold and Emulator Interface Signals

The TMS34010 hold interface permits other devices to request and be granted
control of the local interface bus.

The emulator interface is used to control the TMS34010 when it is used for
emulation. The RUN/EMU pin may remain unconnected in nonemulation ap-
plications.

Table 2-5. Hold and Emulator Interface Signals

Signal

1/0 Description

HOLD

| Hold Request. The HOLD pin is driven active low by an external device to
signal a request that the TMS34010 release ownership of the local memory bus.
Once the TMS34010 has acknowledged the hold request via a hold acknowl-
edge signal, the external device assumes ownership of the bus. The device must
continue to assert its hold request until it has released the bus.

O | Hold Acknowledge and Emulate Acknowledge. The HLDA, T "AT-A pin is mul-
tiplexed between two functions — acknowledgment of holda requests and ac-
knowledgment of emulation requests. The hold acknowledge signal (HLDA)
is output during f*___ . Q3 and Q4 of the local clock cycle. The emulate ac-
knowledge signal "% A) is output during phases Q1 and Q2. HLDA is driven
active low in response to a hold request from an external device, but not until
the TMS34010 has released the bus to the requesting device. The device must
delay taking possession of the bus until it has received an active HLDA signal.
Once an active-low hold acknowledge signal has been transmitted during
Q3-Q4, it will continue to be transmitted during Q3-Q4 of each local clock
period until the external device ceases to assert its hold request.

EMUA is driven active low to indicate to external circuitry that the 1°.1 4010
has hi_ 1 in response to an EMU command input on the RUN,- %% pin.
HLDA %% JA is also driven low when an EMU opcode is executed by the
TMS34010, but only during phases Q1 and Q2 of a single LCLK1 cycle. Exe-
« -+ of an EMU opcode causes an active-low signal to be output at the HLDA
77T A pin during phases Q1 and Q2, so external devices that generate hold
requests should avoid interpreting these signals as hold acknowledgment.

RUN/E

E=<

U -

| Run/Emulate. This pin is defined as a no-connect during normal system oper-
ation. The RUN/EMU pin should not be pulled low except i-.: ng factor testing
or chip emulation. An internal pull-up load permits RUN . ".*"J to remain un-
connected during normal use.

Pin Functions - Power, Ground, and Reset Signals

2.6 Power, Ground, and Reset Signals

Six TMS34010 pins are dedicated to ground and power supply. Section 8
‘provides more details about RESET.

Table 2-6. Power, Ground, and Reset Signals

Signal /0 Description
Vee ! Vee (2 pins). Two +5-volt power supply inputs.
Veg I Vgg (4 pins). Four electrical ground inputs.
R 1 Reset. F.: .7 is pulled low to reset the device during norma! operation.

While RESET is asserted low, the internal registers of the TMS34010 are set
to an initial known state, and all output and bidirectional pins are driven ei-
ther to inactive levels or to high impedance. The behavior of the TMS34010
chip following reset depe- : on the level of the HCS input just prior to the
low-to-high transition of T .ET. If HCS is low, the GSP begins executing
the instructions pointer to by the reset vector. If HCS is high, the GSP is
halted until a host processor writes a O to the HLT bit in the HSTCTL register.

Transitions on the RESET pin are assumed to be asynchronous with respect
to local clocks LCLK1 and LCLK2; the signal input on this pin is synchro-
nized internally before it is used internally.

During factory testing or chip emulation, RESET is used in conjunction with
RUN/EMU, HOLD, LINT1, and LINT2 to configure -1+ TMS34010 into the
required test or emulation mode. As long as RUN; 7.5 J is not pulled low,
however, the RESET, HOLD, TINT1, and LINT2 pins are configured for nor-
mal system operation.

This page intentionally left blank.

3. Memory Organization

This section presents details of physical and logical addresses, illustrates the
TMS34010 memory map, and describes stack operation.

Section Page
3.1 Memory AdAresSsSing ..ccceccooviriieereniieees et ste e e s sasseessre b neaneens 3-2
3.2 Memory Map
3.3 SHACKS oot e e bbb e

3-1

Memory Organization - Memory Addressing

3.1 Memory Addressing

3-2

The TMS34010 is a bit-addressable machine with a 32-bit internal memory
address. Each 32-bit address points to an individual bit within memory. Fig-
ure 3-1 shows the logical memory structure. Memory is accessed as a con-
tinuously addressable string of bits. Groups of adjacent bits form data
structures called fie/ds (see Section 4). The GSP supports field lengths from
1 to 32 bits. The total memory capacity is four gigabits (or 512 megabytes);
the TMS34010 supports external addressing of 128 megabytes. Bit addresses
range from >0000 0000 to >FFFF FFFF.

32-Bit
Logical Address
N
memory | | I4] [T I [T T 11 lal 1]
BTn BTn BTlt I];t Bit Bit
232_4 N+1 N N-1 10

Figure 3-1. Logical Memory Address Space

Figure 3-2 shows the physical memory organization. The GSP communicates
with memory over a 16-bit data bus, and always reads or writes a complete
16-bit word from or to memory. The word accessed during a memory cycle
always begins on an even 16-bit boundary. That is, the four LSBs of the
32-bit starting address of the word are 0s. Bits within a word are numbered
from O to 15; bit 15 is the MSB and bit O is the LSB. A word is identified by
the address of its LSB. In this document, the LSB of a memory word will be
depicted as the rightmost bit in the word.

¢ 2 32-Bit Logical Address P

MSBs |, 26-Bit L6Bs

4 Physical Address

31 3029 N 4/3 0
— ——
Not Used Select Bit Boundary
Externalty Within Word

Memory | Word N+1 | word N | word N-1 [

151413121110 9 8 7 6 & 4 3 2 1 0O

MSB LSB

Figure 3-2. Physical Memory Addressing

Memory Organization - Memory Addressing

The four LSBs of the 32-bit logical address in Figure 3-2 do not appear on the
local memory bus. When the GSP extracts data that does not begin and end
on even word boundaries these four LSBs are used internally to indicate a bit
boundary within an accessed word. Control logic at the local memory inter-
face automatically performs the bit alignment and masking necessary to extract
the data structure from physical memory. This is completely transparent to
software. If the data structure being extracted straddles the boundary between
two or more words, multiple read cycles are required. Similarly, inserting a
data structure into memory may require a series of read and write cycles, ac-
companied again by the internal masking and shifting of data to properly align
the data structure within memory.

The two MSBs of the 32-bit logical address are not output. The TMS34010
supports an external address range of 128 megabytes of physical memory.

3-3

Memory Organization - Memory Map

3.2 Memory Map

Figure 3-3 shows the TMS34010 memory map. The memory is divided into
three regions:

[Trap vectors
) 1/0 registers (on chip)
[General use

Memory is logically organized as four gigabits, but is physically accessed 16
bits at a time. Locations are shown as 16-bit words, identified by 32-bit ad-
dresses whose four LSBs are Os. Word addresses range from >0000 0000 to
>FFFF FFFO. Bit address >0000 00O0O is the rightmost bit in the word at the
bottom of the map; bit address >FFFF FFFF is the leftmost bit in the word at
the top of the map.

Reading or writing to an address in the range >C000 0000 to >C000 01F0
accesses an internal 1/0 register. Reading or writing to any address outside
this range accesses off-chip memory (or a memory-mapped device) external
to the TMS34010.

Bit 232 1
{Last bit in memory)
Address [
>FFFF FFFO
84 Words Interrupt
Veotors
>FFFF FCOO
>FFFF FBFO [512 words
Reserved
>FFFF E000
>FFFF DFFO *
226_1024 Words S::em
>C000 200G
>C000 1FFD
Reserved
>CO00 0200 §12 Words
>C000 O1FO
Internal 1/0
32 Words Reglsters
>C000 . ..
>BFFF FFFO
General
3x22% Words Use
>0000 0000

Bit O
I' 16 4 (First bit In memory)

Figure 3-3. TMS34010 Memory Map

3-4

Memory Organization - Memory Map

Addresses >FFFF FCOO through >FFFF FFEO are reserved for 32 interrupt,
reset, and trap vectors. A vector is a 32-bit address that points to the starting
location in memory of the appropriate interrupt, reset, or trap service routine.
Each address is stored in physical memory as two consecutive 16-bit words,
with the 16 LSBs at the lower address.

The 480 words from >C000 0200 to >C000 1FFO are reserved for future ex-

pansion of the |/O registers. The 448 words from >FFFF EOOO to
>FFFF FBFO are reserved for future expansion of the interrupt vectors.

3-5

Memory Organization - Stacks

3.3 Stacks

The TMS34010’s system stack is implemented in local memory via a dedicated
stack pointer (SP) register. The system stack is managed in hardware, and is
used to store return addresses and processor status information during inter-
rupts, traps, and subroutine calis. The contents of selected registers in the A
and B files can be pushed onto the stack and popped off the stack. The sys-
tem stack area can also be used for dynamically allocated data storage. The
SP is a dedicated 32-bit internal register that points to the top of the system
stack. The SP can be accessed by instructions that manipulate registers in
either register file.

in addition to the system stack, one or more auxiliary stacks can be managed
in software. The system stack always grows toward lower memory addresses,
while the auxiliary stack can be defined to grow toward either lower or higher
addresses. The MOVE and MOVB instructions, combined with the automatic
predecrement and postincrement addressing modes, facilitate pushing and
popping auxiliary stack data. One or more registers in the A or B files can be
used by software as auxiliary stack pointers and frame pointers. The indexed
addressing modes can be used in conjunction with a frame pointer to access
variables embedded within the stack.

3.3.1 System Stack

3-6

Figure 3-4 shows the structure of the system stack, which grows in the di-
rection of lower memory addresses. The SP points to the top of the stack.
That is, it contains the 32-bit address of the LSB (bit 0) of the value on top
of the stack. The SP may contain any 32-bit value; however, stack operations
execute more efficiently when the four LSBs of the SP are Os. This aligns the
SP to word boundaries in memory, reducing the number of memory cycles
necessary to push values onto the stack or pop values off the stack.

During an interrupt, the PC (program counter) and ST (status register) are
pushed onto the stack. Instructions that push values onto the system stack
include:

® MMTM SP,<register list>
CALL RS

CALLA <absolute address>
CALLR <relative address>
TRAP <number>

PUSHST

MOVE RS,-"SP

Memory Organization - Stacks

Instructions that pop values off the system stack include:

® MMFM SP,<register list>

] RET!

] RETS

(] POPST

] MOVE *SP+,RD

Memory
e e,
———16
Highest Address K —
Stack Bottom R
System
Stack
Area
324
P [+ >

v

Lowest Address
Figure 3-4. System Stack

From one to 16 registers in the A or B file can be moved to or from the stack
in a single instruction. The MMTM instruction may be used to push multiple
registers onto the stack, and the MMFM instruction may be used to pop mul-
tiple registers from the stack. The second word of either instruction is a 16-bit
mask, generated from a register list, that specifies which registers in the A or
B file are being moved.

The SP can be specified as the source or destination operand in any in-
struction that operates on the general-purpose registers. Instructions that
manipulate registers in the A file or B file can also be used to manipulate the
SP. .

3-7

Memory Organization - Stacks

The GSP pushes the contents of a 32-bit register onto the top of the stack
according to the following sequence of events:

1) The SP is decremented by 32.
2) The register is pushed onto the stack.

The GSP pops the top of stack into a 32-bit register according to the follow-
ing sequence of events:

1) The 32 bits at the top of the stack are popped into the register.
2) The SP is incremented by 32.

During an interrupt, the PC and ST are pushed onto the stack to permit the
interrupted routine to resume execution when the interrupt processing is
completed. The following actions occur during an interrupt routine:

1) The SP is decremented by 32.

2) The PC is pushed onto the stack.

3) The SP is again decremented by 32.
4) The ST is pushed onto the stack.

During a return from an interrupt:

1) The 32 bits at the top of the stack are popped into the ST.

2) The SP is incremented by 32.

3) The 32 bits at the top of the stack are popped into the register.
4) The SP is again incremented by 32.

A subroutine call saves the state of the calling routine on the stack to aliow
the routine to resume execution when subroutine execution is completed.
During a subroutine call, the following actions are taken:

1) The SP is decremented by 32.
2) The PC is pushed onto the stack.

During a return from a subroutine,

1) The 32 bits at the top of the stack are popped into the PC.
2) The SPis incremented by 32.

3-9

Memory Organization - Stacks

3.3.2 Auxiliary Stacks

3-10

Auxiliary stacks may be managed in software. Any A- or B-file register, except
the SP, may be used as the auxiliary stack pointer. Auxiliary stacks are typi-
cally used to contain dynamically allocated data storage.

In the following discussion, the symbol S7K denotes the auxiliary stack poin-
ter. The STK may contain any 32-bit value; however, stack operations execute
more efficiently when the four LSBs of the STK are 0s. This aligns the STK
to word boundaries in memory, reducing the number of memory cycles nec-
essary to push values onto the stack or pop values off the stack.

As shown in Figure 3-6 and Figure 3-7, the auxiliary stack can be configured
to grow in either direction in memory. The memory is shown in these figures
as a large set of continuously addressable bits (ignoring for the moment the
fact that memory is physically organized as 16-bit words).

The stack shown in Figure 3-6 grows toward lower memory addresses. The
original stack is shown in Figure 3-6 a. In b, a field of arbitrary size is pushed
onto the stack via a MOVE RS, *-STK instruction (where RS and STK represent
general-purpose registers). The field is popped off the stack by a MOVE
*STK+,RD instruction in ¢. Between instructions, the STK always points to
the lowest bit address in the stack — this corresponds to the very top of the
stack.

The MMTM STK,<register list> instruction can be used to save multiple
registers on the stack in Figure 3-6. Later, the registers can be restored to their
former values by means of an MMFM STK,<register 1list> instruction.

Stack
s
0 C =
«— .r'\&:dresa Add:_:;_’
® ¢ Fleld T LS
o
Stick
o g

[

8TK

Figure 3-6. Auxiliary Stack Grows toward Lower Addresses

This page intentionally left blank.

4., Hardware-Supported Data Structures

The TMS34010 supports several data structures at the machine level:

Fields are configurable data structures whose length can be defined
within the range 1 to 32 bits. Two field sizes can be defined simul-
taneously. A field can begin and end at arbitrary bit addresses.

Bytes are a special case of field in which the field length is fixed at eight
bits and is sign extended. Bytes can begin on any bit boundary within
a word.

Pixels are configurable data structures; pixel length can be programmed
to be 1, 2, 4, 8, or 16 bits (always a power of two). Pixels are aligned
so that they do not cross word boundaries in memory.

Two-dimensional pixel arrays are rectangular groups of pixels that
are manipulated using the PIXBLT (pixel block transfer) and FILL (pixel
block fill) instructions. A pixel array can be moved from one area of
memory to another in a single PixBIt operation. It can be combined with
another array of the same size by performing Boolean or arithmetic op-
erations on the corresponding pixels of the two arrays.

The number of bits in a pixel, field, or array is programmable, but byte length
is fixed. Two field sizes and one pixel size can be specified simultaneously.
The size and starting addresses of the pixel arrays that are manipulated during
a PixBlt operation are specified by the values loaded into dedicated hardware
registers.

Topics in this section include:

Section

4.2 Pixels ..coocoovvieeens
4.3 XY Addressing
4.4 PiXEl AITAYS .ooiiiiiiiiiieciii ittt st en e bt res e ae s

LS T=1 o £ O S USSP

4-1

Hardware-Supported Data Structures - Fields

4.1 Fields

4-2

The TMS34010 supports two software-configurable field types, Field 0 and
Field 1. A field in memory is defined by two parameters:

) Starting address
® Field size (1 to 32 bits)

A field's starting address is the address of the field’s LSB. A field can begin
at an arbitrary bit address in memory. When a field is moved from memory to
a general-purpose register, the field is right justified within the register; that
is, the field’s LSB coincides with the register’s rightmost bit (bit 0). The reg-
ister bits to the left of the field are all 1s or all Os, depending on the values of
both the appropriate FE (field extension) bit in the status register, and the sign
bit (MSB) of the field. If FE=1, the field is sign extended; if FE=0, the field
is zero extended.

Field size can range from 1 to 32 bits. The lengths of fieids O and 1 are defined
by two 5-bit fields in the status register, FSO and FS1.

Figure 4-1 illustrates a field in memory. In this example, the field straddles the
boundary between words A and NV+7 in memory. Field extraction and in-
sertion is performed by on-chip hardware:

° To move the field to a general-purpose register, the TMS34010 extracts
the field from memory by reading word NV and word N+7 in separate
cycles.

® To move the field from a general-purpose register, the TMS34010 inserts
the field into memory by reading and writing word #, and reading and
writing word NV+7.

The memory operations necessary to insert or extract a field are performed
automatically by special hardware, and are transparent to software.

32-Bit Logical Address b
2 26-Bit o A
l—
MEBs Physical Address =588
31 30|29 N 413 o

]

Memory

}¢—WOrd N+1 ———le——— Word N——+|
Flaid
Size

Figure 4-1. Field Storage in External Memory

Hardware-Supported Data Structures - Fields

In Figure 4-1, word NV is pointed to by a 26-bit physical address output by the
GSP to memory. This 26-bit address corresponds to bits 4-29 of the field's
32-bit logical address. The four LSBs of the logical address point to the be-
ginning of the field within word M.

The number of memory cycles required to extract or insert a field depends on
how the field is aligned in memory. Field manipulation is more rapid when
fields are stored in memory so that they do not cross word boundaries. Figure
4-2 illustrates various cases of alignment and nonalignment of fields to word
boundaries in memory. Given a field starting address and field length, the
memory controller will recognize the specified field alignment as one of the
seven cases in Figure 4-2. Field extraction and field insertion are performed
in a manner that requires the minimum number of memory cycles.

Case A Word N
— 16-Bit Fleld —

‘ A0 N I

[4— Flain

I Word N
Fleld —¥

Case B

: wild
Case C Word N+1 l Word N
———— 32-Bit Fleld ————
Case D WordN+1 | Word N |
————Flold ———¥
CaseE | WordN#l |- Word N
f——Field—¥
caseF | wordN+1 | WordN |
o —— Fleld———¥
cese@ | wadN+2. | WordN+1 | WwordN |
t Fleld ¥

Figure 4-2. Field Alignment in Memory

Case A A 16-bit field is aligned on word boundaries. Field extraction requires a single
read cycle, and field insertion requires a single write cycle.

Cases

B1-B3 The field length is less than 16 bits.

® In Case B1, the field starting address is not aligned to a word boundary,
although the end of the field coincides with the end of the word.

® In Case B2, the field starting address is aligned to a word boundary, but
the end of the field does not coincide with the end of the word.

® in Case B3, the field length is 14 bits or less, and neither the start nor the
end of the field is aligned to a word boundary.

4-3

Hardware-Supported Data Structures - Fields

4-4

Case C

Case D

Case E

Case F

Case G

For Cases B1-B3, a field extraction requires a single read cycle. A field in-
sertion requires the following sequence of memory cycles:

1) Read word NV

2) Write word NV

A 32-bit field is aligned on word boundaries. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+17

A field insertion requires the foliowing sequence of memory cycles:

1) Write word NV
2) Write word N+17

The field size is greater than 16 bits. The field starting address is not aligned
to a word boundary, but the end of the field coincides with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word NV
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Write word N+7

The field size is greater than 16 bits. The field starting address is aligned to a
word boundary, but the end of the field does not coincide with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word NV
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Write word NV
2) Read word N+7
3) Write word N+17

The field straddles the boundary between two words. Neither the start nor the
end of the field is aligned to a word boundary. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Read word NV
2) Write word NV
3) Read word N+17
4) Write word N+7

The field size ranges from 18 to 32 bits, and the field straddles two word
boundaries. Neither the start nor the end of the field is aligned to a word
boundary. A field extraction requires the following sequence of memory cy-
cles:

1) Read word N
2) Read word N+17
3) Read word N+2

Hardware-Supported Data Structures - Fields

A field insertion requires the following sequence of memory cycles:

1) Read word NV
2) Write word V
3) Write word MV+7
4) Read word N+2
5) Write word NV+2

A field insertion modifies only the portion of a word that lies within a field.
The GSP memory controller must perform a read-modify-write operation when
a field that does not begin and end on even 16-bit word boundaries is to be
written to memory. This occurs when the four LSBs of the address are not 0,
or when the specified field size is a value other than 16 or 32. The memory
controller uses these two parameters (address LSBs and field size) to produce
a mask that identifies the bits in the word corresponding to the field. Hard-
ware uses the mask to perform the read-modify-write cycle. The GSP's local
memory control logic automatically generates the the mask and executes the
read-modify-write operation; this is transparent to software.

Figure 4-3 shows an example of inserting a 5-bit field stored in a register to
logical address >0000 0008.

® in Figure 4-3 a, the field to be inserted is shown right-justified in the
16 LSBs of the designated general-purpose register.

® in b, memory controller hardware has rotated the field to align it with the
destination in memory.

® In ¢, the GSP reads the original word from the destination in memory.

® In d, the mask is generated to designate the bits to be modified.

® In e, the field is inserted into the word from memory, and the result is

written back to the destination address in memory.

%5 4 183 12 1 10 » 8 7 8 6§ 4 3 2 1 0
(@) Flald to be Inserted | X X X X X X X X X X X F F F F F|

(WRotate toaligntobit8 { X X X F F F F F X X X X X X X X]

(c) Initial cestination data |A A A A A A A A A A A A A A A A

(d) Mesk generated l]lo oo 1 1 1 1 1 0 0 06 0 0 0 0 o]

(e)Final destination data |[A A A F F F F F A A A A A A A Al

Figure 4-3. Field Insertion

In the more complex case in which a field straddles one or two word bound-
aries in memory, the portion of the field lying within each word is inserted into
that word using the methods described above.

4-5

Hardware-Supported Data Structures - Pixels

4.2 Pixels

The term pixel has two meanings in the context of a TMS34010-based
graphics system. Outside the GSP, a pixel is a picture element on a display
surface. Inside the GSP, a logical pixel is a software-configurable data struc-
ture supported by the GSP instruction set. The logical pixel data structure in
GSP memory contains the information needed to specify the attributes of a
picture element visible on a screen. The information for a horizontal line of
pixels on the screen is usually stored in consecutive words in memory.

4.2.1 Pixels in Memory

4-6

Within GSP memory, the pixel data structure is defined by two parameters:

® Starting address
® Pixel size

A pixel’s starting address is the address of the LSB of the pixel.

Pixel size (the number of bits per pixel} is defined in the PSIZE register. A
pixel can be 1, 2, 4, 8, or 16 bits long. The GSP treats pixels as a special case
of a field in which the field size is constrained to be a power of two. However,
pixels do not cross word boundaries within memory; they are aligned within
memory so that an integral number of pixels is contained within the bounda-
ries of a memory word. For example, a 2-bit pixel should begin at an even bit
address whose LSB is 0, a 4-bit pixel should begin at a bit address whose two
LSBs are Os, and so forth.

When a pixel is moved from memory to a general-purpose register, the pixel
is right justified within the register. That is, the LSB of the pixel coincides
with the rightmost bit (bit 0) of the register. Register bits to the left of the
pixel are loaded with Os.

Figure 4-4 illustrates pixel storage in memory. The pixel is located within the
word pointed to by the 26-bit physical address corresponding to bits 4-29 of
the 32-bit logical address of the pixel. The four LSBs of the logical address
specify the dispiacement of the pixel within the word. When the pixel length
is less than 16, each word contains two or more pixels.

Pixel extraction and insertion is performed by on-chip hardware in a manner
that requires the minimum number of memory cycles. (The operations are
transparent to the programmer.) In the worst case, two memory cycles (a read
followed by a write) are required to insert a pixel of less than 16 bits. Inserting
a 16-bit pixel requires a single write cycle, and extracting a pixel (1 to 16 bits)
requires a single read cycle.

Hardware-Supported Data Structures - Pixels

4-8

When XY addressing is used, the origin can be seiected to lie in either the
upper left or lower left corner of the screen. The position of the origin is
controlled by the ORG bit in the DPYCTL register. Figure 4-6 a illustrates the
default coordinate system (ORG=0), in which the origin of the two coordinate
axes is located in the upper left corner of the screen. Figure 4-6 b shows the
aiternate coordinate system (ORG=1) in which the origin is located in the
lower left corner of the screen.

(@ Monitor
Screen
Default
Scraen
Origin
Y
(b) Monitor
Screen
Y
Alternate
Screen
/ Origin

X

Figure 4-6. Configurable Screen Qrigin

Using the default screen origin, Figure 4-7 illustrates the mapping of pixels
from memory to the screen. In Figure 4-7, horizontal movement represents
travel in the X direction on the screen. Vertical movement represents travel in
the Y direction. The depth of the buffer represents the pixel size. The “on-
screen memory” contains the pixels that appear on the screen.

The display memory shown in Figure 4-7 is shown in terms of a "screen for-
mat” rather than the “memory format” used in the memory map shown in
Figure 3-3 on page 3-4. The screen format places the lowest pixel address
at the upper left corner of the memory map. This is the same relative orien-
tation in which pixels appear on the screen. Compare this to the memory
format shown in Figure 3-3, which places the lowest bit address at the lower
right corner of the memory map. This convention is frequently used in in-
dustry to represent the relative location of addresses in memory. In this doc-
ument, assume the standard memory format is used unless the screen format
is indicated.

Figure 4-8 illustrates the mapping of XY coordinates to the on-screen memory.
For simplicity, assume that the screen origin coincides with the upper left
corner of the display memory. P represents the X extent of the display memory
and N represents the Y extent. Each box represents a pixel within the memory.
The number within the box represents the pixel’s memory location, relative to
the beginning of the on-screen memory. The number in the box is muitiplied
by the number of bits per pixe! to produce the address offset of the pixel from

Hardware-Supported Data Structures - Pixels

the start of the display memory. Since the pixel size is constrained to be a
power of two, the multiply can be replaced by a simple shift operation.

Display Memory

¥
|
| |
' |
! On-Screen | Off-Screen Y
! Memory i Memory Extent
| |
' |
S
K2

f—x Extent——*L Pixel Size

inoreasing
Y Y=0

Y=1
Y=2

Y=N-2
Y=N-1

(blts/pixel)

Figure 4-7. Display Memory Dimensions

Increasing
X
X=0 X=1 X=2 ¥=3 X=P-2 X=P-1
0 1 2 | 3 [[P2 | P
P | Pt | Ps2 | Pe3 |\ \ 2p-2 | 2P-1
2P | 2P+1 | 2P+2 | 2P+3) Tap—z aP-1
o)p| IN-2)P [(N-2)P|(N-2)P (N-1)P[(N-T)P
(N-2)P| .5 i 2 | -1
_1)p|(N-1)P (N-1)P ~
(n-0p|(N-DPKNAP @ |/ [l np-2 | w1

L Each box contalns a pixel.

The number Iinside the box

Is the pixel's XY address.

Display Pitch= (X extent) x (pixel size)

of two vertically adjacent pixels

Figure 4-8. Display Memory Coordinates

Display Memory
P = X Extent
N = Y Extent

Differences in 32-bit memory addresses

4-9

Hardware-Supported Data Structures - Pixels

4.2.3 Display Pitch

The term display pitch refers to the difference in memory addresses between
two pixels that appear in vertically adjacent positions (one directly above the
other) on the screen. In Figure 4-8, the pitch is calculated as P times the pixel
size, where P is the X extent of the display memory.

The display pitch must be a power of two in order to support XY addressing
of pixels on the screen. Linear addressing of pixels on the screen imposes
fewer restrictions. In particular, the display pitch for linear addressing may be
any value that is a multiple of 16; that is, the four LSBs of the address must
be 0s. Of course, features such as automatic window checking are not avaii-
able with linear addressing.

The pitch of a pixel array is the difference in memory addresses of two verti-
cally adjacent pixels in the array. 1f the array occupies a rectangular area of the
screen, the array pitch is the same as the display pitch.

During a pixel operation such as a PixBlt, the source and destination array
pitches are specified in separate dedicated hardware registers. This facilitates
the transfer of pixel arrays between on-screen and off-screen memory, which
may have different pitches.

A sample display pitch calculation is shown below. In this example, the pixel
size is four bits and the X extent of the pixel display is 640 pixels. However,
since XY addressing and windowing are to be used, the physical memory is
organized so that there are 1024 pixels between successive scan lines. Thus,
the X extent of physical display memory is 1024, and the display pitch is:

Display Pitch = (1024 pixels/line) x (4 bits/pixel)
= 4096 (which is 212)

Hardware-Supported Data Structures - XY Addressing

4.3 XY Addressing

The TMS34010 aliows pixel addresses to be specified in terms of two-di-
mensional XY coordinates that correspond to locations on the screen. This is
referred to as XY addressing. XY addressing has several benefits:

® TMS34010 software can be easily ported from one display configuration
to another. System-dependent details such as the number of bits per
pixel and the X extent of the display memory are transparent to the
software, but are used by the machine to automatically convert the XY
coordinates to the address of a pixel in memory.

® XY addressing allows you to think in terms of the high—level concept of
XY coordinates rather than in terms of the machine-level mapping of
pixels into memory.

® XY addressing facilitates such functions as window clipping.

Figure 4-9 illustrates XY addressing format. The XY address is stored in a
32-bit general-purpose register. The X and Y components are each treated
as 16-bit signed integers. The X component resides in the 16 LSBs of the
register, and is right justified to bit O of the register. The Y component occu-
pies the 16 MSBs of the register, and is right justified to bit 16 of the register.
XY coordinates in the range (-32768,-32768) to (+32767,+32767) can be
represented. The clipping window, which identifies the pixels that can be al-
tered during drawing operations, is restricted to positive X and Y coordinate
values, (0,0) to (+32767,+32767). Thus, pixels identified by negative X or
Y coordinates must always lie outside the window.

16 16
I‘—— 32 _’i |‘—MSBs LEBs

[oFFser | i Y | X |

\

______ PIXEL AT
ST

Figure 4-9. Pixel Addressing in Terms of XY Coordinates

4.3.1 XY-to-Linear Conversion

The TMS34010 automatically converts a pixel’s XY address to a 32-bit logical
address (linear address) for all instructions that use XY addressing. Three
parameters are used to perform XY-to-iinear conversion:

® The logical pixel size (stored in the PSIZE register)
® A pitch conversion factor (stored in the CONVSP or CONVDP registers)
® An offset defining the XY origin (stored in the OFFSET register)

Hardware-Supported Data Structures - XY Addressing

The GSP uses the following formula to calculate the physical address associ-
ated with the XY address:

Address = [(Y x display pitch) OR (X x pixel size)] + offset

Since the display pitch and pixel size are both powers of two, the calculation
is performed using only shift, OR, and add operations. Window clipping may
be used to detect out-of-bounds (negative} X or Y values before this calcu-
lation is performed.

Linear addresses are formed from XY addresses by simply concatenating the
binary numbers that represent the X and Y coordinate values, as shown in
Figure 4-10. The number of Os to the right of the X component of the address
depends on the number of bits per pixel, and equals log,(pixel size). The
displacement of the Y component within the 32-bit logical address in Figure
4-10 is equal to logy(display pitch). Finally, a 32-bit offset is added to the
address in Figure 4-10 to calculate the address in memory of the pixel at co-
ordinates (X,Y). The offset corresponds to the linear address in memory of the
pixet at (0,0).

(o0 o]] Too.o]

N /
\'4 A TV

Y X
MSBs are Os Component Component L&Bs are Os

Note: The shift value for the Y component is contained in
CONVSP or CONVDP register, depending on the instruction being exe-
cuted.

Figure 4-10. Concatenation of XY Coordinates in Address

The GSP uses the pitch conversion factors CONVSP and CONVDP to com-
pute the displacement of the Y component within the address, as shown in
Figure 4-10. The Y component is displaced from bit O of the address by an
amount equal to logs(pitch), which the hardware obtains by inverting the five
LSBs of the appropriate CONVSP or CONVDP register. These values must
be loaded through software before executing an instruction that uses XY ad-
dressing. CONVSP (source address pitch) is used if the XY address points to
a source pixel or pixel array; CONVDP (destination address pitch) is used if
the XY address points to a destination pixel or pixel array. The pixel size stored
in the PSIZE register is used similarly to determine the displacement of the X
component, as shown in Figure 4-10.

The OFFSET register contains the linear memory address of the pixel located
at coordinates (0,0) on the monitor screen. The OFFSET register is used in
translating XY coordinates into linear addresses, but does not control which
region of the display memory is output to refresh the video screen. It is a vir-
tual screen origin. It allows the coordinate axes of the XY address to be
translated to an arbitrary position in memory. The OFFSET register supports
the use of "window relative” addressing in which the X and Y coordinates are
specified relative to coordinate offsets in the display memory. The position
and size of a window can be specified arbitrarily. A new offset specified in
terms of XY coordinates can be converted to a linear address using the CVXYL
instruction. CVXYL converts an XY address to a linear address for the purpose
of absolute memory addressing, or to use special features available to in-
structions that use linear addressing. Figure 4-11 illustrates the XY-to-linear
conversion process.

Hardware-Supported Data Structures - XY Addressing

31 16 15)]
(a) Original XY address l y [000009 X |
(b) Extract 18 L8Bs and [6500066000000000000000___ X _]
O R kel oize) [06000000000000000000 X 09
(@ E’r‘féﬂ&‘. X ooy l Y 10000000000000000]
o) ey (vartica pitoh) [oooo] Y oo000000000d
O oites X ha bommanenta [2000] Y X 1od
@ 283;33:%2?&?&‘& | Memory Address |

get final memory address
Figure 4-11. Conversion from XY Coordinates to Memory Address

[) Step a shows the original XY address.

The X component is extracted in step b.

In step ¢, the X component is shifted left by logo(pixel size). The resuit

of step ¢ represents the product of the X component and the pixel size.

® The Y component is extracted in step d.

® In step e, the Y component is rotated left by 16+iogo(display pitch).
The result of step e is Y multiplied by the display pitch.

[In step f, the results of steps ¢ and e are bitwise-ORed to form the dis-
placement in memory of the pixel at (X,Y) from the pixel at the origin.
[In step g, the offset is added to produce the final memory address.

The example of Figure 4-11 corresponds to a pixel size of four bits and a pitch
of 4,096. The six MSBs of the X half of the XY address (bits 10-15) in Figure
4-11 must be Os to produce a valid memory address. For this example, the
clipping window should be set to disable writes to pixels having X coordinate
values outside the range 0 to +1023.

Generally, given a display with a pitch of 2", a valid memory address is pro-
duced by the XY translation process shown in Figure 4-11 when only the n
LSBs of the X half of the XY address are nonzero (that is, when the 15-n
MSBs are 0). X values may be in the range -32768 to +32767 before clip-
ping. However, after clipping, the X value should be a positive number in the
range 0 to (X extent -1), where X extent = pitch/pixel size. The GSP’s auto-
matic window clipping can be configured to clip pixels lying outside the
window; hence, no software overhead is incurred in clipping. Y values 1ying
outside the window are clipped in a similar fashion.

Graphics Operations - Pixel Arrays

4.4 Pixel Arrays

A rectangular area of the screen that is DX pixels wide and DY pixels high is
an example of a data structure called a two-dimensional pixel array. The array
contains DX x DY pixels, but can be manipulated by the TMS34010 as one
structure. The TMS34010’s instruction set includes a powerful set of raster
operations, called PixBlts, that manipulate pixel arrays on the screen and
elsewhere in memory.

Figure 4-12 shows a pixel array occupying a rectangular region in display
memory. The DX pixels in each row of the array are packed together into ad-
jacent cells in the display memory. Rows do not generally occupy adjacent
areas of memory, but are separated from each other by a constant displace-
ment called the array pitch. The array pitch is the difference in memory ad-
dresses between the start of one row and the start of the row directly beneath
it. In the Figure 4-12 example, the array pitch is equal to the display pitch.
The product of the array width DX and the pixel size must be less than or equal
to the pitch.

Dispiay Memory

Default

Starting 2-Dimenslonal

Address Pixel Array
A\

LT :

Ay
f————Ax———

AX = Pixels per row of array
AY = Pixeis per oolumn of array

Figure 4-12. Pixel Array

A pixel array is specified in terms of its width, height, pitch, and starting ad-
dress. The starting address is the address of the first pixel to be moved during
a PixBlt. The default starting address is simply the base address of the array;
that is, the address of the pixel that has the lowest address in the array.

If as shown in Figure 4-12, the XY origin is located in its default position at
the upper left corner of the screen. The default starting address is the address
of the pixel located in the upper left corner of the array. When a PixBlt oper-
ation moves the pixels from a source pixel array to a destination array, the
pixels in each row are moved in sequence from left to right, and the rows are
moved in sequence from top to bottom.

Graphics Operations - Pixel Arrays

Certain PixBlt operations allow the starting pixel to be specified as one of the
pixels in the other three corners of the array. This feature is provided so that
when the source and destination arrays overiap, the appropriate starting corner
can be selected to ensure that no data is lost by being overwritten during
PixBlt execution. The order in which pixels in the array are moved can be af-
tered to be from right to left or from bottom to top as appropriate to accom-
modate the change in starting corner.

The starting address of a pixel array can be specified either in terms of the XY
coordinates of the starting pixel (XY address), or the memaory address of the
starting pixel (linear address):

® An array whose starting location is specified as an XY address is referred
to as an XY array. In this format, the starting location of the array is
identified by the XY coordinates of the first pixel in the array.

® A pixel array whose starting location is specified as a memory address
is referred to as a /inear array. In this format, the location of the array is
identified by the memory address of the first pixel (the pixel that has the
lowest bit address) in the array.

The XY array format has two advantages. First, the starting location of the
array is specified in system-independent Cartesian coordinates rather than as
a system-dependent memory address. Second, the GSP’s window checking
(which allows it to automatically detect an attempt to write a pixel inside or
outside a specified window) can only be used in conjunction with XY ad-
dressing.

The linear format’s main advantage is that the array pitch does not have to be
a power of two. This supports a wider variety of memaory organizations. Using
XY format, the array pitch is constrained to be a power of two.

The general rules governing array pitch are as follows. When an array is spe-
cified in XY format, the pitch must be a power of two. The pitch for an array
specified in linear format may be any multiple of 16; that is, the four LSBs of
the pitch must be Os. There are a few important exceptions to the second rule
which are discussed below.

For the special case of a PIXBLT B,XY or PIXBLT B,L instruction, the source
pitch may be any value. This feature supports efficient use of memory by al-
lowing adjacent rows of the source array to be packed together with no in-
tervening gaps. The destination pitch must still be a multiple of 16.

Under certain conditions the linear source array specified for a PIXBLT L XY
or PIXBLT B,XY must have a pitch that is a power of two. This is necessary
when the linear start address for the array has to be adjusted in the Y direction
due to one of the following conditions:

[] The source array is automatically preclipped to lie within a rectangular
window.

® One of the lower two corners of the source array (refer to Figure 4-12)
is selected to be the start address.

In either case, the start addresses specified for both the source and destination
arrays are automatically adjusted, and for this purpose the conversion factors
specified in the CONVSP and CONVDP registers must be valid.

Graphics Operations - Pixel Arrays

While PixBlts are useful for moving arrays from one area of the screen to an-
other, they can also be used to move arrays to the screen from other parts of
memory, and vice versa. The pitch for the off-screen pixel array can be spec-
ified independently of the pitch for the on-screen array. This permits off-
screen data to make efficient use of storage, regardless of the display pitch.
On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. The PIXBLT instructions support
the transfer of a linear array to an XY array, and vice versa. PIXBLT in-
structions can also be used to rapidly move blocks of non-pixel data (ASCII
characters, for example) from one location in memory to another.

5. CPU Registers and Instruction Cache

The TMS34010’s on-chip CPU includes two general-purpose register files, file
A and file B. Each register file contains 15 32-bit registers. The two files share
a 32-bit hardware stack pointer (SP) that automatically manages the system
stack during interrupts and subroutine calls. The CPU also contains two
dedicated 32-bit registers — a program counter and a status register. An on-
chip cache memory holds up to 128 instruction words, and is transparent to
software. The CPU registers and instruction cache are discussed in the fol-
lowing sections:

Section
5.1 General-Purpose Registers
5.2 Status Registercoeeene.
5.3 Program Counter
5.4 Instruction Cache
8.5 Internal Parallelism ...

In addition to the CPU registers, the TMS34010 contains 28 memory-mapped
registers that are dedicated to 1/O functions. These are described in Section
6.

5-1

CPU Registers and Instruction Cache - General-Purpose Registers

5.1 General-Purpose Registers

The TMS34010 has 30 32-bit general-purpose registers, divided into register
files A and B. In addition, a single stack pointer (SP) is common to both re-
gister files.

The multiple internal data paths linking the ALU and general-purpose registers
provide single machine state execution of most register-to-register in-
structions. Single-state instructions include add, subtract, Boolean oper-
ations, and shifts (1 to 32 bits). During a single-state instruction, the
following actions occur:

1) Two 32-bit operands are read in parallel from the general-purpose reg-
isters.

2) The specified operation is performed by the ALU.
3) The 32-bit result is stored in the specified general-purpose register.

The general-purpose registers are dual-ported to permit operands to be read
from two independent registers at the same time.

5.1.1 Register File A

5-2

Fifteen of the 30 general-purpose registers, AO-A14, form register file A.
These registers can be used for data storage and manipulation. No hard-
ware-dedicated functions are associated with these general-purpose registers.

All register-to-register instructions (except MOVE RS,RD) require both regis-
ters to be in the same file. Instructions used to manipulate registers AO-A14
can also be used to manipulate the stack pointer. The SP can be specified in
place of an A-file register in any of these instructions. Figure 5-1 illustrates
register file A.

31(MSB) 0(LSB)

AO
Al

A3

A5
A8
A7
A8
A9
At0
A1
At [
A13
At
sp Stack Pointer

Figure 5-1. Register File A

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.2 Register File B

Register file B consists of 15 general-purpose registers, BO-B14. All regis-
ter-to-register instructions (except MOVE RS,RD) require both registers to be
in the same file. Instructions used to manipulate registers BO-B14 can also
be used to manipulate the stack pointer. The SP can be specified in place of
a B-file register in any of these instructions.

Registers BO-B14 can be used for general-purpose functions such as data
storage and manipulation. During PixBlt and other pixel operations, however,
these registers are assigned hardware-dedicated functions.

31MsB) . 0(L8B)
N Source Address
Bo SADOR (P.XBLTs)
Bl SF'1:CH Souroe Pltoh
: [= " nation Address
B2 DAE?DR l.00:1 s and FlLLs)
B3 DPT;CH Destination Pitch
B4 OFFSET Offset
B85 WSTIART Window Start
B6 WEND Window End
B7 DYPX Delta Y / Delta X
B8 COLORO P
na ¥ COLOR1
coLoRt (PIXBLT Bs, FiLLs AND DRAV)
B1O COl‘JNT
Bt INC1
4 These are used as temporary
B2 INC2 storage for P1aB. T an
\ FILL Instructions.
B13 PAT‘I'RN
B# TEA‘AP
T
&P Stack I?olnter
T

Figure 5-2. Register File B

As Figure 5-2 shows, registers BO~B9 are used as special-purpose registers
during pixel operations. These registers must be loaded with specific param-
eters before execution of pixel operations. Registers B10-B14 are used as
special-purpose registers for the LINE instruction. During pixel operations,
registers B10-B14 are used for temporary storage; their previous contents are
destroyed. Register functions may vary for individual instructions.

The B-file registers are described in detail in Section 5.1.4.

5-3

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.3 Stack Pointer

5-4

The stack pointer (SP), shown in Figure 5-3, is a 32-bit register that contains
the bit address of the top of the system stack. Section 3.3 describes stack
operation in detail. The SP appears as a member of both the A and B files,
and can be specified as the operand in any instruction that manipulates the
general-purpose registers. The machine contains only a single SP, but this
SP can be addressed as a member of ejther register file, A or B.

31 43 0
[Word Addie [Bit Addr }
je——————28 bits —————»je—4 bits |

Figure 5-3. Stack Pointer Register

The system stack grows in the direction of smailer addresses. During an in-
terrupt, the PC and ST are pushed onto the stack to permit the interrupted
routine to resume execution when interrupt processing is completed. A sub-
routine call saves the PC on the stack to allow the calling routine to resume
execution when subroutine execution is completed.

The stack pointer always points to the value at the top of the stack. Specif-
ically, the SP contains the 32-bit address of the LSB of that value. While the
four .SBs of the SP may be set to an arbitrary value, stack operations execute
more efficiently when the four LSBs are 0s. Setting these bits to Os aligns the
stack pointer to 16-bit word boundaries in memory, reducing to two the
number of memory cycles necessary to push or pop the contents of a 32-bit
register.

The SP can be specified as the source or destination operand in any instruc-
tion that operates on the general-purpose registers. The SP can be accessed
as register 15 in file A or B. Refer to the descriptions of the specific in-
structions for details.

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.4 Implied Graphics Operands

Table 5-1 summarizes the B-file register functions during pixel operations.
These registers are referred to as /implied graphics operands. Several 1/0 reg-
isters, described in Section 6, are also implied graphics operands. Individual
descriptions of the B-file registers follow Table 5-1.

Table 5-1. B-File Registers Summary

Reg. Function Description

BO SADDR Source Address. Address of the upper left corner of the source pixel array
(lowest pixel address in the array). SADDR is a linear or XY address, depend-
ing on the instruction which uses it.

B1 SPTCH Source Pitch. Difference in linear start addresses between adjacent rows of a
source pixel array.

B2 DADDR Destination Address. Address of the upper left corner of the destination pixel
array (lowest pixel address in the array). DADDR is a linear or XY address,
depending on the instruction which uses it.

B3 DPFTCH Destination Pitch. Difference in linear start addresses between adjacent rows
of a destination pixel array.

B4 OFFSET Offset. Linear bit address corresponding to XY-coordinate origin (X=0, Y=0).

BS WSTART | Window Start Address. XY address of the upper left corner of the window
(smallest X and Y coordinate values in the array).

31 16 15 0
I Starting Y I Starting X

B6 WEND Window End Address. XY address of the lower right corner of the window
{largest X and Y coordinate values in the array).

31 16 15 0,
r Ending Y | Ending X I

B7 DYDX Defta Y/Delta X. The 16 LSBs of this register specify the width (X dimension)
of the source array in terms of either pixels or bits, depending on the instruc-
tion. The 16 MSBs specify the height (Y dimension) of the source array. If
either DY = 0 or DX = 0 then nothing is moved.

31 16,15 0
Delta Y | Delta X

5-5

CPU Registers and Instruction Cache - General-Purpose Registers

Table 5-1. B-File Registers Summary (Concluded)

Reg. Function Description

B8 Color 0 Pixel value corresponding to "color 0”. COLORO contains the source back-
ground color to be used during a bit-expand operation (PIXBLT B,XY or
PIXBLT B,L). The pixel value should be replicated throughout the 16 LSBs
of register B8 (see note below). Non replicated patterns may be entered for
dithering effects. The 16 MSBs are ignored during the expand operation. For
example, at four bits per pixel, COLORO contains four identical pixel values,
as shown below.

31 28 27 24 23 20,19 16,15 12 11 8,7 4.3 0

LPAer I Pixel I Pixel] Pixel Lxeli Pixel I Pixel l Pixel i

Each of the 16 LSBs of COLORO is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLORO bit 0 is associated with
bit O of the data bus (the bit transferred on LADO), COLORO bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLORO are
output over a portion of the data bus, including a bit n of the bus, as an ex-
ample, bus bit 17 contains the value from bit n of COLORO.

B9 Color 1 Pixel value corresponding to "color 1. COLOR1 contains the source fore-
ground color to be used during a bit-expand, fill, or draw-and-advance oper-
ation. The pixel value should be replicated throughout the 16 LSBs of register
B9 (see note below). Nonreplicated patterns may be entered for dithering ef-
fects. The 16 MSBs are ignored during the expand operation. For example,
at four bits per pixel, COLOR1 contains four identical pixel values, as shown
below.
31 28 27 24 23 20,19 16,15 12 11 8 7 4 3 0

[Pixel | Pixel | Ppixel | Pixel | Pixel | Pixel | Pixel | Pixel |

Each of the 16 LSBs of COLOR1 is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLOR1 bit O is associated with
bit O of the data bus (the bit transferred on LADO), COLOR1 bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLOR1 are
output over a portion of the data bus, including bit n of the bus, bus bit n
contains the value from bit n of COLOR?.

B10-B14 PixBlt temporary registers. PixBlt instructions use these registers for storing
temporary values and context information necessary to resume execution of a
partially-completed PixBlt operation in the event of an interrupt.

spP sp Stack pointer. SP contains the bit address of the top of the stack.

Notes: To provide upward compatibility with future versions of the GSP, replicate the pixel value
throughout all 32 bits of COLORO or COLOR1, as shown.

5-6

BO SADDR - Source Address Reqgister BO

Syntax BO

Format 31 16 156 0
[Y [X I
or
31 0
r Linear Bit Address |

Description

Example

SADDR contains the source array address pointer for PIXBLTs. Generally,
SADDR points to the pixel with the lowest address in the source array.
When a corner adjust is necessary, the GSP automatically adjusts SADDR
to point to the selected starting corner of the source array. (For PIXBLT
L.L, however, you must manually adjust SADDR to point to the starting
corner. This feature allows you to use PIXBLT L,L for manipulating pixel
arrays with pitches that are not powers of two.)

SADDR is in either XY or linear format. If the first operand of a PIXBLT
instruction is an L (such as PIXBLT L XY), then SADDR is in linear format.
If the first operand of a PIXBLT instruction is an XY (such as PIXBLT XY, L)},
then SADDR is in XY format.

During PIXBLT operations, SADDR is used in linear format. When the
PIXBLT is completed, SADDR points to the starting location of the row that
follows the last row in the array. If a PIXBLT is interrupted, SADDR points
to the next word of pixels to be read.

During LINE operation, SADDR contains the current decision variable va-
lue.

The following instructions use SADDR as an implied operand:

Instruction SADDR Format and Function

LINE Contains d=2b-a, used for the line draw.

PIXBLT B,L Linear address; points to the beginning of a binary source
array.

PIXBLT B,XY Linear address; points to the beginning of a binary source
array.

PIXBLT L,L Linear address with special requirements when PBH = 1
or PBV = 1. Refer to the PIXBLT L,L for a description of
its unique requirements.

PIXBLT L. XY Linear address; points to the beginning of a source array.

PIXBLT XY,L XY address; points to the beginning of a source array.

PIXBLT XY,XY XY address; points to the beginning of a source array.

SADDR .set BO
*

MOVE >00080015,SADDR ;Move XY value >15,>8 into

* ;BO
MOVE >00010AFC,SADDR ;Move linear value >10AFC
* ;into BO

5-7

B1 SPTCH - Source Pitch Regqister B1
Format 31 ' 0
[Linear Bit Address]

Description

Exampie

5-8

SPTCH specifies the linear difference in the start addresses of adjacent lines
of the source array for PIXBLT and FILL instructions. The GSP uses the
value in SPTCH to move from row to row through the source array. SPTCH
must be an integer multiple of 16 (except for the special cases of PIXBLT
B,L and PIXBLT B,XY). SPTCH is constrained in some cases to be a power
of two; this allows XY addressing and automatic corner adjust operations.

Some PIXBLTs store an adjusted value of SPTCH during instruction exe-
cution. This mechanism is transparent unless the PIXBLT is interrupted.
However, the original contents of SPTCH are restored if the instruction is
allowed to complete normally.

The following instructions use SPTCH as an implied operand.

Instruction SPTCH Format and Function

PIXBLT B,L Linear; unconstrained otherwise.
PIXBLT B,XY Linear; power of two for windowing; unconstrained oth-
erwise.

PIXBLT L,L Unconstrained except as previously noted. SPTCH is not
related to CONVSP for this instruction; therefore, it is not
constrained to be a power of two.

PIXBLT L XY Linear; power of two for windowing and PBV = 1; un-
constrained otherwise except as previously noted.

PIXBLT XY,L Power of two.

PIXBLT XY, XY Power of two.

SPTCH .set Bl
*

MOVE >00001000,SPTCH ;Power of two for

* ;PIXBLT XY,L
MOVE >00010AFC,SPTCH ;Unconstrained value for
* ;PIXBLT B,L

B2 DADDR - Destination Address Register B2
Format 31 16 15 0
[v | X]
or
31 0
| Linear Bit Address]

Description

DADDR specifies the address of the least significant pixe! in the destination
array for PIXBLTs. Generally, DADDR points to the pixel with the lowest
address in the destination array. When a corner adjust is necessary, the
GSP automatically adjusts DADDR to point to the selected starting corner
of the destination array. (For PIXBLT L,L, however, you must manually
adjust DADDR to point to the starting corner. This feature allows you to
use PIXBLT L,L for manipulating pixel arrays with pitches that are not
powers of two.) '

DADDR is also used in conjunction with DYDX to perform a common rec-
tangle function for some instructions (FILL XY, PIXBLT B<XY, PIXBLT
L, XY, and PIXBLT XY, XY, with window option 1). In these cases, DADDR
is set to the starting XY address of the common pixel block described by the
intersection of the original destination array and the pixel block indicated
by WSTART and WEND. No drawing is performed. If there is no common
array, the V bit is not set and the value of DADDR is indeterminate.

DADDR is in either XY or linear format. If the second operand of the
PIXBLT instruction is an L (such as PIXBLT XY,L), then DADDR is in linear
format. If the second operand of the PIXBLT instruction is an XY (such as
PIXBLT XY,XY), then DADDR is in XY format.

During PIXBLT operation, DADDR is maintained in linear format. When the
PIXBLT completes, DADDR points to-the linear starting address of the row
following the last row in the array. If a PIXBLT is interrupted, DADDR
points to the next word of pixels to be read.

For the LINE instruction, DADDR contains the XY address of the next DDA
drawing point.

The following instructions use DADDR as an implied operand.

Instruction DADDR Format and Function

FILL L Linear; points to the beginning of the destination array.
FILL XY XY; points to the beginning of the destination array.
LINE XY; points to the current pixel.

PIXBLT B,L Linear; points to the beginning of the destination array.

PIXBLT B,XY XY, points to the beginning of the destination array.

PIXBLT L,L Linear with special requirements when PBH=1 or PBV=1.
Refer to the PIXBLT L,L for a description of its unique re-
quirements.

PIXBLT L XY XY; points to the beginning of the destination array.

PIXBLT XY,L Linear; points to the beginning of the destination array.

PIXBLT XY.XY XY; points to the beginning of the destination array.

5-9

B2

DADDR - Destination Address Register

B2

Example

5-10

DADDR .set B2
*

* ;B2
MOVE >00010AFC,DADDR ;Move linear value >10AFC

* ;into B2

MOVE >00080015,DADDR ;Move XY value >15,>8 into

B3

DPTCH - Destination Pitch Register B3

Format

Description

Example

31 0
L Linear Bit Address l

DPTCH specifies the linear difference in the start addresses of adjacent lines
of the destination array for PIXBLT and FILL instructions. The TMS34010
uses the value in DPTCH to move from row to row through the destination
array. DPTCH must be an integer multiple of 16 (except for FILL L when
DX=1). DPTCH is also constrained in some cases to be a power of two to
allow XY addressing and automatic corner adjust.

Some PIXBLTs store an adjusted value in DPTCH during instruction exe-
cution. This mechanism is transparent, unless the PIXBLT is interrupted.
The original contents of DPTCH are restored if the instruction is allowed to
complete normally.

The following instructions use DPTCH as an implied operand.

Instruction DPTCH Format and Function

.LL L Linear; unconstrained for DX=1.
FILL XY Linear; power of two.
PIXBLT B,L Linear; unconstrained except as previously noted.

PIXBLT B, XY Linear; power of two for windowing; unconstrained oth-
erwise except as noted above.

PIXBLT L,L Linear; unconstrained except as previously noted. DPTCH
is not related to CONVDP for this instruction; therefore, it
is not constrained to be a power of two.

PIXBLT L,XY Linear; power of two.

PIXBLT XY,L Linear; power of two for PBV = 1; unconstrained other-
wise except as previously noted.

PIXBLT XY, XY Linear; power of two.

DPTCH .set B3
*

MOVE >00001000,DPTCH ;Power of two for

* ;PIXBLT XY,L
MOVE >00010AFC,DPTCH ;Unconstrained value for
* ;PIXBLT L,L

B4 OFFSET - XY Addressing Offset Reqgister B4
Format 31 0
| Linear Bit Address]

Description

Example

OFFSET contains the linear address of the first pixel in the XY coordinate
space for instructions using XY addressing. This corresponds to the linear
address of the XY origin (X=0,Y=0). This value is used as the memory base
for performing XY to linear address conversions.

OFFSET is always in linear format. [t may be placed at any position in the
TMS34010 linear address space and should contain a pixel-aligned value
for proper XY address conversions, transparency, pixel processing, and
plane masking. OFFSET is not modified by instruction execution.

The following instructions use OFFSET as an implied operand.

Instruction OFFSET Format and Function
CVXYL % RD Linear address of XY origin
DRAV RS,RD Linear address of XY origin
FILL XY Linear address of XY origin
LINE Linear address of XY origin
PIXBLT B, XY Linear address of XY origin
PIXBLT LXY Linear address of XY origin
PIXBLT XY,L Linear address of XY origin
PIXBLT XY XY Linear address of XY origin

PIXT RS,RD.XY Linear address of XY origin
PIXT RS.XY,RD Linear address of XY origin
PIXT RS.XY,RD.XY Linear address of XY origin

OFFSET .set B4
*

MOVE >00042000,0FFSET ;Linear value on pixel
* ;boundary

B5 WSTART - Window Start Address Register B5

Format 31 16 15 0
[Window start Y j Window start X 1

Description WSTART specifies the XY address of the least significant pixel contained
in the rectangular destination clipping window. WSTART is valid for in-
structions that use an XY destination address and a window option. The
least significant pixel is the pixel with the lowest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the upper left corner of the pixel array.

WSTART may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WSTART is included in the window. The value in
WSTART is used with WEND, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WSTART is not modified by instruction execution.

The following instructions use WSTART as an implied operand.

Instruction WSTART Format and Function

Y i~ RD XY value of least significant window corner
DRAV RS,RD XY value of least significant window corner
FILL XY XY value of least significant window corner
LINE XY value of least significant window corner
PIXBLT B, XY XY value of least significant window corner
PIXBLT L XY XY value of least significant window corner
PIXBLT XY, XY XY value of least significant window corner

PIXT RS,RD.XY XY value of least significant window corner
PIXT RS.XY,RD.XY XY value of least significant window corner

Example WSTART .set BS
*

MOVE >00400100,WSTART ;XY value (256,64) stored
* ;in WSTART

B6 WEND - Window End Address Register B6
Format 31 16 15 0
[Window end Y [Window end X]

Description

Example

5-14

WEND specifies the XY address of the most significant pixel contained in
the rectangular destination clipping window. WEND is valid for in-
structions that use an XY destination address and a window option. The
maost significant pixel is the pixel with the highest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the lawer right corner of the pixel array.

WEND may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WEND is included in the window. The value in
WEND is used with WSTART, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WEND is not madified by instruction execution.

The following instructions use WEND as an implied operand.

fustruction WEND Format and Function

Py RS,RD XY value of most significant window carner
DRAV RS,RD XY value of most significant window carner
FILL XY XY value of mast significant window carner
LINE XY value of most significant window caorner
PIXBLT B,XY XY value of mast significant window corner
PIXBLT L,XY XY value of most significant window carner
PIXBLT XY, XY XY value of mast significant window carner

PIXT RS,RD.XY XY value of most significant window corner
PIXT RS.XY,RD.XY XY value of mast significant window corner

WEND .set B6
*

MOVE >00400100,WEND ;XY value (256,64) stored
* ;in WEND

B7 DYDX - Delta Y/Delta X Register B7
Format 31 16 156 0
r Delta Y T Delta X]

Description

DYDX specifies the X and Y dimensions of the rectangular destination array
for PIXBLT and FiLL instructions. Both the X and Y dimensions are in
pixels; that is, the DX value is number of pixels in width of the array, and
DY is the number of lines of pixels in the destination array.

When the window clipping option is selected, the pixel block dimensions
for the transfer are determined by the relationships between WSTART,
WEND, DADDR, and DYDX. If either the X or Y dimension is O, then the
block is interpreted as having a dimension of 0; no transfer is performed.

The values for DY and DX may range up to the coordinate extent of the
display (up to 65,535, depending on the display pitch and pixel size se-
lected). For window operations, the relationship between DYDX,
WSTART, and WEND is such that DY = WEND, - WSTART, + 1 and DX
= WEND, - WSTART, + 1. The value in DYDX is used with WSTART,
DADDR, and DYDX to preclip pixels, lines, and pixel arrays.

Most instructions do not modify the contents of DYDX. For FiLL XY,
PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY, XY, with window option 1,
however, DYDX is used with DADDR to perform a common rectangle
function. In this case, DYDX is set to the dimensions of the common pixel
block described by the intersection of the original destination array and the
window identified by WSTART and WEND. No drawing is performed. |f
there is no common rectangle, the V bit is not set and the value of DYDX
is indeterminate. See these instructions for further information.

The following instructions use DYDX as an implied operand.

Instruction DYDX Format and Function

FILL L Array dimensions in XY format.

FILL XY Array dimensions in XY format; special requirements when
W=1 is selected, as previously noted.

LINE Dimensions of the rectangle described by the line to be
drawn.

PIXBLT B,L Array dimensions in XY format

PIXBLT B, XY Array dimensions in XY format; special requirements when
pick is selected, as previously noted.

PIXBLT L,L Array dimensions in XY format.

PIXBLT L XY Array dimensions in XY format; special requirements when
pick is selected, as previously noted.

PIXBLT XY,L Array dimensions in XY format.

PIXBLT XY XY Array dimensions in XY format; special requirements when
pick is selected, as previously noted.

B7 DYDX - Delta Y/Delta X Register B7

Example This example illustrates the relationship of DYDX to WSTART and WEND.

WSTART .set B5
WEND .set B6

DYDX .set B7
*

MOVE WEND, DYDX ;Put WEND into DYDX
SUBXY WSTART,DYDX ;Generate (WEND - WSTART)
ADDI >10001,DYDX ;Increment by 1 in each

;dimension

B8

COLORO - Background Color Register B8

Format

Description

Example

31 2827 2423 2019 1615 1211 87 43 0
| pixel | Pixel | Pixel | Pixel | Pixel | Pixel [Pixel | Pixel]

COLORO specifies the replacement color for 0 bits in the source array for
PIXBLT B,L and PIXBLT B,XY instructions. These two instructions trans-
form binary pixel array information to multiple bits per pixel arrays using the
color information in COLOR1 and COLORO. The lower 16 bits of COLORO
are used for the O or background color. There is 3 direct correspondence
between the alignment of pixels within the COLORO register and pixels
within memory words to be altered. That is, individual pixels within
COLORO are used as they align with destination pixels in the destination
word.

COLORO is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLORO as an implied operand.

Instruction COLORO Contents
Pl~.2T B,L Background pixel color for expanded array
PIXBLT B,XY Background pixel color for expanded array

COLORO .set B8
*

MOVI >00005555,COLORO ;store uniform pixel value
;in COLORO

B9

COLOR1 - Foreground Color Register B9

Format

Description

Example

31 28 27 2423 2019 16 15 12 11

[Pixel [Pixel T Pixel rPlxel T Pixel l Pixel r Pixel LanelJ

COLOR1 specifies the replacement color for pixels to be altered at the des-
tination pixel or pixel block for FILL, DRAV and LINE instructions.

For PIXBLT B,L and PIXBLT B,XY instructions, COLOR1 specifies the re-
placement color for 1 bits in the source array. These two instructions
transform binary pixel array information to multiple-plane pixel arrays using
color information in COLOR1 and COLORO. There is a direct correspond-
ence between the alignment of pixels within the COLOR1 register and pix-
els within memory words to be altered. That is, individual pixels within
COLOR1 are used as they align with destination pixels in the destination
word.

COLOR1 is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLOR1 as an implied operand.

Instruction COLOR1 Contents
DRAV RS,RD Pixel color for pixel draw

FILL L Pixel color for filled array
FILL XY Pixel color for filled array
LINE Pixel color for line draw

PIXBLT B,L Foreground pixel color for expanded array
PIXBLT B, XY Foreground pixel color for expanded array

COLOR1 .set B9
*

MOVI >00003333,COLOR1 ;Store uniform pixel value
;in COLOR1

B10 - B14 - Reserved Registers B10 - B14
Format 31 0

| Various Formats |
Description B10 - B14 are used as implied operands for the LINE instruction and as

temporary registers for PIXBLTs and FiLLs. B13 (PATTRN register) is re-
served for future LINE draw enhancement. It should be set to >FFFFFFFF
before executing the LINE instruction to ensure software compatibility.

CPU Registers and Instruction Cache - Status Register

5.2 Status Register

The status register (ST) is a special-purpose, 32-bit register that specifies the
processor status. The ST also contains several parameters that specify the
characteristics of two programmable data types, fields O and 1. The ST is ini-
tialized to >00000010 at reset.

Figure 5-4 illustrates the status register. Table 5-2 lists the functions associ-

ated with the status bits. Table 5-3 describes the encoding of the field size
bits in FSO and FS1.

31302828272625242322212018 18 17 1615 14131211108 8 7 6 5 4 3 2 1 O

P F F
N|c|z|v B ' Reservad E| Fst E| Fso
X . E — . N b | 0

Note: The status register bits marked reserved (bits 12-20, 22-24, and 26-27)
are currently unused. When read, a reserved bit returns the last value
written to it. At reset, all reserved bits are forced to Os.

Figure 5-4. Status Register

Table 5-2. Definition of Bits in Status Register

Bit Field .
No. Name Function
0-4 FSO Field Size 0. Length in bits of first memory data field (see Table 5-3 for values).
5 FEO Field Extend 0. Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.
FEC = 0 — Zero extension
FEO = 1 — Sign extension
6-10 FS1 Field Size 7. Length in bits of second memory data field (see Table 5-3 for values).
11 FE1 Field Extend 7. Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.
FE1 = O — Zero extension
FE1 = 1 — Sign extension
12-20| - Reserved
21 IE Interrupt Enable. Master interrupt enable/disabie bit.
IE = 0 = All maskable interrupts disabled
IE = 1 = All maskabie interrupts enabled
22-24| - Reserved

5-20

CPU Registers and Instruction Cache - Status Register

Table 5-2. Definition of Bits in Status Register (Concluded)

Bit Field .

No. Name Function

25 PBX PixBlt Executing. Indicates upon return from an interrupt that the interrupt occurred
between instructions or in the middle of a PIXBLT or FILL instruction.
0 = Indicates interrupt occurred at PIXBLT or FILL instruction boundary
1 = Indicates interrupt occurred in the middle of a PIXBLT or FILL instruction

26-27| - Reserved

28 \ QOverflow. Set according to instruction execution.

29 z Zero. Set according to instruction execution.

30 C Carry. Set according to instruction execution.

31 N Negative. Set according to instruction execution.

Table 5-3. Decoding of Field-Size Bits in Status Register

Five FS | Field | Five FS | Field | Five FS | Field | Five FS | Field
Bits SizeT Bits Sizet Bits Sizet Bits Sizet
00001 1 01001 9 10001 17 11001 25
00010 2 01010 10 10010 18 11010 26
00011 3 01011 11 10011 19 11011 27
00100 4 01100 12 10100 20 11100 28
00101 5 01101 13 10101 21 11101 29
00110 6 01110 14 10110 22 11110 30
00111 7 01111 156 10111 23 11111 31
01000 8 10000 16 11000 24 00000 32
t In bits

5-21

CPU Registers and Instruction Cache - Program Counter

5.3 Program Counter

5-22

The program counter (PC) is a dedicated 32-bit register that points to the next
instruction word to be executed. Instructions are always aligned on even
16-bit word boundaries, and as shown in Figure 5-5, the four LSBs of the PC
are always Os.

31 43 0
1 Word Add-esn oooq
je— 24 bits ¢4 bits 4

Figure 5-5. Program Counter

An instruction consists of one or more instruction words. The first word
contains the opcode for the instruction. Additional words may be required for
immediate data or absolute addresses. As each instruction word is fetched, the
PC is incremented by 16 to point to the next instruction word. The PC con-
tents are replaced during a branch instruction, subroutine call instruction, re-
turn instruction, or interrupt. Instructions may be categorized according to
their effect on the PC, as indicated in Table 5-4.

Table 5-4. Instruction Effects on the PC

Category Description

Non-branch The PC is incremented by 16 at the end of the instruction,
allowing execution to proceed sequentially to the next in-
struction.

Absolute Branch The PC is loaded with an absolute address; the four LSBs

(TRAP, CALL, JAcc) of the address are set to Os.

Relative Branch The signed displacement (8 or 16 bits) is added to the

{JRcc, DSJxx) current contents of the PC. The signed displacement is
treated as a word displacement; that is, it is shifted left four
bit positions before it is added to the PC.

Indirect Branch The PC is loaded with the register contents.The four LSBs

(JUMP, CALL, are set to Os. ’

EXCPC)

CPU Registers and Instruction Cache - Instruction Cache

5.4 Instruction Cache

Most program execution time is spent on repeated execution of a few main
procedures or loops. Program execution can be speeded up by placing these
often used code segments in a fast memory. The TMS34010 uses a 256-byte
instruction cache for this purpose.

Only memory words that are pointed to by the PC can be accessed from the
cache. This includes opcodes, immediate operands, and absolute addresses.
Instructions and data may reside in the same area of memory; therefore, data
could be copied into the instruction cache. However, the processor cannot
access data.from the cache. All reads and writes of data in memory bypass the
cache.

5.41 Cache Hardware

Segment Start Address
\my

The instruction cache contains 256 bytes of RAM, used to store up to 128
16-bit instruction words. Each instruction word in cache is aligned on an even
word boundary. Figure 5-6 illustrates cache organization.

2
g

Data Registers

> Segment 3

olonlaleodn

2

— =
[t ugstero | Q WEesgmant U
"—— 23 __—u = .
'i! y Segment 0
5 5
H
| ° 7
— 64—
l LA Sngeter 1 0] Subsegment 2 WD
: 51~ "W a0 T| subsegment 2
B - [N :2 2| of segment 1
A>, \\ '_"~' - :
%' f b o
Gl
7] 7
| SEA Register 2 | g Bubsegment 0 1
-' 3
4 = > Segment 2
!' = Mnst
EL g Re-?ﬂn
. . ! LRU
= T N Legst Stack
EE ¢
__55A Pegiste: 3 | % ubsegment RecSt |
2] Jsud
13|
4 |
5
H

Figure 5-6. TMS34010 instruction Cache

5-23

CPU Registers and Instruction Cache - Instruction Cache

The cache is divided into four 32-word segments. Each cache segment may
contain up 1o 32 words of a 32-word segment in memory. This memory seg-
ment is a block of 32 contiguous words beginning at an even 32-word
boundary in memory.

Each cache segment is divided into eight subsegments; each subsegment
contains four words. Dividing each segment into subsegments reduces the
number of word fetches required from memory when fewer than 32 words of
a memory segment are used. Each of the four cache segments is associated
with a segment start address (SSA) register. Figure 5-7 shows how an in-
struction word is partitioned into the components used by the cache control

algorithm.

e 32-Bit Linear Address —»|
— 23 Bits —»{3 Bits | &% {0]0] 0[O
= v ey —

The four L8Bs of an Instruction
word address are always 0.

nwiruction word address
with :n subsegment

Subsegment address

~eyment start address
(SSA reglster)

Figure 5-7. Segment Start Address

The 23 bits of the SSA register correspond to the 23 MSBs of the segment’s
memory address. These 23 MSBs are common to all eight subsegments within
a segment. The next three bits (bits 6-8) identify one of the eight subseg-
ments. Bits 4 and 5 identify one of the four words contained in a subsegment.
The four LSBs are always Os because instructions are aligned on word boun-
daries.

5.4.2 Cache Replacement Algorithm

When the TMS34010 requests an instruction word from a segment that is not
in the cache, the contents of one of the four cache-resident segments must
be discarded to make room for the segment that contains the requested word.
A modified form of the least-recently-used (LRU) replacement algorithm is
used to select the segment to be discarded.

The LRU segment manager (an element of the cache control logic) maintains
an LRU stack to track use of the four segments. The LRU stack contains a
queue of segment numbers, 0 through 3. Each time a segment is accessed, its
segment number is placed on the top of the stack, pushing the other three
segment numbers down by one position. Thus, the number at the top of the
LRU stack identifies the most-recently-used segment and the number at the
bottom identifies the least-recently-used segment.

When a new segment must be loaded into cache, the least-recently-used
segment is discarded. The eight P flags (described in Section 5.4.3) of the
selected segment are set to Os, and the segment’s SSA register is loaded with
the new segment address. After the requested subsegment has been loaded
from memory, its P flag is set to 1, and the requested instruction fetch is al-
lowed to complete.

Following a reset, all P flags in the cache are set to 0 and the four segment
numbers in the LRU stack are stored in numerical order (0-3).

5-24

CPU Registers and Instruction Cache - Instruction Cache

5.4.3 Cache Operation

When the TMS34010 requests an instruction word, it checks to see if the word
is contained in cache. First, it compares the 23 MSBs of the instruction ad-
dress to the four SSA registers. If a match is found, the processor searches for
the appropriate subsegment. A present (P) flag, associated with each sub-
segment, indicates the presence of a particular subsegment within a cache
segment. P=1 indicates that the requested word is in cache; this is called a
cache hit. If there is no match, or if there is a match and P=0, the word is not
in cache; this is called a cache miss.

® Cache Hit

The cache contains the requested instruction word. The processor performs
the following actions:

1} A short access cycle reads the instruction word from cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

L] Cache Miss

The cache does not contain the instruction word. There are two types of cache
miss - subsegment miss and segment miss.

Subsegment Miss. The 23 MSBs of the instruction word address match one
of the four SSA registers’ 23 MSBs; that is, the appropriate segment is in the
cache. However, the P flag for the requested subsegment is not set. The
processor performs the following actions:

1) The four-word subsegment containing the requested instruction word is
read from local memory into the cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

3) The subsegment’s P flag is set.
4) The instruction word is read from the cache.

Segment Miss. The instruction word address does not match any of the SSA
registers. The processor performs the following actions:

1) The least-recently-used segment is selected for replacement; the P flags
of all eight subsegments are cleared.

2} The SSA register for the selected segment is loaded with the 23 MSBs
of the address of the requested instruction word.

3) The four-word subsegment in memory that contains the requested in-
struction word is read into the cache. It is placed in the appropriate
subsegment of the least-recently-used segment. The subsegment’'s P
flag is set to 1.

4) The LRU stack is adjusted by moving the number of the new segment
from the bottom (indicating that it is least recently used) to the top (in-
dicating that it is most recently used). This pushes the other three seg-
ment numbers in the stack down one position.

5) The instruction word is read from the cache.

5-25

CPU Registers and Instruction Cache - Instruction Cache

5.4.4 Self-Modifying Code

Avoid using self-modifying code; it can cause unpredictable results. When a
program modifies its own instructions, only the copy of the instruction that
resides in external memory is affected. Copies of the instructions that reside
in cache are not modified, and the internal control logic does not attempt to
detect this situation.

5.4.5 Flushing the Cache

Flushing the cache sets it to an initial state which is identical to the state of
the cache following reset. The cache is empty and all 32 P flags are set to 0.

The cache is flushed by setting the CF (cache flush) bit in the HSTCTL register
to 1. The CF bit retains the last value loaded until a new value is loaded or
until the GSP is reset. The contents of the cache remain flushed as long as the
CF bit is set to 1. All instruction fetches bypass the cache and are accessed
directly from memory.

Unless the cache is disabled, normal cache operation will resume when the
CF bit is set to 0.

One use for flushing the cache is to facilitate downloading new code from a
host processor to GSP local memory. The host typically halts the GSP during
downloading by writing a 1 to the HLT bit in the HSTCTL register. Before
allowing the GSP to execute downloaded code, the host should flush the
cache as described in Section 5.4.5.

5.4.6 Cache Disable

5-26

Disabling the cache facilitates program debugging and emulation. The cache
is disabled by setting the CD (cache disable) bit in the CONTROL register to
1. While disabled, the cache is bypassed and all instructions are fetched from
external memory.

CD=1 has the same effect as CF=1 with one exception. While CD=1 and
CF=0, data already in the cache are protected from change. When the CD bit
is set back to 0, the state of the cache prior to setting the CD bit to 1 is re-
stored. The instructions in the cache are once again available for execution.
If the contents of the cache become invalid while CD=1, they can be flushed
by setting CF to 1.

The CD bit can be manipulated to preserve code in the cache for faster exe-
cution in some time-critical applications. For example, if an inner loop just
exceeds 256 bytes, most of the loop, but not all of it, can fit in the cache.

‘During execution of the few instructions that are not in the cache, the CD bit

can be set to 1 to prevent the code in the cache from being replaced. In this
instance, the loop’s execution speed is improved by eliminating the thrashing
of cache contents. Use this technique carefully; in some cases, it can nega-
tively affect execution speed.

CPU Registers and Instruction Cache - Instruction Cache

5.4.7 Performance with Cache Enabled versus Cache Disabled

When the instruction cache is disabled, instruction words are fetched from
external memory. Assuming no wait states are necessary, each instruction
fetch from external memory adds 3 machine cycles to the access time. This is
considerably slower than a program which uses the cache efficiently (when
each word in cache is used several times before it is replaced).

An inefficient use of cache occurs when words in cache are used only once
before replacement. This produces a cache miss every fourth word. With the
cache enabled, the time penalty due to cache misses in this case is 2.25 ma-
chine states per instruction, calculated as follows:

[) Eight machine cycles are required to load four words into cache from
memory
] An additional machine state is required to process the instruction

] Dividing the total of nine machine states by four instructions yields an
average of 2.25 machine states per instruction

Performance using the cache is nearly always better than performance with the
cache disabled. The only exception occurs when the code contains so many
jumps that only a portion of each subsegment is executed before control is
transferred to another subsegment.

5-27

CPU Registers and Instruction Cache - Internal Parallelism

5.5

5-28

Internal Parallelism

Figure 5-8 illustrates the internal data paths associated with TMS34010 pro-
cessor functions. The TMS34010 has a single, logical memory space for sto-
rage of both data and instructions. However, internal parallelism provides the
GSP with the benefits found in architectures which contain separate data and
instruction storage. The ability to fetch instructions from cache in parallel with
data accesses from memory greatly enhances execution speed. Hardware
parallelism allows the following three storage areas to be accessed simultane-
ously:

® Instruction cache
® Dual-ported, general-purpose register files A and B
® External memory

i‘ ______________________________ 3
|
| TM834010 i
'l |
| Ingtruction Instructions I
i Cache {
{ |
| !
| |
| |
| |
i]
| |
| |
|
l |
| Ganeral- > Data Moy | External
| ; :"; e%:?s > cPu Wt | Memory
! |
: |
| |
| |
|

Figure 5-8. internal Data Paths

Each storage area can also be accessed independently of the other two. This
allows the GSP to perform the following actions in parallel during each pair
of machine states:

° One external memory cycle
° Two instruction fetches from cache
® Four reads and two writes to the general-purpose register files

The need to schedule conflicting internal operations can limit the GSP's ability
to perform these actions in parallel. For example, an instruction which requires
the memory controller to perform a read must complete before the next in-
struction can be executed.

CPU Registers and Instruction Cache - Internal Parallelism

Figure 5-9 illustrates an example of internai parallelism. Figure 5-9 a shows
three activities occurring in parallel:

® Instructions are fetched from cache.
e Instructions are executed through the general-purpose registers and the
ALU.

] The local memory interface controller performs memory accesses.

Figure 5-9 a represents execution of the code in Figure 5-9 b, which is the
inner loop of a graphics routine. The memory controller accesses pixels while
the ALU fetches instructions from cache. The memory controller completes a
write cycle while execution begins on the next instruction.

(@ je One lteration »
State: ——d- 1j-2 e 3 it 4 e 5 -2l 6 - 7 -ie- 8 - 9 Hf¢- 10 Dl 11 e 12 Me——
MvE ADD PIYT ADD LisI's MOVE
Executionn E ., A : A !'A B |c ic - < :ciy D E|E!E A
Memory Interface: fcrc]jc e
Read Cycle Read Writa
(b}
A L1 MOVE *B1+.810,0 Get DELTAX
] ADD BiC.BY Adjust pixel pointer
[PIXT %B1,a88 Draw next pixel
D ADD B0,B1 Add fleld size
E D8JS B1t,L1 Loop N Times

Figure 5-9. Paralle!l Operation of Cache, Execution Unit, and Memory Interface

This page intentionally left blank.

6. 1/0 Registers

The TMS34010 has 28 on-chip 1/O registers that control and monitor the
following functions:

] Host interface communications
® Local memary interface control
® Interrupt control

® Video timing and screen refresh

This section describes these functions, 1/0 register addressing, and then pro-
vides an alphabetical presentation of the /O registers:

Section
6.1 1/0 Register Addressingcccceeee.
6.2 Latency of Writes to 1/O Registers ...
6.3 1/0 Registers Summaryc.ccccooceevvneene
6.4 Alphabetical Listing of 1/0O Registers

1/0 Registers - Latency of Writes to 1/O Registers

6.2 Latency of Writes to 1/0 Registers

When an instruction alters the contents of an 1/0 register, the memory write
cycle that modifies the register may not be completed before execution of the
next instruction begins. If the second instruction relies on the 1/0 register
value loaded by the first instruction, the second instruction may cause incor-
rect results. This situation is easily avoided by ensuring that the write to the
1/0 register is allowed to complete before the 1/0 register value is used as an
implied operand by a subsequent instruction. For example, by immediately
following a write to an 1/O register with a read of the register, the write is
certain to have been completed by the time subsequent instructions begin
execution.

Internal to the TMS34010, the memory controller operates semi-autono-
mously with respect to the execution unit that processes instructions. Paral-
lelism between the execution unit and memory controller may allow a write
initiated by an instruction to be completed only after one or more subsequent
instructions have been executed. An instruction that alters an /0 register (or
any other address in memory) transmits its request for a write cycle to the
memory controller. Once the request is accepted, the memory controller is
responsible for completing the write cycle; in the meantime, execution of the
next instruction can begin.

A field insertion request submitted to the memory controller can take as many
as five cycles to complete in the case in which a field of 18 or more bits
straddles two word boundaries. This case requires a read-modify-write oper-
ation to one word, a write to a second word, and a read-modify-write opera-
tion to a third word. Although this would be an unusual way of altering
locations in the 1/0 register file, it represents the theoretical worst case number
of memory cycles for a field insertion. Other potential sources of delay to a
pending field insertion request include:

Screen-refresh cycle

DRAM-refresh cycle

Host-indirect read or write cycle

Wait states required for slower memories
Hold request from an external device

Any uncertainty as to whether a pending write to memory has been completed
can be eliminated by making use of the fact that only one field insertion re-
quest can be queued at the memory controller at a time. An instruction that
requests a second memory access before the earlier field insertion has been
completed will be forced to wait. Hence, by following an instruction that al-
ters an 1/0 register with an instruction that requests a second memory access
(any memory access), the 1/0 register is certain to have been updated before
the second instruction finishes executing.

6-3

1/0 Registers - Summary

6.3 1/0 Registers Summary

Table 6-1 summarizes the I/O registers.

Descriptions of the four categories

of I/0 registers follow the table.

Table 6-1.

I/0O Registers Summary

Host Interface Registers

Register

Address

Description

HSTADRH

>C000 00EO

Host interface address, high word. Contains the 16 MSBs of a 32-bit
pointer address used by a host processor for indirect accesses of
TMS34010 local memory.

HSTADRL

>C000 00DO

Host interface address, low word. Contains the 16 LSBs of a 32-bit
pointer address used by a host processor for indirect accesses of
TMS34010 local memory.

HSTCTLH

>C000 0100

Host interface control, high byte Contains seven programmable bits that
control host interface functions:

NMI (bit 8) - Nonmaskable interrupt

NMIM (bit 9) - NMI mode bit

INCW (bit 11) — Increment pointer address on write

INCR (bit 12) — Increment pointer address on read

LBL (bit 13) - Lower byte last

CF (bit 14) — Cache flush

HLT (bit 15) — Halt TMS34010 execution

Bits O through 7 and 10 are reserved

HSTCTLL

>C000 00FO0

Host interface control, low byte. Contains eight programmable bits that
control host interface functions:

MSGIN (bits 0-2) — Input message buffer

INTIN (bit 3) ~ Input interrupt bit

MSGOUT (bits 4-6) ~ Output message buffer

INTOUT (bit 7) =~ OQutput interrupt bit

Bits 8 through 15 are reserved

Local Memory Interface Registers

Register

Address

Description

CONTROLT

>C000 00BO

Memory control. Contains several parameters that control local memory

interface operation:
RM (bit 2) -
RR (bits 3-4) -
T (bit 5) -
W (bits 6-7) -
PBH (bit 8) -
PBV (bit 9) -

DRAM refresh mode

DRAM refresh rate

Transparency enable

Window violation detection mode
PixBIt horizontal direction

PixBIt vertical direction

PPOP (bits 10-14) - Pixel processing operation select
CD (bit 15) - Cache disable

Bits O and 1 are reserved

CONvVDPT

>C000 0140

Destination pitch conversion factor. Used during XY to linear conversion
of a destination memory address.

CONvVSPT

>C000 0130

Source pitch conversion factor.
a source memory address.

Used during XY to linear conversion of

T Implied graphics operands

6-4

I/0 Registers - Summary

Table 6-1. 1/0 Registers Summary (Continued)

Local Memory Interface Registers (Continued)

Register Address Description

PMASKT | >C000 0160 | Plane mask register. Selectively enables/disables the various planes in
the bit map of a display system in which each pixel is represented by
multiple bits.

PSIZET >C000 0150 | Pixel size register. Specifies the pixel size (in bits). Possible pixe! sizes
include 1, 2, 4, 8, and 16 bits.

REFCNT |>CO000 01FO | Refresh count register. Generates the addresses output during DRAM
refresh cycles and counts the intervals between successive DRAM refresh
cycles:

RINTVL (bits 2-7) — Specifies the refresh interval
ROWADR (bits 8-15) — Row address
Bits 0 and 1 are reserved

Interrupt Control Registers

Register Address Description

INTENB >C000 0110 | /nterrupt enable. Contains the interrupt mask used to selectively
enable/disable the three internal and two external interrupts:

X1E (bit 1) - External interrupt 1 enable

X2E (bit 2) — External interrupt 2 enabie

HIE (bit 9) ~ Host interrupt enable

DIE (bit 10) - Display interrupt enable

WVE (bit 11) - Window violation interrupt enabie
Bits 0, 3 through 8, and 12 through 15 are reserved

INTPEND | >C000 0120 | /nterrupt pending. Indicates which interrupt requests are currently

pending:) ‘
X1P (bit 1) = External interrupt 1 pending
X2P (bit 2) - External interrupt 2 pending
HIP (bit 9) - Host interrupt pending
DIP (bit 10) - Display interrupt pending
WVP (bit 11) - Window violation interrupt pending
Bits 0, 3 through 8, and 12 through 15 are reserved
Video Timing and Screen Refresh Registers

Register Address Description

DPYADR | >C000 O1EQ | Display address. Counts the number of scan lines output between suc-
cessive screen refresh cycles and contains the source of the row and co-
lumn addresses output during a screen refresh cycle:

LNCNT (bits 0-1) —Scan line counter
SRFADR (bits 2-15) — Screen refresh address

DPYCTL |>CO000 0080 | Display control. Contains several parameters that control video timing
signals:

HSD (bit 0) — Horizontal sync direction
DUDATE (bits 2-9) — Display address update
ORG (bit 10) — Screen origin select
SRT (bit 11) — Shift register transfer enable
SRE (bit 12) — Screen refresh enable
DXV (bit 13) - Disable external video
NIL (bit 14) - Noninterlaced video enable
ENV (bit 15) - Enable video
Bit 1 is reserved.

DPYINT | >C000 00AQ

Display interrupt. Specifies the next scan line that will cause a display
interrupt request. ’

t

Implied graphics operands

6-5

1/0 Registers - Summary

Table 6-1. 1/0 Registers Summary (Concluded)

Video Timing and Screen Refresh Registers (Continued)
Register Address Description
DPYSTRT | >CO000 0090 | Display start address. Provides control of the automatic memory-to-
shift-register cycles necessary to refresh a screen:
LCSTRT (bits 0—-1) — Specifies the number of scan lines to
be displayed between screen refreshes
SRSTRT (bits 2-15)~ Starting screen-refresh address
DPYTAP |>C000 01BO | Display tap point address. Contains a VRAM tap point address output
during shift register transfer cycles.
HCOUNT | >C000 01CO | Horizontal count. Counts the number of VCLK periods per horizontal
scan line.
HEBLNK [>CO000 0010 | Horizontal end blank. Designates the endpoint for horizontal blanking.
HESYNC [>C000 0000 | Horizontal end sync. Specifies the endpoint of the horizontal sync inter-
val.
HSBLNK [>C000 0020 | Horizontal start blank. Specifies the starting point of the horizontal
blanking interval. :
HTOTAL | >C000 0030 | Horizontal total. Specifies the total number of VCLK periods per hori-
zontal scan line.
VCOUNT | >C000 01D0 | Vertical count. Counts the hotizontal scan lines in a video display.
VEBLNK | >CO000 0050 | Vertical end blank. Specifies the endpoint of the vertical blanking inter-
val.
VESYNC | >C000 0040 | Vertical end sync. Specifies the endpoint of the vertical sync pulse.
VSBLNK | >C000 0060 | Vertical start blank. Specifies the starting point of the vertical blanking
interval.
VTOTAL |>C000 0070 | Vertical total. Specifies the value of VCOUNT at which the vertical sync
pulse begins.

6.3.1 Host Interface Registers

6-6

Five I/0 registers are dedicated to host interface communications, allowing the
TMS34010 to:

® Directly transfer status messages or command information
[) Indirectly transfer large blocks of data through local memory
® Receive interrupt requests from a host processor

® Transfer interrupt requests to a host processor

The ability to indirectly transfer large blocks of data makes the host interface
extremely flexible. For example, a host can transfer blocks of commands to the
GSP, can hailt the GSP temporarily to download a new program for the GSP
to execute, or can read blocks of graphics data generated by the GSP.

The host interface registers occupy five GSP register locations, and are typi-
cally mapped into four consecutive 16-bit iocations in the memory or I/0 ad-
dress space of the host processor. The host processor accesses the HSTCTLL
and HSTCTLH registers as the eight LSBs and eight MSBs, respectively, of a
single location (the HSTCTL register).

I/0 Registers - Summary

The HSTCTL (host control) register controls functions such as the transfer of
interrupt requests and 3-bit status codes between a host processor and the
TMS34010. These requests are typically used by software to coordinate the
transfer of large biocks of data through GSP local memory. The HSTCTL re-
gister also allows the host to flush the instruction cache, halt GSP execution,
and transmit nonmaskable interrupt requests to the GSP.

The host processor uses the remaining three host interface registers to indi-
rectly access selected data blocks within GSP local memory. The HSTADRL
and HSTADRH registers contain a 32-bit address that points to the current
word location in memory. The HSTDATA register buffers data transferred to
and from the memory under control of the host processor. The host interface
can be programmed to automatically increment the address pointer following
each transfer, providing the host with rapid access to a block of sequential
locations.

6.3.2 Local Memory Interface Registers

Six of the 1/0 registers support local memory interface functions such as:
(] Frequency of DRAM refresh cycles

® Type of DRAM refresh cycles

] Pixel size

L] Color plane masking

L Various pixel access control parameters

6.3.3 Interrupt Interface Registers

Two |/0 registers monitor and mask interrupt requests to the TMS34010.
These include two external and three internal interrupts. External interrupt re-
quests are transmitted to the GSP via input pins LINT1 and TINT2. The GSP
can be programmed to generate an internal interrupt request in response to any
of the following conditions:

] Window violation - an attempt is made to write a pixel to a location in-
side or outside a specified window, depending on the selected win-
dowing mode. N

® Host interrupt — the host processor sets the INTIN interrupt request bit
in the HSTCTL register.

L Display interrupt — the specified line number in a frame is displayed on
the monitor.

A nonmaskable interrupt occurs when the host processor sets the NMI bit in
the HSTCTL host interface register. Reset is controlled by a dedicated pin.

6-7

I/0 Registers - Summary/Alphabetical Listing

6.3.4 Video Timing and Screen Refresh Registers

Fifteen 1/0 registers support video timing and screen refresh functions. The
TMS34010's on-chip CRT timing generator creates the sync and blanking
signals used to drive the CRT monitor in a bit-mapped display system. The
timing of these signals can be controlled through the appropriate /0O registers,
allowing the GSP to support various screen resolutions and interlaced or
noninteriaced video.

The GSP directly supports VRAMs by generating the memory-to-shift-register
cycles necessary to refresh the screen of a CRT monitor. Programmable fea-
tures include the locations in memory to be displayed on the monitor, as well
as the number of horizontal scan lines displayed between individual screen-
refresh cycles.

The GSP can optionally be programmed to synchronize to externally generated
sync signals. This permits GSP-created graphics images to be superimposed
upon externally-created images. This external sync mode can also be used to
synchronize the video timing of two or more GSP chips in a multiple-GSP
display system.

6.4 Alphabetical Listing of I/O Registers

6-8

The remainder of this section describes the /0 registers individually; they are
listed in alphabetical order. Fields within each register are identified and
functions associated with each register are discussed.

Bits within 1/O registers that are identified as reserved are not used by the
TMS34010. When read, a reserved bit returns the last value written to it. No
control function, however, is affected by this value. All reserved bits are
loaded with Os at reset. A good software practice is to maintain Os in these
bits.

CONTROL

Memory Control Register CONTROL

T (Pixel transparency enable)

The T bit enables or disables the pixel attribute of transparency. When
transparency is enabled, a value of 0 resulting from a pixel operation on
source and destination pixels is inhibited from overwriting the destination
pixel. In the case of a replace operation, a source pixel value of 0 is inhib-
ited from overwriting the destination pixel. Disabling transparency allows
a pixel value of 0 to be written to the destination.

Effect
0 Disable transparency
1 Enable transparency

W (Window violation detection mode)

The W field selects the course of action to be taken when a pixel operation
will cause a pixel to be written to a location lying either inside or outside
the specified window limits. Window checking applies only to attempts to
write to pixel locations defined by XY addresses; writes to pixel locations
defined by linear memory addresses are not affected. Nonpixel data writes
are not affected.

w Description

00 No pixel writes are inhibited, and no in-
terrupt requests are generated

01 Generate interrupt request on attempt to
write to pixel lying inside window, and
inhibit all pixel writes

10 Generate interrupt request on attempt to
write to pixel lying outside window

11 Inhibit pixel writes outside window, but
do not request interrupt

A request for a window violation interrupt can occur when W=01 or W=10.
The WVP bit in the INTPEND register is set to 1 to indicate that a window
violation has occurred. This in turn causes the GSP to be interrupted if the
WVE bit in the INTENB register and the status |E bit are set to 1.

PBH (PixBlt horizontal direction control)

The PBH bit determines the horizontal direction (increasing X or decreasing
X) of pixel processing for the following instructions:

- PIXBLT XY,XY
- PIXBLT L,XY
- PIXBLT XY,L
- PIXBLT L,L
PBH Effect
0 Increment X {move from left to right)
1 Decrement X (move from right to left)

CONTROL

Memory Control Register

CONTROL

PBV (PixBIt vertical direction control)

The PBV bit determines the vertical direction (increasing Y or decreasing
Y) of pixel processing for the following instructions:

PIXBLT L, XY
PIXBLT XY,L
PIXBLT L,L

PIXBLT XY, XY

PBV

Effectt

0

Increment Y (move from top to bottom)

1

Decrement Y {move from bottom to top)

T Default screen origin assumed

PPOP (Pixel processing operation select)

The PPOP field selects the operation to be performed on the source and
destination pixels during a pixel operation. The following 16 PPOP codes
perform Boolean operations on pixels of 1, 2, 4, 8, and 16 bits.

01111

01110 {SNANDD 2 D

S—2D

PPOP Operation Description

00000 S = D | Replace destination with source
00001 S AND D = D | AND source with destination
00010 S AND D = D | AND source with NOT destination
00011 0 = D | Replace destination with Os
00100 SOR D > D | OR source with NOT destination
00101 | S XNOR D = D | XNOR source with destination
00110 D — D | Negate destination

00111 S NOR D ~* D | NOR source with destination
01000 S ORD — D | OR source with destination

01001 D = D | No change in destinationt

01010 | S XOR D ~ D | XOR source with destination
01011 S AND D = D | AND NOT source with destination
01100 _ 1 = D | Replace destination with 1s
01101 S OR D = D | OR NOT source with destination

NAND source with destination
Replace destination with NOT source

T Although the destination array is not changed by this operation,
memory cycles still occur.

The following six PPOP codes perform arithmetic operations on 4-
16-bit pixels (but not 1 or 2 bits).

, 8-, and

PPOP

Operation

Description

10000
10010

D+S—D

10001 |ADDS(D,S) = D

D-s—D

10011 | SUBS(D,S) = D
10100 | MAX(D,S) = D
10101 | MIN(D.S) = D

Add source to destination

Add S to D with saturation
Subtract source from destination
Subtract S from D with saturation
Maximum of source and destination
Minimum of source and destination

PPOP codes 10110 through 11111 are reserved.

CONTROL

Memory Control Register CONTROL

Standard addition and subtraction aliow the result of the operation to ov-
erflow. However, add-with-saturation and subtract-with-saturation
(ADDS and SUBS) do not allow overflow or underflow. In cases in which
addition would allow an overflow, ADDS produces a result whose value is
all 1s. In cases in which subtraction would allow an underflow, SUBS
produces a result whose value is all Os.

CD (Cache disable)

The CD bit selectively enables or disables the instruction cache.

CcD Effect
0 Enable instruction cache
1 Disable instruction cache

When the cache is disabled, cache contents (including data, P flags, SSA
registers, and so on) remain undisturbed. While the cache remains disa-
bled, all instructions are fetched from memory rather than cache. When the
cache is subsequently enabled, its previous state (before it was disabled)
is restored. The instructions retained within the cache are once again
available for execution.

CONVDP

Destination Pitch Conversion Factor CONVDP

Address

Bit
Assighments

Description

>C000 0140

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CONVDP B

CONVDP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVDP is used with:

® XY addressing
® Window clipping

® PIXBLTs or FILLS {except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVDP is calculated as the result of an LMO instruction whose input
operand is the destination pitch value in register B3 (DPTCH). The fol-
lowing GSP assembly code calculates the CONVDP value.

LMO B3,BO ; Convert DPTCH value
MOVE BO,@CONVDP,0 ; Place result in CONVDP register

In this example, BO is used as a scratch register. Constant CONVDP has
the value >C000 0140, and the size of Field 0 is 16 bits.

GSP internal hardware uses the CONVDP value during XY-to-linear con-
version of a destination address. CONVDP is also used for corner adjust
operations in the Y direction (when PBV=1). The value contained in the
five LSBs of CONVDP should be the 1's complement of loga(DPTCH).
When an XY address is specified for the destination, DPTCH must be a
power of two; thus, logo(DPTCH) is an integer. During XY-to-linear con-
version, the product of the Y value and the destination pitch is calculated
by shifting Y left by log2(DPTCH).

One instruction, the PIXBLT XY,L instruction, specifies the destination ad-
dress in linear format but also requires DPTCH to be a power of two. This
restriction is necessary when the PBV bit is set to 1.

CONVSP Source Pitch Conversion Factor CONVSP
Address >C000 0130
Bit

Assignments

Description

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 O

] CONVSP H

CONVSP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVSP is used with:

] XY addressing
[] Window clipping

] PIXBLTs or FILLS (except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVSP is calculated as the result of an LMO instruction whose input
operand is the source pitch value in register B1 (SPTCH). The following
GSP assembly code calculates the CONVSP value

LMO B1,BO ; Convert SPTCH value
MOVE BO,@CONVSP ; Place result in CONVSP register

In this example, BO is used as a scratch register. Constant CONVSP has the
value >C000 0130, and the size of Field 0 is 16 bits.

GSP internal hardware uses the CONVSP value during XY-to-linear con-
version of a source address. CONVSP is also used for corner ajust oper-
ations in the Y direction (when PBV=1). The value contained in the five
LSBs of CONVSP should be the 1's complement of log2o(SPTCH). When
an XY address is specified for the source, SPTCH must be a power of two;
thus, logo(SPTCH) is an integer. During XY -to-linear conversion, the pro-
duct of the Y value and the source pitch is calculated by shifting Y left by
logy (SPTCH).

Two instructions that specify the source address in linear format also require
SPTCH to be a power of two. This is necessary when window preclipping
is required during execution of either of the following instructions:

® PIXBLT B, XY
] PIXBLT L XY

It is also necessary when either of these two instructions is executed and
the PBV bit in the CONTROL register is set to 1. |If PBV=0 and window
clipping is disabled, or if window clipping is enabled but the specified array
does not require preclipping in the Y dimension, CONVSP is not used, and
SPTCH is not required to be a power of two.

DPYADR Display Address Register DPYADR
Address >C000 O1EQ
Bit

Assignments

Fields

Description

5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

SRFADR [Lnen |
Bits Name Function
01 LNCNT Scan line counter
2-15 | SRFADR Screen refresh address

The 16-bit DPYADR register contains two separate counters that control
the generation of screen-refresh cycles. A screen-refresh cycle transfers the
video data for a new scan line to the shift registers of the VRAMs.

LNCNT (Scan /ine counter)

LNCNT counts the number of scan lines output to the screen between
successive screen-refresh cycles. Providing explicit control over the line
count permits the implementation of systems that do not reload the VRAMs'
internal shift register on every horizontal scan line. The two-bit LNCNT
field is loaded from the two-bit LCSTRT field of the DPYSTRT register at
the end of each screen-refresh cycle. The value loaded determines whether
the next screen-refresh cycle occurs after 1, 2, 3 or 4 scan lines:

- When LCSTRT = 0, a screen refresh occurs after every line.

- When LCSTRT =1, 2 or 3, a screen-refresh cycle occurs after every 2,
3 or 4 lines, respectively.

SRFADR (Screen refresh address)

SRFADR is the source of the row and column addresses output during a
screen-refresh cycle. The 14 bits of SRFADR are output as logical address
bits 10-23 during screen-refresh cycles. During row address time,
DPYADR4-DPYADR15 are output on LAD12-LAD23, and Os are output
on the remaining LAD pins (except as modified by the contents of the
DPYTAP register). During column address time, DPYADR2-DPYADRG6 are
output on LADB-LAD10 and Os are output on the remaining LAD lines.
Following the completion of each screen-refresh cycle, the value in
SRFADR is decremented by the amount indicated in the DUDATE field of
the DPYCTL register.

The following diagrams illustrate the mapping of bits to LADO-LAD15 from
1) The logical address as seen by the programmer
and

2) The bits of the DPYADR register

|

DPYADR

Display Address Register DPYADR

The bits of a 32-bit logical address are numbered 0 to 31, beginning with
the LSB. The 14 MSBs of DPYADR, shown in the diagram below, are
output as logical address bits 10-23 during a screen-refresh cycle.
DPYADR2 corresponds to logical address bit 10, DPYADR3 corresponds
to logical address bit 11, and so on.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[SRFACR ILNCNT |
| |
|
|

DPYADR

Loglcal |
Address |23 22 21 20 19 18 17 18 15 14 13 12 11 10,

The next diagram shows the mapping of logical addresses to
LADO-LAD15 during the row and column address times of the cycle. The
symbol xx indicates status information output with the row and column
addresses.

LAD Pin No.: %5 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
Loglcal Row
Adg,m Blte: XX|26[25(24|23(22(21(10|18 |18 |17 |16 |15 |14 |18 [12 Row

4 _IA_Iddess
Cannepondin me
[P ADS el 15 (14 |13 12|11 [10| 8 [8 |7 (6|5 |4
Logical Column
Address Bits: XX |Xx{20128(27|14}13[12|11(10| 8| 8| 7 | 6|5 |4 Column
c Jl _IA_Iddress
crrasnnndin me
DP1ADR Euts: 7| o 5| 4| 3| 2

A board designer must select eight consecutive address lines from
LADO-LAD11 to connect to the multiplexed address inputs of the VRAMs.
For example, by selecting the eight lines LAD2-LAD9, bits 14-21 of the
logical address become the row address bits output to the RAMs, and bits
6-13 of the logical address become the column address bits. This means
that during a screen-refresh cycle, bits 6-13 of DPYADR become the row
address bits output to the RAMs, and bits 4-5 of DPYADR become the two
MSBs of the tap point address.

DPYCTL Display Control Register DPYCTL
Address >C000 0080
Bit

Assighments

Fields

Description

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

|ENV| NIL |DXV]SRE|SRT|ORG| DUDATE [ResiisD
Bits Name Function
0 HSD Horizontal sync direction
1 Reserved Not used
2-9 DUDATE Display address update
10 ORG Screen origin select
11 SRT Shift register transfer enable
12 SRE Screen refresh enable
13 DXV Disable external video
14 NiL Noninterlaced video enable
15 ENV Enable video

The DPYCTL register contains several parameters that control video timing
signals and shift-register transfer cycles using VRAMs.

HSD (Horizontal sync direction)

The HSD bit controls the direction (input or output) of the HSYNC (hori-
zontal sync) pin when the GSP is in external video mode (DXV=0). If
HSD=0, HSYNC is configured as an input, the same as VSYNC. In this case,
the on-chip horizontal sync interval begins when either:

- The start of the external horizontal sync pulse input at the HSYNC pin
is detected,

or
- HCOUNT = HTOTAL,

whichever condition occurs first.

VSYNC and HSYNC are configured as inputs or outputs according to the
values of the HSD and DXV bits:

HSD DXV | HSYNC VSYNC

0 0 Input Input
1 Output Output
0 Qutput input
1 Undefined

0
1
1

6-17

DPYCTL

Display Control Register DPYCTL

When VSYNC and HSYNC are both configured as inputs, the on-chip vertical
sync interval begins when any of the following conditions occur:

- The start of the external vertical sync pulse input at the VSYNC pin is
detected,

or

- VCOUNT=VTOTAL, and the start of the horizontal sync pulse input at
the HSYNC pin is detected,

or
- VCOUNT=VTOTAL and HCOUNT=HTOTAL.

When VSYNC is an input and HSYNC is an output, the vertical sync interval
begins when either the first or third of the listed conditions occurs.

DUDATE (Display update amount)

The DUDATE field indicates the amount by which the SRFADR field in the
DPYADR register is incremented (if ORG=0) or decremented (ORG=1)
following completion of each memory-to-shift-register cycle used to refresh
the screen. DUDATE is loaded with a value containing seven Os and a
single 1. The 1 indicates the bit position at which DPYADR is to be incre-
mented (or decremented if ORG=1).

DUDATE m°§;§”
00000000 0
00000001 1
00000010 2
00000100 2
00001000 8
00010000 16
00100000 32
01000000 64
10000000 128

The increment size is undefined when more than one bit in the DUDATE
field is a 1. When interlaced scan mode is enabled, SRFADR is
incremented/decremented by half the value indicated in DUDATE at the
start of a vertical blanking interval preceding the start of an odd field, just
after DPYADR2-DPYADR15 have been loaded from
DPYSTRT2-DPYSTRT15.

For noninterlaced scanning, DUDATE is programmed to increment the
screen address by one scan line. For interlaced scanning, DUDATE is pro-
grammed to increment the screen address by two scan lines. Larger incre-
ments are typically not used since screen-refresh cycles do not occur more
often than once per active scan line. In special applications, however, the
value of DUDATE can be adjusted to achieve video effects such as vertical
zoom in and zoom out. (Horizontal zoom must be implemented in the ex-
ternal shift register logic).

DPYCTL

Display Control Register DPYCTL

ORG (Screen origin select)

The ORG bit controls the origin of the screen coordinate system.

ORG Effect

0 XY coordinate origin located in upper
left corner of screen

1 XY coordinate origin located in lower
left corner of screen

If ORG=0 then DPYADR is updated by being incremented by the value in
the DUDATE field. If ORG=1 then DPYADR is updated by being decre-
mented by the value in the DUDATE field. Unless explicitly stated other-
wise, the discussion in this document assumes that the default origin
(ORG=0) is used.

SRT (Shift-register-transfer enable)

The SRT bit enables conversion of an ordinary pixel access into a shift-
register-transfer cycle.

SRT Effect
0 Pixel access cycles occur normally
1 Pixel access cycles are converted into
VRAM shift-register-transfer cycles

The TMS34010 instruction set includes several instructions (DRAV, PIXT,
LINE, FILL, and PIXBLT) that operate specifically on pixeis. By default,
SRT=0 and memory accesses performed during accesses of pixel data are
the usual memory read and write cycles. When SRT=1, however, accesses
of pixel data are converted to shift-register-transfer cycles:

- A pixel read cycle is converted to a memory-to-shift-register cycle
- A pixel write cycle is converted to a shift-register-to-memory cycle

This shift-register-transfer cycle is performed under explicit program con-
trol, as opposed to the screen-refresh cycles enabled by the SRE bit, which
are automatically generated at regular intervals.

Uses of the SRT bit include bulk initialization of the entire VRAM array: the
entire screen can be cleared to a specified background color in only 256
memory cycles. (All VRAMs do not support this capability.) Only pixel
accesses are affected by the state of the SRT bit. Instruction fetches and
non-pixel data accesses are not altered in any way.

DPYCTL

Display Control Register DPYCTL

6-20

SRE (Screen-refresh enable)

The SRE bit enables automatic screen refreshing. Screen refreshes are
performed by means of the VRAM memory-to-shift-register cycles which
the GSP performs automatically during selected horizontal blanking inter-
vals. The frequency of screen-refresh cycles and the generation of the ad-
dresses output during these cycles are programmed by means of the
DPYSTRT and DPYCTL registers.

SRE Effect
0 Disable screen refresh
1 Enable screen refresh

DXV (Disable external video)

The DXV bit selects between internally generated or externally generated
video timing.

DXV Effect
0 Selects external video source
1 Selects internally generated video timing

When DXV=0, the GSP video timing circuitry is programmed to lock onto
an external video source. The VSYNC pin is configured as an input and is
connected to an external vertical sync signal. If HSD=0, HSYNC is also
configured as an input and is connected to an external horizontal sync sig-
nal.

When DXV=1, the GSP generates its own video timing, according to the
values loaded into the video timing registers. The HSYNC and VSYNC pins
are configured as outputs, and provide the horizontal and vertical sync sig-
nals required to drive the video monitor.

NIL (Noninterlaced video enable)

The NIL bit selects between an interlaced or a noninterlaced display. The
video timing signals output by the GSP are modified according to this se-
lection. The timing differences between interlaced and noninterlaced dis-
plays are described in Section 9.

NIL Effect
0 Selects interlaced video timing
1 Selects noninterlaced video timing

DPYCTL

Display Control Register DPYCTL

ENV (Enable video)

The ENV bit enables or disables the video display. The display remains
blanked when ENV=0. During this time, the signal output at the BLANK
pin is forced to remain at its active-low level throughout the frame, and
setting of the DIP (display interrupt) bit in the INTPEND register is inhib-
ited. (If DIP is already set at the time the ENV is changed from 1 to O, DIP
remains set until explicitly cleared.) When ENV=1, the video display is
enabled. The BLANK output signal is controlled according to the parameters
contained in the video timing registers, and the DIP bit becomes set when
the condition VCOUNT = DPYINT occurs.

ENV Effect
0 Blank entire screen
1 Enable video

6-21

DPYINT Display Interrupt Register DPYINT
Address >C000 00AOQ

Bit

Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

6-22

[DPYINT |

The DPYINT register designates the next scan line at which a display in-
terrupt will be requested. This register facilitates the coordination of soft-
ware activity with the refreshing of selected horizontal lines on the screen
of a video monitor.

The contents of DPYINT are compared to the VCOUNT register. When
VCOUNT = DPYINT, a display interrupt is requested and the DIP bit in the
INTPEND register is set to 1. This coincides with the start of the horizontal
blanking interval that marks the end of the line designated by the value
contained in DPYINT.

For split-screen applications, a new value can be loaded into the DPYADR
register immediately following detection of the 0-to-1 transition of DIP.
The new DPYADR value will not affect the line that immediately follows the
end of the current horizontal blanking interval, but will affect the next line.
The details of this timing are as follows. A screen-refresh cycle may be
scheduled to occur at the start of the same horizontal blanking interval
during which DIP becomes set. At the end of the screen-refresh cycle, the
screen-refresh address in the DPYADR register will be automatically incre-
mented. Requests for screen-refresh cycles have a higher priority than re-
quests for cycles initiated by the on-chip processor. Hence, if the processor
loads a new value into DPYADR immediately following detection of DIP’s
transition from O to 1, the value will become the address used for the next
screen-refresh cycle, which cannot occur before the next horizontal biank-
ing interval. Between the time that DIP becomes set to 1 and the com-
pletion of the next screen-refresh cycle at least one full scan line later, the
DPYADR register is guaranteed not to be incremented. Its contents will
change during this interval only if it is loaded with a new value under ex-
plicit program control. The display interrupt is disabled when the ENV bit
in the DPYCTL register is 0.

DPYSTRT Display Start Address Register DPYSTRT
Address >C000 0090
Bit

Assignments

Fields

Description

15 14 13 12 11 10 9 8 7 6 65 4 3 2

10
[SRSTRT [LcsTRT|

Bits | Name Function
01 LCSTRT Starting line count
2-15 | SRSTRT Starting screen-refresh address

The DPYSTRT register contains two parameters that control the automatic
memory-to-shift-register cycles necessary to refresh the screen.

LCSTRT (Starting line count)

LCSTRT is a two-bit code designating the number of scan lines to be dis-
played between screen refreshes.

Scan Lines
LCSTRT Between
Value Refresh
Cycles
00 1
01 2
10 3
11 4

LCSTRT is loaded into the LNCNT field of the DPYADR register at the end
of each screen-refresh cycle. LCSTRT is also loaded into LNCNT at the
start of the last horizontal blanking interval preceding the first active scan
line of a new frame.

SRSTRT (Starting screen-refresh address)

The 14-bit SRSTRT field contains the starting address loaded into the
DPYADR register at the start of each frame. Its value identifies the start of
the region of the graphics bit map to be displayed on the screen. SRSTRT
is loaded into the SRFADR field of the DPYADR register at the beginning
of each vertical blanking interval. (Loading occurs coincides with the start
of the horizontal blanking interval at the end of the last active scan line in
the frame.)

The sense of the SRSTRT value depends on the value of the ORG (origin
select) bit in the DPYCTL register. When ORG=0, SRSTRT is loaded with
the 1’s complement of the starting address. When ORG=1, SRSTRT is
loaded with the unmodified starting address. Regardless of the value of the
ORG bit, the starting address points to the location in memory of the first
pixel output to the screen during each frame. For a typical CRT display, the
first pixel of each frame is output to the top left corner of the screen. Refer
to the description of the DPYADR register for more information on the
generation of screen-refresh addresses.

6-23

HCOUNT Horizontal Count Register HCQUNT
Address >C000 01CO
Bit

Assignments

Description

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

{ HCOUNT [

The HCOUNT register is a 16-bit counter used in the generation of the
horizontal sync and blanking signals. HCOUNT is incremented on the fali-
ing edge of the video input clock, and is used to count the number of video
clock periods per horizontal scan line. To generate horizontal sync and
blanking signals, the value of HCOUNT is compared to the value of the four
horizontal timing registers: HESYNC, HEBLNK, HSBLNK, and HTOTAL.
When external sync mode is disabled and the value in HCOUNT = HTO-
TAL, HCOUNT is reset to O on the next VCLK falling edge and the HSYNC
output is driven active low. HCOUNT is also reset to O if the external sync
mode is enabled and the input signal HSYNC is driven low.

Two separate, asynchronous elements of the GSP logic can access the
HCOUNT register:

® The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access HCOUNT as an i/0 register.

L] The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears HCOUNT in generating the sync
and blanking signals.

No synchronization between these two subsystems is provided, and
HCOUNT can only be reliably read or written to while VCLK is held at the
logic-high level. HCOUNT is typically not read or written to except during
chip test.

6-25

HEBLNK Horizontal End Blank Register HEBLNK
Address >C000 0010
Bit

Assignments

Description

6-26

15 14 13 12 11 170 9 8 7 6 5 4 3 2 1 O

| HEBLNK I

The HEBLNK register is used during the generation of the blanking signal
output to the video monitor. The 16-bit value loaded into HEBLNK is
compared to HCOUNT, and designates the point at which the horizontal
blanking interval ends. The blanking signal output at the BLANK pin is a
composite of the internal horizontal and vertical blanking signals. When the
value in HCOUNT = HEBLNK, the BLANK output is driven inactive high
unliess vertical blanking is currently active. Most video monitors require
HEBLNK to be set to a value that is less than the value in HSBLNK, but
greater than the value in HESYNC.

HESYNC Horizontal End Sync Register HESYNC
Address >C000 0000
Bit

Assignments

Description

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| HESYNC]

The HESYNC register is used during generation of the horizontal sync sig-
nal output to the video monitor. The 16-bit value loaded into HESYNC
determines the point at which the horizontal sync pulse ends. When the
value in HCOUNT = HESYNC, the signal output from the HSYNC pin is
driven inactive high to signal the end of the horizontal sync interval. Typical
monitors require that HESYNC be set to a value less than the value con-
tained in the HEBLNK register. (However, the HESYNC value is not re-
quired to be less than the HEBLNK value.) The minimum value of HESYNC
is 0.

When external video is enabled and the HSYNC pin is configured as an in-
put, HESYNC should be loaded with a value that ensures that the condition
HCOUNT = HESYNC occurs after the external HSYNC signal has gone in-
active-high, but before HSYNC goes active low again. For example, a good
HESYNC value might be the average of the values in HEBLNK and
HSBLNK.

6-27

HSBLNK Horizontal Start Blank Regqgister HSBLNK
Address >C000 0020
Bit

Assignments

Description

6-28

1% 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
| HSBLNK |

The HSBLNK register is used during generation of the blanking signal out-
put to the video monitor. The 16-bit value in HSBLNK is compared to
HCOUNT, and designates the point at which the horizontal blanking inter-
val begins. The blanking signal output at the BLANK pin is a composite of
the internal horizontal and vertical blanking signals. When the condition
HCOUNT = HSBLNK occurs, the BLANK output is driven from its inac-
tive-high level to its active-low level (unless it is already low due to vertical
blanking being active).

Several internal events coincide with the start of horizontal blanking. First,
when a screen-refresh cycle is programmed to occur during a particular
horizontal scan line, a request for the cycle is sent to the memory controller
at the beginning of the horizontal blanking interval that occurs at the end
of the line. Second, if a display interrupt request is programmed to occur
during a particular horizontal scan line, the request is generated at the start
of horizontal blanking. Typical monitors require that HSBLNK be set to a
value that is less than the value in HTOTAL, but greater than the value in
HEBLNK.

HSTADRH

Host Interface Register,
High Word HSTADRH

Address

Bit
Assignments

Description

>C000 00EC

5 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

| HSTADRH |

The HSTADRH register contains the 16 MSBs of a 32-bit pointer address;
the 16 LSBs are contained in HSTADRL. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the GSP. The host accesses the pointer ad-
dress through two 16-bit host interface registers that are mapped into the
host’s memory or I/0O address space.

The four LSBs of the 32-bit pointer address are forced to 0 to point to an
even word boundary in memory. If the address pointer is incremented past
the largest word address in memory, it will wrap around to the lowest ad-
dress (all Os).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. If
LBL=0, HSTADRH should be written last. If LBL=1, HSTADRL should
be written last.

Note:

When the TMS34010’s on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. The host must perform one of two operations to read the
referenced data:

1) K INCR=0, the host processor reads the HSTDATA register twice.
The second read provides valid data.

2) If INCR=1 or is unknown, the host processor reads and then
writes the HSTADRH register (if LBL=0), or the HSTADRL reg-
ister (if LBL=1). The HSTDATA register then contains valid data.
If LBL is unknown, both HSTADRH and HSTADRL may be read
and then written to make HSTDATA valid.

6-29

Host Interface Register,

HSTADRL Low Word HSTADRL
Address >C000 00DO

Bit

Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

6-30

| ‘ HSTADRL |

The HSTADRL register contains the 16 LSBs of a 32-bit pointer address;
the 16 MSBs are contained in HSTADRH. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the GSP. The host accesses the pointer ad-
dress through two 16-bit host interface registers that are mapped into the
host’'s memory or I/O address space.

The four LSBs of the 32-bit pointer address are forced to O to point to an
even word boundary in memory. If the address pointer is incremented past
the largest word address in memory, it will wrap around to the lowest ad-
dress (all 0s).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. |If
LBL=0, HSTADRH should be written last. If LBL=1, HSTADRL should
be written last.

Note:

When the TMS34010’s on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. The host must perform one of two operations to read the
referenced data:

1) If INCR=0, the host processor reads the HSTDATA register twice.
The second read provides valid data.

2) If INCR=1 or is unknown, the host processor reads and then
writes the HSTADRH register (if LBL=0), or the HSTADRL reg-
ister (if LBL=1). The HSTDATA register then contains valid data.
If LBL is unknown, both HSTADRH and HSTADRL may be read
and then written to make HSTDATA valid.

HSTCTLH

Host Interface Control Register,
High Byte HSTCTLH

Address
Bit
Assignments

Fields

Description

>C000 0100

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[HT] cr T iBL Jinew]InNcF §_ 5. Fomim] N TR N
Bits Name Function
0-7 Reserved Not used
8 NMI Nonmaskable interrupt
9 NMIM Mode bit for NMI
10 Reserved Not used
11 INCW Increment pointer address on write
12 INCR Increment pointer address on read
13 LBL Lower byte last
14 CF Cache flush
15 HLT Halt GSP processing

The HSTCTLH register contains seven programmable bits used to control
host interface communications. A host processor can access the control
bits in the HSTCTLL and HSTCTLH registers as a single host interface re-
gister, HSTCTL. The bits of the host interface’s HSTCTL register are
mapped into two separate 1/ 0O register locations in the GSP’s memory map,
HSTCTLL and HSTCTLH, to allow the GSP to alter the bits in one location
without affecting the bits in the other.

The HSTCTLH bits can be both written to and read by both the host pro-
cessor and the GSP. Unpredictable results will occur if the GSP and host
simultaneously write different values to the HSTCTLH bits. Typically only
the host alters the bits in HSTCTLH.

NMI (Nonmaskable interrupt, host to GSP)

The nonmaskable interrupt allows the host processor to redirect the exe-
cution flow of GSP processing to an NMI routine, regardless of the current
state of the interrupt mask flags. The host writes a 1 to the NMI bit to send
a nonmaskable interrupt request to the GSP. The interrupt request cannot
be disabled, and will always be executed (unless the GSP is reset before it
can complete interrupt execution). The interrupt is initiated immediately
upon NMI becoming set (at the time the current instruction completes ex-
ecution, or in the case of a pixel array instruction, at the next interruptible
point in the instruction). Once the interrupt is taken, internal logic auto-
matically clears the NMI bit to 0.

One use of the NMI is to generate a soft reset after the host downloads new
program code into GSP memory. Following execution of a nonmaskable
interrupt, screen-refresh and DRAM-refresh functions continue unaffected.
The contents of internal registers other than the HSTCTL register are not
altered by the interrupt, although they can be modified by the NMI service
routine.

6-31

Host Interface Control Register,

HSTCTLH High Byte HSTCTLH
® NMIM (Nonmaskable interrupt mode)
The NMI mode bit determines whether or not the context of the interrupted
program is saved when a nonmaskable interrupt occurs. When NMIM=0,
the context is saved on the system stack before the NMI service routine is
executed. When NMIM=1, the context is discarded when the NMI service
routine is executed.
The NMIM=0 mode supports applications such as single stepping of in-
structions where the status and PC must be preserved between consecutive
nonmaskable interrupts. When NMIM=1, a nonmaskable interrupt can be
used to simulate a hardware reset in software (using the NM! vector).
Saving the context may be of no benefit if either:
- Control is never to be returned to the interrupt program
or
- The integrity of the stack pointer is suspect.
The nonmaskable interrupt does not cause the I/0O registers to be reset.
Consequently, if an NMI is used to simulate a hardware reset, the 1/0 reg-
isters should be reset by software within the NMi service routine.
NMI INMIM Effect
0 0 No effect
0 1 Undefined
1 0 NMI (save context on stack)
1 1 NMI (discard previous context)
® CF (Cache flush)

6-32

While CF is set to 1, the contents of the instruction cache are flushed. All
four P (present) flags in the cache control logic remain forced to 0 as long
as CF remains 1. When CF=1, the cache is disabled; instruction words are
fetched from local memory one at a time as they are needed for execution
by the GSP. Normal cache operation resumes when CF is set to 0, assum-
ing the CD bit in the CONTROL register is also 0. When the value of CF is
changed from 1 to 0, the cache begins operation in the same initial state
as that which immediately follows reset.

One use of the CF bit is during downloads of new software from the host
processor to GSP local memory. By setting CF to 1 and then to O again,
the host processor forces the GSP to begin to load new instructions into
the cache from memory rather than continue execution of stale instructions
already contained in the cache. A 0 must be loaded into CF for normal
cache operation to resume.

CF Effect
0 No effect
1 Flush and disable cache

HSTCTLH

Host Interface Control Register,
High Byte HSTCTLH

LBL (Lower byte Jast)

The LBL bit specifies whether an indirect access of GSP memory, initiated
by a host register access, begins when the upper or lower byte of the reg-
ister is accessed by the host processor.

LBL is provided to accommodate host processors with 8-bit data paths.
An 8-bit processor must access a 16-bit GSP host interface register as a
seties of two 8-bit bytes. Processors which access the lower byte (bits
0-7) first and the upper byte (bits 8-15) second should typically set LBL
to 0, and those that access bytes in the opposite sequence should set LBL
to1.

When LBL is 0, a local bus cycle is initiated if

- The host writes to the upper byte of HSTADRH,
or
- The host reads from or writes to the upper byte of HSTDATA

If LBL is 1, a local bus cycle is initiated if

- The host accesses the lower byte of HSTDATA
or
- The host writes to the lower byte of HSTADRL

With this capability, the GSP chip is capable of automatically resoiving so
called “Little-Endian/Big-Endian” byte addressing incompatibilities be-
tween various processors, and promotes software transparency between 8-
and 16-bit versions of the same processor architecture (such as the 8088
and 8086).

LBL Effect
0 Initiate 16-bit local bus cycle on host access of
upper byte of HSTDATA, or on load of upper byte
of HSTADRH
1 Initiate 16-bit local bus cycle on host access of
lower byte of HSTDATA, or on load of lower byte
of HSTADRL

INCR (/ncrement address before local read)

The INCR bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented before each read.

INCR Effect

0 Do not increment address pointer before read cy-
cle on local memory bus.

1 Increment address pointer before read cycle on
local memory bus.

6-33

HSTCTLH

Host Interface Control Register,
High Byte HSTCTLH

6-34

When INCR=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 before being used for the next read of the
GSP memory. This means that HSTDATA is updated to the contents of the
next sequential word in the local memory in preparation for the next antic-
ipated read of HSTDATA by the host processor. A local read cycle also
occurs when the host loads a new address into the HSTADRL and
HSTADRH registers, but the address is not incremented in this case. When
incrementing is enabled, repeated reads of the HSTDATA register by the
host result in a series of adjacent words in GSP memory being read; other-
wise, the same memory word is read each time. Regardless of the value of
the INCR bit, each time HSTDATA is read by the host, a new word is au-
tomatically read into HSTDATA from the GSP’s memory.

INCW (/ncrement address after local write)

The INCW bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented after each write.

INCW Effect

0 Do not increment address pointer after write cycle
on local memory bus.

1 Increment address pointer after write cycle on lo-
cal memory bus.

When INCW=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 after being used as the memory write ad-
dress. When incrementing is enabled, repeated writes to the HSTDATA
register by the host cause a series of adjacent words in GSP memory to be
modified; otherwise, the same memory word is modified repeatedly. Re-
gardless of the value of the INCW bit, each time HSTDATA is written to by
the host, a new cycle is initiated to write the contents of HSTDATA to the
GSP’s memory.

HLT (Halt GSP program execution)

When the HLT bit is set to 1, the GSP suspends instruction processing at
the next instruction boundary. Once halted, the GSP does not respond to
interrupt requests (including NMI). Local memory refresh and video timing
functions continue unaffected while the GSP is halted. When HLT is again
set to 0, the GSP continues execution.

The state of the HLT bit immediately following reset is determined by the
state of the HCS pin at the time of the low-to-high transition of RESET. If
HCS is low, HLT is set to 0, and the GSP is enabled to begin executing its
reset routine. If HCS is high, the HLT bit is set to 1, and the GSP is halted.
Both the host processor and GSP can write to the HLT bit; this means the
GSP can halt itself by loading a 1 into HLT.

HLT Effect
0 Allow GSP to run
1 Halt GSP instruction execution

HSTCTLL

Host Interface Control Register,
Low Byte HSTCTLL

6-36

INTIN (/nterrupt in, host to GSP)

The INTIN bit controls the interrupt request to the GSP from the host. To
generate an interrupt request, the host processor loads a 1 to INTIN. The
GSP deactivates the request by loading a 0 to INTIN. An attempt by the
host to load a 0 to INTIN has no effect. Similarly, an attempt by the GSP
to load a 1 to INTIN has no effect. A read-only copy of the INT!IN bit is
available as the HIP bit in the INTPEND register. The HIP bit faithfully re-
presents the state of the INTIN bit at all times.

INTIN Effect
0 No interrupt request to GSP

1 Send interrupt request to GSP

MSGOUT (Message out, GSP to host)

The MSGOUT field buffers a 3-bit interrupt message to the host from the
GSP. The MSGOUT field can be both written to and read by the GSP, but
only read by the host. The MSGOUT field permits an interrupt request
generated by means of the INTOUT bit to be qualified by an additional
command or status code, the meaning of which is defined in the software
of the host and GSP.

INTOUT (/nterrupt out, GSP to host)

The INTOUT bit controls the interrupt request to the host processor from
the GSP. An interrupt r~niest is transmitted to the host by means of an
active-low level on the t *." pin. When INTOUT is 1, HINT is driven active
low; when INTOUT is O, HINT is driven inactive high. The GSP activates
the interrupt request by loading a 1 to INTOUT, and the host deactivates the
interrupt request by loading a 0 to INTOUT. An attempt by the GSP to load
a 0 to INTOUT has no effect. Similarly, an attempt by the host to load a 1
to INTOUT has no effect.

INTOUT Effect
0 No interrupt request to host
1 Send interrupt request to host

HSTDATA Host Interface Data Register HSTDATA
Address >C000 00CO
Bit

Assignments

Description

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

HSTDATA 1

The HSTDATA register buffers data transferred through the host interface
between GSP local memory and a host processor. HSTDATA can be ac-
cessed by the GSP at address >C000 00COQ. It is one of the four 16-bit
registers that can be accessed by the host register through the TMS34010
host interface. HSTDATA is typically accessed by the host rather than the
GSP. Using the HSTDATA register, the host can either read the GSP’s
memory or write to it. The host initiates the indirect access through the host
interface using the 32-bit pointer address in the HSTADRL and HSTADRH
registers. During each indirect access, a 16-bit word is transferred between
the HSTDATA register and GSP memory. The host processor can access
the contents of the HSTDATA register in one 16-bit data transfer or two
8-bit transfers. When the TMS34010’s on-chip processor reads from or
writes to HSTDATA, no automatic read or write cycle takes place between
HSTDATA and the memory word pointed to by HSTADRL and HSTADRH.

HTOTAL Horizontal Total Register HTOTAL
Address >C000 0030
Bit

Assignments

Description

6-38

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| HTOTAL |

The HTOTAL register is used during generation of the horizontal sync signal
output to the video monitor from the GSP. It determines the duration of
each horizontal scan line on the screen in terms of the number of VCLK
(video clock) periods. The contents of HTOTAL are compared with the
horizontal count in HCOUNT to determine the point at which the horizontal
sync pulse begins, which also represents the beginning of a new scan line.
HCOUNT counts from O to the value contained in HTOTAL. When
HCOUNT = HTOTAL, the HSYNC output is driven active low on the next
falling edge of the VCLK signal, and HCOUNT is reset to 0 on the same
clock edge.

HTOTAL is loaded with a 16-bit value greater than that contained in
HSBLNK, but less than or equal to 65535. In interlaced scan mode, the
value in HTOTAL should be an odd number (LSB=1) to achieve equal
spacing between adjacent scan lines. The total number of VCLK video
clocks in each horizontal scan line is calculated as HTOTAL + 1. When
external sync mode is enabled (DXV=0) and HSYNC is configured as an
input (HSD=0), HTOTAL should be loaded with a value greater than the
value of HCOUNT at the point at which the external sync pulse is expected.
If the external sync pulse does not occur, HCOUNT will be reset when
HCOUNT = HTOTAL.

INTENB Interrupt Enable Register INTENB
Address >C000 0110
Bit
Assignments 15 14 13 12 11 10 9 8 7 6 &6 4 3 2 1 0
[Beeved [WVE[DIE[HIF Resprvid [X2E[X1E] Ren |
Fields Bits Name Function
0 Reserved Not used
1 X1E External interrupt 1 enable
2 X2E External interrupt 2 enable
3-8 | Reserved Not used
9 HIE Host interrupt enable
10 DIE Display interrupt enable
11 WVE Window-violation interrupt enable
12-15| Reserved Not used

Description

The INTENB register contains the interrupt mask used to selectively enabie
the three internally and two externally generated interrupt requests. The
following interrupts are enabled by the INTENB register:

[] External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINTZ2, respectively.

® The host interrupt is generated when the host processor sets the IN-
TIN bit in the HSTCTL register to 1.

® The display interrupt is generated when the vertical count in the
VCOUNT register reaches the value contained in the DPYINT register.

® The window-violation interrupt is caused by an attempt to write a
pixel to a region of the bit map lying outside the limits of the cur-
rently-defined window.

The status register contains a global interrupt enable bit, IE. The INTENB
register contains individual interrupt enable bits associated with each of the
interrupts (X1E, X2E, HIE, DIE, and WVE). Interrupis are enabled through
a combination of setting the IE bit and the appropriate bit in the INTENB
register. When IE=0, all interrupts are disabled regardless of the values of
the bits in the INTENB register. When |E=1, each interrupt is enabled or
disabled according to the corresponding enable bit in the INTENB register
(1 enables the interrupt, O disables it).

6-39

INTPEND Interrupt Pending Register INTPEND
Address >C000 0120
Bit

Assignments

Fields

Description

6-40

16 14 13 t2 1t 10 9 8 7 6 5 4 3 2 1 O

! Herpwws WP DIP[HIH{ Resurarnd | <2P[X1F | 85 |
Bits Name Function
0 Reserved Not used
1 X1P External interrupt 1 pending
2 X2P External interrupt 2 pending
3-8 | Reserved Not used
9 HIP Host interrupt pending
10 DIP Display interrupt pending
11 WVP Window-violation interrupt pending
15-12| Reserved Not used

The INTPEND register indicates which interrupt requests are currently
pending. INTPEND's six active bits indicate the status of the following in-
terrupts:

[] External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINT2, respectively.

® The host interrupt request is generated when the host processor sets
the INTIN bit in the HSTCTL register to 1.

® The display interrupt request is generated when the vertical count in
the VCOUNT register reaches the value contained in the DPYINT re-
gister.

] The window-viclation interrupt request is caused by an attempt to
write a pixel to a region of the bit map lying inside or outside the limits
of the currently-defined window, depending on the selected win-
dowing mode.

The individual pending bits in the INTPEND register reflect the status of
interrupt requests. The interrupt is requested if the corresponding pending
bit is 1. There is no request if the pending bit is 0. The status of each in-
terrupt request is refiected in the INTPEND register regardless of whether
the interrupt is enabled or not; this allows the GSP to poll interrupts.

The X1E and X2E bits of INTPEND are read only. They refiect the input
levels on the TINT1 and LINT2 pins, and are not affected when the INTPEND
register is written to. If an external interrupt is disabled, the interrupt re-
quest is ignored, even though the corresponding pending flag in INTPEND
is set. The interrupt will be taken by the GSP only if the external request
is maintained at the corresponding interrupt request pin until the interrupt
is again enabled.

INTPEND

Interrupt Pending Register INTPEND

The DIP and WVP bits in the INTPEND register reflect the status of interrupt
requests generated by conditions internal to the GSP. These two bits are
implemented as latches. Once set, DIP or WVP will remain set until a O is
written to it (or the GSP is reset). Writing a 1 to either of these bits has
no effect at any time. While an internal interrupt is disabled, the interrupt
request is ignored, even though the corresponding pending flag in INT-
PEND is set. If the interrupt is subsequently enabled while the interrupt
pending flag remains set (because of a prior interrupt request) then the in-
terrupt will be taken by the GSP.

The HIP bit in the INTPEND register is a read-only bit that always displays
the current contents of the INTIN bit in the HSTCTL register. Writing to the
INTPEND register has no effect on the HIP bit. A host interrupt request is
generated when the host processor writes a 1 to the INTIN bit of the
HSTCTL register. The GSP clears the interrupt request by writing a 0 to the
INTIN bit.

6-41

PMASK

Plane Mask Register PMASK

Address
Bit
Assignments

Description

6-42

>C000 0160

15 14 143 12 11 10 9 8 7 6 5 4 3 2 1 0

PMASK i

The PMASK register selectively enables or disables various planes in the
bit map of a display system in which each pixel is represented by multiple
bits. PMASK contains a 16-bit value that determines which bits of each
pixel can be modified during execution of a DRAV, PIXT, FILL, LINE, or
PIXBLT instruction. Via the PMASK register, the programmer specifies
which bits within each pixel are protected (mask bit=1) and not protected
(mask bit=0) from modification. During a pixel write operation, the Os in
the plane mask represent bit positions within the destination pixel that are
to be modified by the pixel operation. The 1s in the plane mask represent
bit positions in the destination pixel that are protected from modification.

The organization of a display memory is sometimes described in terms of
bit planes. If the pixel size is four bits, for example, and the bits in each
pixel are numbered from 0 to 3, the display memory is said to be composed
of four bit planes, numbered from 0 to 3. Plane 0 contains all the bits
numbered 0 from all the pixels, plane 1 contains all the bits numbered 1
from all the pixels, and so on. A 4-bit mask is constructed such that bit 0
of the mask enables (if 0) or disables (if 1) writes to the bits in plane O,
mask bit 1 enables or disables writes to plane 1, and so on.

The plane mask for a 4-bit pixel is four bits; the plane mask for an 8-bit pixel
is eight bits; and so on. The plane mask must be replicated throughout the
16 bits of the PMASK register. For example, with four bits per pixel, the
PMASK register is loaded with four identical copies of the corresponding
4-bit plane mask, as indicated below.

15 12 11 8 7 43 0
PMAsk [mask | mMAask [MAsk | MASK

With a pixel size of eight bits, the corresponding 8-bit plane mask is repli-
cated twice - once in bits 0-7 of PMASK, and again in bits 8-15. In gen-
eral, all 16 bits of the register are used, and a mask for a pixel size of less
than 16 bits must be duplicated n times, where n is 16 divided by the pixel
size.

The individual bits of the PMASK register are associated with the corre-
sponding bits of the 16-bit local data bus (data are in fact multiplexed over
the same LADO-LAD15 pins as addresses). PMASK register bit O is asso-
ciated with bit 0 of the data bus (the bit transferred on LADQ), PMASK bit
1 is associated with bit 1 of the data bus, and so on. In general, if PMASK
bit n is a 0, then bit n of the data bus is enabled by the mask; if PMASK
bit n is a 1, bit n is disabled by the mask.

PMASK

Plane Mask Register PMASK

Plane masking is effectively disabled (allowing all bits of each pixel to be
modified) by loading all Os into the PMASK register. This is the default
state of PMASK following reset.

To maintain upward compatibility with future versions of the GSP, software
drivers should tread the PMASK register as a 32-bit register beginning at
address >C000 0160. In other words, software should write the plane
mask value not only to the 16-bit word at address >C000 0160, but also
to the word at >C000 0170. Writing the second word will have no effect
on the TMS34010, but will ensure software compatibility with future
graphics processors which may extend the PMASK register from 16 to 32
bits.

6-43

PSIZE

Pixel Size Register PSIZE

Address
Bit
Assignments

Description

6-44

>C000 0150

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSIZE |

The PSIZE register is used to specify the pixel size in bits. If the pixel size
is four, for example, PSIZE is loaded with the value four. If the pixel size
is eight, PSIZE is loaded with the value eight, and so on. All 16 bits of the
PSIZE register can be written to or read. Legal pixel sizes are 1,2, 4, 8, and
16 bits; any other vaiue of PSIZE is undefined.

PSIZE Pixel Size
>0001 1 bit/pixel
>0002 2 bits/pixei
>0004 4 bits/pixel
>0008 3 bits/pixel
>0010 16 bits/pixel

REFCNT

Refresh Count Register REFCNT

6-46

During a DRAM-refresh cycle, the row address output to memory is taken
from the 8-bit ROWADR field of REFCNT. Specifically, bits 8~15 of
REFCNT are output on LADO-LAD7. REFCNT bits 8-14 are simultaneously
output on LAD8-LAD14. (The RF bus status signal is output as a low level
on LAD15.) This means that the 8-bit row address needed to refresh a
DRAM can be taken from any eight adjacent LAD pins in the range
LADO-LAD14. Note that as ROWADR counts from 0 to 255, the refresh
addresses output at the selected eight LAD pins will sequence through all
256 values in the range 0 to 255, though not necessarily in the same order
as ROWADR.

VCOUNT Vertical Count Register VCOUNT
Address >C000 01D0
Bit

Assignments

Description

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
| VCOUNT 1

The VCOUNT register is a 16-bit counter used during generation of the
vertical sync and blanking signals. VCOUNT counts the horizontal lines in
the video display, incrementing at the same clock edge at which HCOUNT
is internally reset to 0. This causes the falling edges of HSYNC and VSYNC
to coincide.

In order to generate vertical sync and blanking signals, the value of
VCOUNT is compared to the value of the four vertical timing registers,
VESYNC, VEBLNK, VSBLNK, and VTOTAL. When HCOUNT = HTOTAL
and VCOUNT = VTOTAL at the same time, VCOUNT is reset to O on the
next VCLK falling edge and the VSYNC output is driven active low.

If interlaced scan mode is enabled and the current field is even, and if
VCOUNT = VTOTAL and HCOUNT = HTOTAL/2, then VCOUNT is reset
to O and VSYNC goes low (HCOUNT is not reset until it reaches the value
HCOUNT = HTOTAL). When external sync mode is enabled, VCOUNT is
reset to 0 when the VSYNC input signal goes active low.

A display interrupt request is generated when VCOUNT = DPYINT. This
can be used to coordinate software activity with the refreshing of selected
lines on the screen.

Two separate, asynchronous elements of the GSP internal logic can access
VCOUNT:

L] The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access VCOUNT as an 1/0 register.

° The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears VCOUNT in the course of gener-
ating the sync and blanking signals.

No synchronization between these two subsystems is provided, and
VCOUNT can only be reliably read or written while VCLK is held at the
logic-high level. VCOUNT is typically not read or written to except during
chip test.

6-47

VEBLNK Vertical End Blank Register VEBLNK
Address >C000 0050
Bit

Assighments

Description

6-48

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[VEBLNK |

VEBLNK is a video timing register that designates the time at which the
vertical blanking interval ends. The 16-bit value contained in VEBLNK is
compared to VCOUNT to determine when to end the vertical blanking in-
terval. The vertical blanking interval ends when the following conditions
are satisfied:

® VCOUNT = VEBLNK
® HCOUNT = HTOTAL

The end of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and will not reach its inactive-high level until both internal blanking signals
have become inactive.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval ends when the follow-
ing conditions are satisfied:

) VCOUNT = VEBLNK
L The leading edge of the external horizontal sync pulse is detected

The beginning of the sync pulse is seen as a high-to-low transition at the
HSYNC pin.

Typical video monitors require VEBLNK to be set to a value less than the
value in VSBLNK, and greater than the value in VESYNC.

VESYNC Vertical End Sync Register VESYNC
Address >C000 0040
Bit

Assignments

Description

165 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
L VESYNC |

VESYNC is a video timing register that designates the time at which the
vertical sync pulse ends. The 16-bit value contained in VESYNC is com-
pared to VCOUNT to determine when to end the vertical sync pulse. The
sync pulse ends when the following conditions are satisfied:

® VCOUNT = VESYNC
® HCOUNT = HTOTAL

The VSYNC output is driven inactive high to signal the end of the vertical
sync interval.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven high when VCOUNT = VESYNC and HCOUNT = HTOTAL/2.

Typical video monitors require VESYNC to be set to a value less than the
value contained in the VEBLNK register; the minimum value of VESYNC is
0.

When external sync mode is enabled (DXV=0), the end of the external
vertical sync pulse is detected as a low-to-high transition at the VSYNC pin,
which is configured as an input. VESYNC shouid be loaded with a value
greater than the value in VCOUNT at the point at which the external VSYNC
input signal should go inactive high, but lower than the value in VCOUNT
when the external VSYNC should again become active low. For example,
VESYNC could be loaded with the sum of the values in VEBLNK and
VSBLNK divided by two.

6-49

VSBLNK Vertical Start Blank Reqister VSBLNK
Address >C000 0060
Bit

Assignments

Description

6-50

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| VSBLNK]

VSBLNK is a video timing register that designates the time at which the
vertical blanking interval starts. The 16-bit value contained in VSBLNK is
compared to VCOUNT to determine when to start the vertical blanking in-
terval. The vertical blanking interval starts when the following conditions
are satisfied:

® VCOUNT = VSBLNK
o HCOUNT = HTOTAL

The start of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and reaches its active-low level when either or both internal blanking sig-
nals are active.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval starts when the follow-
ing conditions are satisfied:

° VCOUNT = VSBLNK
] The leading edge of the external horizontal sync pulse is detected

The beginning of the horizontal sync pulse is seen as a high-to-low transi-
tion at the HSYNC pin.

VSBLNK should be set to a value less than the value in VTOTAL, and
greater than the value in VEBLNK.

VTOTAL Vertical Total Register VTOTAL
Address >C000 0070
Bit

Assignments

Description

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

VTOTAL

VTOTAL contains a 16-bit value that designates the value of VCOUNT at
which the vertical sync pulse begins. The contents of VTOTAL are com-
pared to VCOUNT to determine when to start the vertical sync pulse. Ver-
tical sync begins when the following two conditions are satisfied:

o VCOUNT = VTOTAL
° HCOUNT = HTOTAL

These conditions cause HCOUNT to begin counting from 0 again.

The VSYNC output is driven active low to signal the start of the vertical sync
interval. The high-to-low transitions of VSYNC and HSYNC occur at the
same clock edge.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven low when VCOUNT = VESYNC and HCOUNT = HTOTAL/2. The
total number of horizontal lines in each vertical field is calculated as VTO-
TAL + 1. In interlaced mode the total number of horizontal lines in both
fields of the vertical frame is calculated as 2xVTOTAL-1.

When external video is enabled (DXV=0), the VSYNC pin is configured as
an input rather than an output. The high-to-low transition of VSYNC is re-
cognized as the beginning of the vertical sync pulse, unless the condition
VCOUNT = VTOTAL and the start of horizontal sync are detected first.
VTOTAL should be loaded with a value at least as large as the value of
VCOUNT at which the external sync pulse should begin. Should the ex-
ternal sync pulse not occur, VCOUNT will be reset one VCLK period after
the conditions VCOUNT = VTOTAL and HCOUNT = HTOTAL occur.

VTOTAL should be set to a value greater than the value in VSBLNK. The
maximum value that can be loaded into VTOTAL is 656535.

This page intentionally left blank.

7. Graphics Operations

This section provides an overview of the graphics drawing capabilities of the
TMS34010. Topics in this section include:

Section Page
7.1 Graphics Operations OVEIrVIEWccccecouiiiiincniencen e 7-2
7.2 Pixel BIock Transfers ..ol v 7-4
7.3 Pixe! Transfersoocovoiiiiiiiiieiec e sire e ere st sr s 7-10
7.4 Incremental Algorithm Support ... eereee et e s e nres 7-10
7.5 TrANSPBIENCY ..iccvicviiiiiiiiirecnteee e iiaeeeeesatesaeeee e beenesressasesbesresaaeeren e 7-11
7.6 Plane Maskingoccoiiviiiiiiiieciec ettt e 7-12
7.7 Pixel ProCessingccoovevioerieniiniiieieeeie e e st ceceveeec s sne st seevas 7-15
7.8 Boolean Processing EXamplescoccoccvoveeiiviiiviciieee e 7-17
7.9 Multiple-Bit Pixel Operationscccccoeeviiriiiieiecrieee e eiieeenns 7-19
710 WINAow Checking ...c.coooiioveeiei sttt e v 7-25

7-1

e

\

Graphics Operations - Overview

7.1 Graphics Operations Overview

7-2

The TMS34010 instruction set provides several fundamental graphics drawing
operations:

® The PIXBLT and FILL instructions manipulate two-dimensional arrays
of pixels.

[The LINE instruction implements the fast inner loop of the Bresenham
algorithm for drawing lines.

o The DRAV (draw and advance) instruction draws a pixel and increments
the pixel address by a specified amount. This function supports the im-
plementation of incremental algorithms for drawing circles, ellipses, arcs,
and other curves.

] The PIXT (pixel transfer) instruction transfers individual pixels from one
location to another.

The PIXBLT instruction plays an important role in rapidly drawing high-
quality, bit-mapped text. In particular, the PIXBLT B,XY and PIXBLT B,L in-
structions expand character patterns stored as bit maps (at one bit per pixel)
into color or gray-scale characters of 1, 2, 4, 8 or 16 bits per pixel. This allows
character shape information to be stored independently of attributes such as
color and intensity, providing greater storage efficiency.

The TMS34010 provides several methods for processing the values of the
source and destination pixels before the result is written to the destination.
These operations include:

° Boolean and arithmetic pixel processing operations for combining source
pixels with destination pixels.

[) A plane mask which specifies which bits within pixels can be altered
during pixel operations.

° Transparency, an option which permits objects written onto the screen
to have transparent regions through which the background is visible.

Pixel processing, plane masking and transparency can be used simultaneously.
These operations on pixel values can be used in combination with any of the
pixel drawing instructions listed above. The arithmetic operations are espe-
cially important in displays that use multiple bits per pixel to encode color or
intensity information. For example, the MAX and MIN operations allow two
objects with antialiased edges to be smoothly merged into a single image.

Graphics Operations - Overview

The TMS34010 has features such as automatic window checking to support
windowed graphics environments. Three window-checking modes are pro-
vided:

® Clipping a figure to fit a rectangular window.

[Requesting an interrupt on an attempt to write to a pixel outside of a
window.

® Requesting an interrupt on an attempt to write to a pixel /inside of a
window.

The last of these modes can be used to identify screen objects that are pointed
to by a cursor. The window checking modes can be used with any of the pixel
drawing instructions that use XY addressing. Window checking is optional
and can be turned off.

The TMS34010 provides further support for windowed environments by rap-
idly detecting the following conditions:

® Whether a point lies inside or outside a rectangular window.

® Whether a /ine lies entirely inside or entirely outside a window.

Lines that lie entirely outside a window can be trivially rejected, meaning that
they take no further processing time. These conditions are detected via the
CPW (compare point to window) instruction, which takes only one machine
state to compare the XY coordinates of a point to all four sides of a window.

Another operation that occurs frequently in windowed environments is calcu-
lating the region where two rectangles intersect. This is a feature available
with the PIXBLT and FILL instructions. Based on the window-checking
mode, one of two methods can be selected to calculate the region of inter-
section:

® The destination pixel array is preclipped to a rectangular window before
the PixBlt or fill operation begins.

) The intersection of the destination pixel array with a rectangular window
is calculated, but no pixels are transferred.

7-3

Graphics Operations - Pixel Block Transfers

7.2 Pixel Block Transfers

7-4

The TMS34010 supports a powerful set of raster operations, known as PixB/ts
(pixel block transfers), that manipulate two-dimensional arrays of bits or pix-
els. A pixel array is defined by the following parameters:

® A starting address (by default, the address of the pixel with the lowest
address in the array)

) A width DX (the number of pixels per row)
® A height DY (the number of rows of pixels)

® A pitch (the difference between the starting addresses of two successive
rows)

A pixel array appears as a rectangular area on.the screen. The array pitch is the
same in this case as the pitch of the display. The default starting address is
the address of the pixel in the upper left corner of the rectangle. (This assumes
that the ORG, PBH, and PBV bits in the CONTROL register are all set to their
default value of 0.)

Two operands must be specified for a PIXBLT instruction:

® A source pixel array

e A destination pixel array

The two arrays must have the same width and height, aithough they may have
different pitches. Each pixel in the source array is combined with the corre-
sponding pixel of the destination array. A Boolean or arithmetic pixe/ proc-
essing operation is selected and applied to the PIXBLT operation. The default

pixel processing operation is rep/ace. |f replace is selected, source pixel values
are simply copied into destination pixels.

Before executing a PIXBLT instruction, load the following parameters into the
appropriate GSP internal registers:

DYDX Composed of two portions: DX, which specifies the width of the
array, and DY, which specifies the height of the array.

PSIZE Pixel size (number of bits per pixel).
SADDR Starting address of source array (XY or linear address).
DADDR Starting address of destination array (XY or linear address).

SPTCH Source pitch, or difference in memory addresses of two vertically
adjacent pixels in the source array.

DPTCH Destination pitch, or difference in memory addresses of two verti-
cally adjacent pixels in the destination array.

Graphics Operations - Pixel Block Transfers

If either the source or destination array is specified in XY format, the contents
of the CONVSP and CONVDP registers will be used in instances in which the
Y component of the starting address must be adjusted prior to the start of the
PixBlt. The Y component may require adjustment, either to preclip the array
or to select a starting pixel in one of the lower two corners of the array.

Pitches and starting addresses must be specified separately for the two arrays
(source and destination). The width, height, and pixel size are common to
both arrays. (During a binary expand operation, only the destination pixel size
is specified; the source pixel size is assumed to be one bit.)

The starting address of a pixel array can be specified as a linear (memory)
address or as an XY address. Window checking can be used only when the
destination array is pointed to by an XY address.

On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. An array specified in linear format
can be transferred to an array specified in XY format (and vice versa) by means
of the PIXBLT L,XY and PIXBLT XY,L instructions.

The FILL instruction fills a specified destination pixel array with the pixel value
specified in the COLOR1 register. A fill operation can be thought of as a
special type of PixBit that does not use a source pixel array. The source pixel
value used in pixel processing is the value in the COLOR1 register. The des-
tination array of a FiLL instruction can be specified in either XY or linear for-
mat.

7.2.1 Color-Expand Operation

The TMS34010 ailows shape information to be stored separately from attri-
butes such as color and intensity. A shape can be stored in compressed form
as a bit map containing 1s and Os. The color information is added as the shape
is drawn to the screen; the 1s in the bit map are expanded to the specified
Color 1 value, and the Os are expanded to the Color 0 value. This saves a
significant amount of memory when the pixel size in the display memory is two
bits or more.

Two PIXBLT instructions, PIXBLT B,XY and PIXBLT B,L, provide the color-
expand capability. The source array for either instruction is a bit map (one bit
per pixel) stored off-screen in linear format for greater storage efficiency. The
destination array can be specified in either XY or linear format. The pixel size
for the destination array is governed by the value in the PSIZE register. The
colors to which the 1s and Os in the source array are expanded are specified
in the COLOR1 and COLORO registers.

A primary benefit of the color-expand capability is the reduction in table area
needed to store text fonts. Font bit maps are stored in compressed form at one
bit per pixel. The color-expand operation adds color to a character shape at
draw time, allowing color to be treated as an attribute separate from the shape
of the character. The alternative would be to store the fonts in expanded form,
which can be costly. The amount of table storage necessary to store red letters
A-Z, blue letters A-Z, and so on, multiplied by the number of font styles
needed for an application program, would be prohibitive. Furthermore, the
color-expand operation is inherently faster than using pre-expanded fonts
because far fewer bits of character shape information have to be read from the
font table when a character is'drawn to the screen.

7-5

Graphics Operations - Pixel Block Transfers

7-6

Figure 7-1 shows the expansion of a bit map, one bit per pixel and four bits
wide, into four 4-bit pixels (transforming 0-1-1-0 into yellow-red-red-yellow,
for example). Before transferring the expanded source array to the destination
array, any of the Boolean or arithmetic pixel processing operations can be ap-
plied.

Four bits per pixel example
of color expand

[OTTI1 10— Four bit binary or unexpanded image

EOim Gk EHEm EHEm s
M e ORI CoOrer souome

Execute Expand

——rﬂ'rm oo ot ook

\ /
A4

Resulting 18~bit expanded Image

Figure 7-1. Color-Expand Operation

The expand function is also useful in applications that generate shapes or
patterns dynamically. During the first stage of this process, a compressed im-
age is constructed in an off-screen buffer area at one bit per pixel. The image
is built up of geometric objects such as rectangles, circles or polygons. Pat-
terns can also be added. When complete, the compressed image is color-
expanded onto the screen. This method defers the application of color and
intensity attributes until the final stage.

Combining color expand with the replace-with-transparency operation yields
a new operation that is particularly useful in drawing overlapping or kerned
text. The color value used to replace the Os in the source array is selected by
the programmer as all Os, which is the transparency code. The GSP defers the
check for transparency until after the color-expand operation has been per-
formed. As the color-expand operation is performed, the Os in the source array
are expanded to all Os. Only the pixels in the destination array that correspond
to nontransparent pixels in the resulting source array are replaced.

The PIXBLT B,XY and PIXBLT B,L instructions can be used in conjunction
with pixel processing, transparency and plane masking. Source pixels are ex-
panded before being processed. Window checking can be used with PIXBLT
B, XY.

Graphics Operations - Pixel Block Transfers

7-8

PBH=0 The PixBit processes pixels from left to right; that is, in the direction
of increasing X.

PBH=1 The PixBIt processes pixels from right to left; that is, in the direction
of decreasing X.

PBV=0 The PixBlt processes rows from top to bottom; that is, in the di-
rection of /ncreasing Y.

PBV=1 The PixBIt processes rows from bottom to top; that is, in the di-
rection of decreasing Y.

All the pixels in one row are processed before moving to the next row.

When one or both of the arrays is specified in XY format, the GSP automat-
ically calculates the actual starting address (specified by PBH and PBV) from
the default starting address (that is, the lowest pixel address in the array) and
the width and height of the array. Automatic starting address adjustment is
available with the following instructions:

® PIXBLT L. XY
® PIXBLT XY, L
°® PIXBLT XY.XY

The programmer supplies the default starting addresses for these PixBits in the
SADDR and DADDR registers. During the course of instruction execution,
SADDR and DADDR are automatically adjusted to the address of the corner
selected by PBH and PBV.

When both arrays are specified in linear format, the starting addresses of the
appropriate corner pixels must be provided by the programmer. The PIXBLT
L.L instruction atllows any of the four corners to be used as the starting lo-
cation, but in this case the programmer must adjust the addresses in SADDR
and DADDR to the corner selected by PBH and PBV.

Graphics Operations - Pixel Block Transfers

7.2.3 Interrupting PixBlts and Fills

PIXBLT and FILL are interruptible instructions. An interrupt can occur during
execution of one of these instructions; when interrupt processing is com-
pleted, execution of the PIXBLT or FILL resumes at the point at which the in-
terruption occurred.

The execution time of a PIXBLT or FILL instruction depends on the specified
pixel array size. In order to prevent high-priority interrupts from being delayed
until completion of PixBlts and fills of large arrays, the PIXBLT and FILL in-
structions check for interrupts at regular intervals during their execution.

When a PIXBLT or FILL instruction is interrupted the PBX (PixBlt executing)
status bit is set to 1. This records the fact that the interrupt occurred during
a pixel array operation. The PC and the ST are pushed onto the stack, and
control is transferred to the appropriate interrupt service routine. At the end
of the interrupt service routine, an RETI (return from interrupt) instruction is
executed to return control to the interrupted program. The RET! instruction
pops the ST and PC from the stack. When the PBX bit is detected, execution
of the interrupted PIXBLT or FILL instruction resumes.

At the time of the interrupt, the state of the PIXBLT or FILL instruction is saved
in certain B-file registers. The source and destination address registers contain
intermediate values. The source and destination pitches may also contain in-
termediate values, depending on the instruction. The SADDR, SPTCH,
DADDR, DPTCH registers and registers B10-B14 (as well as the original set
of implied operands) contain the information necessary to resume the in-
struction upon return from an interrupt. :

If the interrupt routine uses any of these registers, they should be saved on the
stack and restored when interrupt processing is complete. By following this
procedure, PIXBLT or FILL instructions can be safely executed within interrupt
service routines.

Note:

The PBX bit is not set to 1 when a PIXBLT or FILL instruction is aborted
due to a window violation.

7-9

Graphics Operations - Pixel Transfers/incremental Algorithm Support

7.3 Pixel Transfers

The TMS34010 uses the PIXT (pixel transfer) instructions to transfer individ-
ual pixels from one location to another. The following pixel transfers can be
performed:

° From an A- or B-file register to memory,

° From memory to an A- or B-file register,

or

® From one memory location to another.

The address of a pixel in memory can be specified in XY or linear format. Li-
near addresses must be pixel aligned.

The pixel size for all PIXTs is specified by the value in the PSIZE register. Pixel
sizes are restricted to 1, 2, 4, 8, or 16 bits to facilitate XY address computa-
tions, window checking, transparency, and arithmetic pixel processing.

The PIXT instruction can be used in conjunction with window checking,
Boolean or arithmetic pixel processing, plane masking, and transparency.

7.4 Incremental Algorithm Support

The TMS34010 supports incremental drawing algorithms via its DRAV (draw
and advance) and LINE instructions. The DRAYV instruction is used primarily
in the construction of algorithms for incrementally drawing circles, ellipses,
arcs, and other curves. The DRAV instruction can also be used in the inner
loop of algorithms for drawing straight lines incrementally. Lines, however,
are treated as a special case by the TMS34010 in order to achieve even faster
drawing rates. A separate instruction, LINE, implements the entire inner loop
of the Bresenham algorithm for drawing lines.

The DRAYV (draw and advance) instruction draws a pixel to a location pointed
to by a register; the pointer register is then incremented to point to the next
pixel. The pointer is specified as an XY address. The X and Y portions of the
address are incremented independently, but in parallel. The value written to
the destination pixel in memory is taken from the COLOR?1 register.

The DRAV instruction is embedded in the inner loop of an incremental algo-
rithm to speed up its execution. As an incremental algorithm plots each pixel
on a curve, it also determines where the next pixel will be drawn. The next
pixel is typically one of the eight pixels immediately surrounding the pixel just
plotted on the screen. Advancing in this manner, the algorithm tracks the
curve from one end to the other.

The DRAV and LINE instructions may be used in conjunction with Boolean
or arithmetic pixel processing operations, window checking, plane masking
and transparency.

Graphics Operations - Transparency

7.5 Transparency

When a PixBlt is used to draw an object to the screen, some of the pixels in
the rectangular pixel array that contains the object may not be part of the ob-
ject itself. Transparency is a mechanism that allows surrounding pixels in the
array to be specified as invisible. This is useful for ensuring that only the ob-
ject, and not the rectangle surrounding it, is written to the screen.

Transparency is enabled by setting the T bit in the CONTROL register to 1, or
disabled by setting the T bit to 0. When enabled, a pixel that has a value of 0
is considered transparent, and will not overwrite a destination pixel. Trans-
parency detection is applied not to the source pixel values, but to the pixel
values resulting from plane masking and pixel processing. When an operation
performed on a pair of source and destination pixels yields a O result, the GSP
detects this and prevents the destination pixel from being altered. In the case
of pixel processing operations such as AND, MIN, and replace, a source pixel
value of O ensures that the result of the operation will be a transparent pixel.

Figure 7-3 illustrates how transparency works in the GSP. Assuming four bits
per pixel, the hardware must detect strings of Os of length four falling between
pixel boundaries. While bit strings A and B are both of pixel length, only
string A is detected as transparent. String B crosses the pixel boundary. The
memory interface logic generates an internal mask to govern which bits are
modified during a write cycle. This mask contains 1s in the bits corresponding
to the transparent pixel. Only destination bits corresponding to Os in the mask
will be modified.

—s8tring A—»| j¢—String B—}
Datatobewrtten |O 1 0 1[0 0 0 01 0o 0 olo 1 1 ol

Mask generated [o o o of1t 1 1+ 1]0 o o ofo o 0 o}

Datatobemodfiedc |[A A A A|B B B Bfc ¢ ¢ c[b D D D]

Resulting data lo 1+ 0o 1]B B B B{1 0 0 oJo 1 1 o]

Note: This example assumes four bits per pixel.

Figure 7-3. Transparency

Figure 7-7 (page 7-17) and Figure 7-8 (page 7-19) illustrate several pixel
processing operations. Figure 7-8 h shows an example of a replace operation
performed with transparency enabled. The pixels surrounding the letter A
pattern in the source array are transparent (all Os). Compare Figure 7-8 h with
Figure 7-7 d; this replace-with-transparency operation is analogous to the
logical OR operation in a one-bit-per-pixel display.

Transparency can be used with any instruction that writes to pixels, including
the PIXBLT, FILL, DRAV, LINE, and PIXT instructions. Transparency does not
affect writes to non-pixel data.

Graphics Operations - Plane Masking

7.6 Plane Masking

The plane mask is a hardware mechanism for protecting specified bits within
pixels. Mask-protected pixels will not be modified during graphics in-
structions. The plane mask allows the bits within pixels to be manipulated as
though the display memory were organized into bit planes (or color planes)
that can selectively be protected from modification. The number of planes
equals the number of bits per pixel.

Consider an example in which the pixel size is four bits. The bits within each
pixel are numbered 0-3, and belong to planes 0-3, respectively. All the bits
numbered O in all the pixels form plane 0, all the bits numbered 1 in all the
pixels form plane 1, and so on.

The plane mask allows one or more planes to be manipulated independently
of the other planes. Given four planes of display memory, for example, three
of the planes can be dedicated to eight-color graphics, while the fourth plane
can be used to overlay text in a single color. The plane mask can be set so that
the text plane can be modified without affecting the graphics planes, and vice
versa.

The PMASK register contains the plane mask. Each bit in the plane mask
corresponds to a bit position in a pixel. The 1s in the mask designate pixel
bits that are protected, while Os in the mask designate pixel bits that can be
modified. Those pixel bits that are protected by the plane mask are always
read as Os during read cycles, and are protected from alteration during write
cycles. While no single control bit enables or disables plane masking, it is ef-
fectively disabled by setting PMASK to all Os; this is the default condition
following reset.

In principal, the number of bits in the plane mask is the same as the pixel size.
However, the mask for a single pixel must be replicated to fill the entire 16-bit
PMASK register. For example, if the pixel size is four bits, the 4-bit mask is
replicated four times within PMASK; in bits 0-3, 4-7, 8-11, and 12-15. These
four copies of the mask are applied to the four pixels in a word written to or
read from memory. A 16-bit PMASK value for pixels of 1, 2, 8, or 16 bits is
constructed similarly by replicating the mask 16, 8, 2, or 1 times, respectively.

The plane mask affects only pixel accesses performed during execution of the
PIXBLT, FILL, PIXT, DRAV, and LINE instructions. Data accesses by non-
graphics instructions are not affected.

The following list summarizes operation of the PMASK register during pixel
reads and writes:

® Pixel Read:

The 0s in PMASK correspond to unprotected bits in the source pixel that
are seen by the GSP to contain the actual values read from memory.

The 1s in PMASK correspond to protected bits in the source pixel that
are seen as Os by the GSP, regardless of the values read from memory.

Graphics Operations - Plane Masking

® Pixel Write:

The Os in PMASK specify those bits in the destination pixel in memory
which may be altered.

The 1s in PMASK specify protected bits in the destination pixel which
cannot be altered.

When a pixel is being transferred from a source to a destination location, plane
masking is applied to the values read from the source and destination before
pixel processing is applied. As the operands are read from memory, the bits
protected by the plane mask are replaced with Os before the specified Boolean
or arithmetic pixel processing operation is performed. Transparency detection
is performed on the result of this operation. When the result is written back
to the destination, those bits of the destination that are protected by the plane
mask are not modified.

Source pixels that originate from registers are not affected by the plane mask,
and undergo pixel processing in unmodified form. The FILL, DRAV, LINE,
PIXT Rs,”Rd, and PIXT Rs,*Rd.XY instructions obtain their source pixels from
registers.

Figure 7-4 shows how special hardware in the local memory interface of the
TMS34010 applies the plane mask to pixel data during a read cycle. The pixel
size for this example is eight bits per pixel. This could represent the execution
of a PIXT *Rs.XY,Rd instruction, for instance.

Move this pixel
Intc a GSP register

15(MSB) 8 7 l 0(LSB)
(a) Original data Inmemory (2 pixels) [A A A A A A A A|B B B B B B B B

(b) Piane mask (PMASK) [+ 1+ o 0 1+ 0 0 of1 1 0 0 1 0 0 0]

(c) Data read into GSP register [o o 0o 0 0 0o 0 0[o o B B 0 B B BJ

Notes: 1. This example assumes eight bits per pixel.
2. The pixel moved into the GSP register is left justified. All register bits to the left of
the pixel are zero filled.

Figure 7-4. Read Cycle With Plane Masking

® Figure 7-4 a shows the 16-bit word containing the pixel as it is read
from memory.

® The word is ANDed with the inverse of the plane mask shown in b.

® The result in Figure 7-4 ¢ shows that the bits within the data word that
correspond to 1s in the mask have been set to Os.

Graphics Operations - Plane Masking

After plane masking, the designated pixel is loaded into the eight LSBs of the
32-bit destination register, and the 24 MSBs of the register are filled with Os.

Figure 7-5 shows the effect of combining plane masking with pixel transpar-
ency. Again, the performance of the special hardware in the local memory
interface controller is demonstrated. The example shows the transfer of two
pixels during the course of a PixBlt operation with transparency enabled, the
pixel size set at eight bits, and the rep/ace pixel processing operation. The
inverse of PMASK is ANDed with the source data, and transparency detection
is applied to the resulting entire pixel. In other words, the result is used to
control the write in the manner described in the previous discussion of pixel
transparency. Since the three LSBs of the source pixel in bits 8-15 are Os, and
the rest of the pixel is masked off, the entire source pixel is interpreted as
transparent. The memory interface logic generates an internal mask to govern
which bits are modified during a write cycle. This mask contains Os in the bits
corresponding to the transparent pixel.

15(MSB) 8 7 0(LEB)

(a) Original data In memory (2 pixels) | A A A A A A A A|B B B B B B B B]

(b) Source data in memo

{to ba moved) ry [YYy Y YY 000z 2z 2z 2z 2z 2z 2 2]
(c) Plane mask (PMASK) [+ 1+71+ 11 0 0 0f1 1t 1 1100 0]
(d) Mask source data for trang—

parency detection (SRC « PMASK) oo o 0o o o o ofJo o 00 02z 2z 2]
(e) Transparency mask o oo o0 o0 0 0 o0f1 1 1 1 1 1 1 1]
() Combined mask (FMASK e trans~

parency mask) [o oo 0o 0o 0o 0o of]o 0 0 0 0o 1 1 1]
(g) Resulting memory data after

write cycie (Cambired Mas- * LA A A A A A A ALB B B BB 7 2 Ll

SRY DATR) + ¢ ombiniad Magk ¢

Note: This example assumes eight bits per pixel.

Figure 7-5. Write Cycle With Transparency and Plane Masking

° Figure 7-5 a shows the original data at the destination location in me-
mory.

® The source data are shown in b.

[) The source data are AN Ded with the inverse of the plane mask shown
inc.

Figure 7-5 d shows the intermediate result produced by c.

This result is used to generate the transparency mask in e, which is
ANDed with the inverse of the plane mask in ¢ to produce the composite
mask shown in f.

® The result in g is produced by replacing with the source only those bits
of the destination corresponding to 1s in the composite mask in £.

Graphics Operations - Pixel Processing

7.7 Pixel Processing

Source and destination pixel values can be combined according to the pixe/
processing operation (or raster operation) selected. The TMS34010's pixel
processing operations include 16 Boolean and 6 arithmetic operations. The
Booleans are performed in bitwise fashion on operand pixels of 1, 2, 4, 8, or
16 bits. The arithmetic operations treat operand pixels of 4, 8, or 16 bits as
2's complement integers. :

When a pixel is read from its source location, it is logically or arithmetically
combined with the corresponding destination pixel according to the pixel
processing option selected, and the result is written to the destination pixel.
The pixel processing operation is selected by the PPOP field in the CONTROL
register. Table 7-1 and Table 7-2 list the 22 PPOP codes and their meanings.

Table 7-1. Boolean Pixel Processing Options

PPOP Field Operation
00000 Source ™ Destination
00001 Source AND Destination = Destination
00010 Source AND ~ Destination = Destination
00011 0s = Destination
00100 Source OR ~ Destination — Destination
00101 Source XNOR Destination = Destination
00110 ~ Destination = Destination
00111 Source NOR Destination = Destination
01000 Source OR Destination = Destination
01001 Destination = Destination
01010 Source XOR Destination — Destination
01011 ~Source AND Destination = Destination
01100 1s = Destination
01101 ~Source OR Destination ~ Destination
01110 Source NAND Destination = Destination
01111 ~Source 7 Destination

Table 7-2. Arithmetic (or Color) Pixel Processing Options

PPOP Field Operation
10000 Source + Destination = Destination
10001 ADDS(Source, Destination) —* Destination
10010 Destination - Source ~ Destination
10011 SUBS(Source, Destination) > Destination
10100 MAX(Source, Destination) —* Destination
10101 MIN(Source, Destination) = Destination
10110-11111 Reserved

Graphics Operations - Pixel Processing

In Table 7-2, pixel processing codes 10000 and 10010 correspond to standard
2's complement addition and subtraction. A result that overflows the specified
pixel size causes the pixel value to wrap around within its 4, 8, or 16-bit range.
Carry bits are, however, prevented from propagating to adjacent pixels.

The ADDS (add with saturation) and SUBS (subtract with saturation) oper-
ations shown in Table 7-2 produce results identical to those of standard ad-
dition or subtraction, except when arithmetic overflow occurs. When the
ADDS operation would produce an overflow result, the result is replaced with
all 1s. When the SUBS operation would produce an underflow result, the re-
sult is replaced with all Os.

The MAX operation shown in Table 7-2 compares the source and destination
pixels and then writes the greater value to the destination location. The MIN
operation is similar, but writes the lesser value to the destination.

Figure 7-6 depicts the interaction of pixel processing with other graphics op-
erations when a source pixel is transferred to a destination pixel. Note that this
is a general description; some of these operations do not occur if they are not
selected. Pixels are first read from memory and modified by the plane mask.
Pixel processing is then performed on the modified pixel values. The plane
mask is applied to the result. Bits which are 1s in the PMASK produce 0 bits
in the result of this process. Thus, some processed pixels may become trans-
parent as the result of plane masking. Next, transparency detection is applied
to the data, and finally, a read-modify-write operation is invoked.

Source Destinatlon
pixel plixsl

Read Read?
PMASK PMASK
Pixel
Processing
t PMASK

Transparency
Detect

Read-Modify-Wrlte t

Y

Dastinatlon
Plxel

t Only necessary if rep/ace is not selected.])
1 Only necessary when plane masking or transparency is active and
the pixel size is not 16, or when the data is not word-aligned.

Figure 7-6. Graphics Operations Interaction

Graphics Operations - Boolean Processing Examples

7.8.1 Replace Destination with Source

A simple replacement operation overwrites the pixels of the destination array
with those of the source. Figure 7-7 ¢ shows the letter A written over the
center portion of a larger X using the replace operation. The rectangular region
around the letter A obscures a portion of the X lying outside the A pattern.
Other operations allow only those pixels corresponding to the A pattern within
the rectangle to be replaced, permitting the background pattern to show
through. These are the logical OR and logical AND-NOT (NOT source AND
destination) operations. The replace-with-transparency operation performs
similarly in color systems.

7.8.2 Logical OR of Source with Destination

Figure 7-7 d illustrates the use of the logical OR operation during a PixBIt.
For a one-bit-per-pixel display, the OR function leaves the destination pixels
unaltered in locations corresponding to Os in the source pixel array. Destina-
tion pixels in positions corresponding to 1s in the source are forced to 1s.

7.8.3 Logical AND of NOT Source with Destination

Logically ANDing the negated source with the destination is complementary
to the logical OR operation. Destination pixels corresponding to 1s in the
source array remain unaltered, but those corresponding to Os in the source are
forced to Os. Figure 7-7 e is an example of the AND-NOT PixBlt operation
(notice the negative image of the letter A). For comparison, Figure 7-7 f
shows the result of simply ANDing the source and destination.

7.8.4 Exclusive OR of Source with Destination

The XOR operation is useful in making patterns stand out on a screen in in-
stances where it is not known in advance whether the background will be 1s
or Os. At every point at which the source array contains a pixel value of 1, the
corresponding pixel of the destination array is flipped — a 1 is converted to a
0, and vice versa. XOR is a reversible operation; by XORing the same source
to the same destination twice, the original destination is restored. These pro-
perties make the XOR operation useful for placing and removing temporary
objects such as cursors, and in “rubberbanding” lines. As seen in the example
of Figure 7-7 g, however, the object may be difficult to see if both the source
and destination arrays contain intricate shapes.

Graphics Operations - Multiple-Bit Pixel Operations

7.9.1.2 Figure 7-8 k and | - Add and Subtract with Saturate

The add and subtract operations described in Section 7.9.1.1 are binary 2’s
complement operations which allow overflow and underflow. An add-with-
saturate operation can be defined that stops the result at the maximum value
rather than allowing it to overflow. For example, with four bits per pixel, ad-
ding 00107 to 1110, produces 11115. Similarly, a subtract-with-saturate
operation can be defined that stops the result at O rather than allowing it to
underflow.

Figure 7-8 k and / illustrate examples of add and subtract with saturate. In
these examples, the pixel size is four bits. By dedicating a different color to
each value, the effects of each PixBlt operation become more visible. This
method may present problems, however. For example, adding red to biue may
not produce a meaningful result.

An alternate method uses the 16 values 0 to 15 to represent increasing inten-
sities of a single color. Then the addition and subtraction operations would
have obvious meaning - they would increase and decrease the intensity by
known amounts. Developing this idea further, at 12 bits per pixel, four bits
of intensity could be dedicated to each of the three color components, red,
green and blue. Arithmetic operations could then be performed on the corre-
sponding components of each pair of source and destination pixels. These
results would also have obvious meanings, and would not be limited to in-
tensities of a single color, as is the case with four bits per pixel.

Figure 7-9 (page 7-22) presents examples in which the pixel values represent
intensities of a single color.

7.9.1.3 Figure 7-8 m - Maximum

Figure 7-8 m illustrates the results of the MAX operation on the source and
destination arrays. MAX compares two pixel values and replaces the destina-
tion pixel with the larger value. In some respects, MAX is the arithmetic
equivalent of the Boolean OR function (compare Figure 7-8 m with Figure 7-7
b}. The use of MAX in gray-scale and color displays is similar to that of OR
in simple black and white.

If the most-significant bits in each pixel are assigned to represent object pri-
ority (whether an object appears in front of or behind another object), the
MAX operation can be used to replace only those pixels of the destination ar-
ray whose priorities are lower than those of the corresponding pixels in the
source array. This allows an object to be drawn to the screen so that it appears
either in front of or behind other objects previously drawn. In Figure 7-8 m
the red A has a numerical value that is greater than that of the blue back-
ground, but less than that of the X.

The MAX function is also useful for smoothly combining two antialiased ob-
jects that overlap.

7-21

Graphics Operations - Multiple-Bit Pixel Operations

The gradual change in intensity at the edge of the disk in Figure 7-9 a is similar
to the result produced by certain antialiasing techniques whose purpose is to
reduce jagged-edge effects. A text font might be stored in antialiased form,
for example, to give the text a smoother appearance. When two characters
from the font table are PixBlt'd to adjacent positions on the screen, they may
overlap slightly. The particular arithmetic or Boolean operation selected for the
PixBlt determines the way in which the antialiased edges of the characters are
combined within regions of overlap.

7.9.2.1 Figure 7-9 b - Replace with Transparency

In Figure 7-9 b, a second disk is PixBlt'd into a position near the first disk. A
replace-with-transparency operation is performed. Those pixels of the first
disk that lie within the rectangular region containing the second disk, but are
not part of the second disk, remain intact. The visual effect is that the second
disk (at the right) appears to lie in front of the original disk (at the left).
However, assuming that the gradual change in intensity at the perimeter of the
disks is done for the purpose of antialiasing, the sharp edge that results where
the second disk covers the first defeats this purpose. |n other applications, this
sharp edge may be desirable; for example, it might be used to make a text
character or a cursor stand out from the background. The replace-with-
transparency operation also supports object priority by writing objects to the
screen in ascending order of priority.

7.9.2.2 Figure 7-9 ¢ - Add with Overflow and Subtract with Underflow

In Figure 7-9 ¢, a second disk is PixBlt'd into an area overlapping the first disk,
using an add-with-overflow operation. In this example, when 1 is added to
an intensity of 15, the sum is truncated to four bits to produce the result O.
The effect of arithmetic overflow is visible at the intersection of the two disks
as discontinuities in intensity.

This effect is useful for making objects stand out against a cluttered back-
ground. Add with overflow has an additional benefit - the object can be re-
moved by subtracting (with underflow) the object image from the screen.

7.9.2.3 Figure 7-9 d - Add and Subtract with Saturation

In Figure 7-9 d, the original disk is on the left. A second disk is PixBlt'd into
a region overiapping the original disk, using an add-with-saturate operation.
Whenever the sum of two pixels exceeds the maximum intensity value, which
is 156 for this example, the sum is replaced with 15. The bright region that
occurs where the two disks intersect is produced when the corresponding
pixels of the two disks are added in this manner. Subtract-with-saturate is the
complementary operation; when the difference of the two pixel values is neg-
ative, the sum is replaced by the minimum intensity value, O.

The add-with-saturate operation shown in Figure 7-9 d approximates the ef-
fect of two light beams striking the same surface; the surface is brightest in the
area in which the two beams overlap.

7-23

Graphics Operations - Multiple-Bit Pixel Operations

These operations can be used to achieve an effect similar to that of an airbrush
in painting. Consider a display system that represents each pixel as 12 bits,
and dedicates four bits each to represent the intensities of the three color
components, red, green, and blue. This method permits the intensity of each
component to be directly manipulated. With each pass of the simulated air-
brush over the same area of the screen, the color changes gradually toward the
color of the paint in the airbrush. For example, assume that the paint is yeliow
(a mixture of red and green). Each time a pixel is touched by the airbrush, the
intensity of the red and green components is increased by 1, and the intensity
of the blue component is decreased by 1. With each sweep of the airbrush,
the affected area of the screen turns more yellow until the red and green
components reach the maximum intensity value (and are not allowed to over-
flow), and the blue component reaches O (and is not allowed to underflow).

7.9.2.4 Figure 7-9 e - MAX and MIN Operations

7-24

In Figure 7-9 e, the original disk is on the left. A second disk is PixBIt'd into
the rectangular region to its right using the MAX operation. In the region in
which the disks overlap, each pair of corresponding pixels from the two disks
is compared and the greater value is selected. This produces a relatively
smooth blending of the two disks. Unlike add with saturate, the MAX function
does not generate a "hot spot” where two objects intersect.

The visual effect achieved using the MAX operation is desirable in an appli-
cation, for instance, in which white antialiased lines are constructed on top of
each other over a black background. MAX also smooths out places in which
the lines are overlapped by antialiased text. MAX is successful in maintaining
two visually distinct antialiased objects, while the add-with-saturate tends to
run them together.

MIN, which is complementary to MAX, can be used similarly to smooth the
appearance of intersecting black antialiased lines and text on a white back-
ground.

The MAX and MIN operations are particularly useful in color applications in
which the number of bits per color gun is small (eight bits or less). Other
operators could also be used to smooth the transition between the two over-
lapping antialiased objects in Figure 7-9 e, but any additional accuracy at-
tained by using a more complex smoothing function would probably be lost
in truncating the result to the resolution of the integer used to represent the
intensity at each point.

Graphics Operations - Window Checking

7.10 Window Checking

The TMS34010's hardware window clipping confines graphics drawing op-
erations to a specified rectangular window in the XY address space. Other
window checking modes cause an interrupt to be requested on a window hit
or a window miss.

Window checking affects only pixel writes performed by the following graph-
ics instructions:

® PIXBLT
L] FILL

° LINE

® DRAV
L] PIXT

Data writes by non-graphics instructions are not affected.

A window is a rectangular region of display memory specified in terms of the
XY coordinates of the pixels in its two extreme corners (minimum X and Y, and
maximum X and Y). The corner pixels are considered to lie within the window.
Window checking is available only in conjunction with XY addressing; it is not
available with linear addressing. Specifically, the destination pixel address
must be an XY address.

One of four window checking modes is selected by the value loaded inta the
W field of the CONTROL register:

W=0: Window checking disabled. No window checking is performed.

W=1: Window hit detection. Request interrupt on attempt to write inside
window.

W=2: Window miss detection. Request interrupt on attempt to write outside
window.

W=3: Window clipping. Clip all pixel writes to window.

When window checking is enabled (modes 1, 2 or 3), an attempt to write to
a pixel outside the window causes the V (overflow) bit in the status register
to be set to 1; a write (or attempt to write) to a pixel inside the window sets
V to 0. When window checking is turned off (mode 0), the V bit is unaffected
during pixel writes.

7-25

Graphics Operations - Window Checking

7.10.1 W=1 Mode - Window Hit Detection

7-26

The W=1 mode detects attempts to write to pixels within the window. This
form of window checking supports applications which permits objects on the
screen to be picked by pointing to them with a cursor. In this mode, all pixel
writes are inhibited, whether they address locations inside or outside the
window. A window violation interrupt is requested on an attempt to write to
a pixel inside the window.

For the PIXBLT and FILL instructions, the V (overflow) bit is set to 1 if the
destination array lies completely outside the window. No interrupt request is
generated (the WVP bit in the INTPEND register is not affected) in this case.
However, if any pixel in the destination array lies within the window, the V
bit is set to 0 and a window violation interrupt is requested (the WVP bit is
setto 1). If the interrupt is enabled, the saved PC points to the instruction that
follows the PIXBLT or FILL that caused the interrupt. If the interrupt is disa-
bied, execution of the next instruction begins.

While no pixel transfers occur during the PIXBLT and FILL instructions exe-
cuted in this mode, the specified destination array is clipped to lie within the
window. In other words, the DADDR and DYDX registers are adjusted to be
the starting address, width, and height of the reduced array that is the inter-
section of the two rectangles represented by the destination array and the
window. This function can be adapted to determine the intersection of two
arbitrary rectangles on the screen - a calculation that is often performed in
windowed graphics systems.

In the case of a DRAV or PIXT instruction, an attempt to write to a pixe! out-
side the window causes the V bit to be set to 1. No interrupt request is gen-
erated (the WVP bit is not affected). An attempt to write to a pixel inside the
window causes the V bit to be set to 0, and a window violation interrupt re-
quest is generated (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is O if any destination pixel proc-
essed by the instruction lies within the window; otherwise, V is 1. Attempts
to write to pixels outside the window do not cause interrupt requests to be
generated (the WVP bit is not affected). An attempt to write to a pixel inside
the window causes a window violation interrupt to be requested (the WVP
bit is set to 1) and the LINE instruction aborts. If the interrupt is enabied, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

The W=1 mode can be used to pick an object on the screen by means of the
following simple algorithm. An object previously drawn on the screen is
picked by moving the cursor to the object’s position and selecting it. To de-
termine which object is pointed to, the software first sets the window to a
small region surrounding the position of the cursor. The software next steps
a second time through the same display list used to draw the current screen
until one of the objects causes a window interrupt to occur. This should be
the object pointed to by the cursor. if no object causes an interrupt, the pick
window can be enlarged and the process repeated until the object is found.
If two objects cause interrupts, the size of the pick window can be reduced
until only one object causes an interrupt.

Graphics Operations - Window Checking

7.10.2 W=2 Mode - Window Miss Detection

The W=2 mode permits a PIXBLT or FILL instruction to be aborted if any pixel
in the destination array lies outside the window. The destination array is
written only if the array lies entirely within the window, in which case the V
(overflow) bit is set to 0, and no interrupt request is generated (the WVP bit
is not affected). If any pixel in the destination array lies outside the window,
the V bit is set to 1, and a window violation interrupt is requested (the WVP
bit is set to 1).

For the DRAV and PIXT instructions, the destination pixel is drawn only if it
lies within the window. In this case, the V bit is set to 0, and no interrupt re-
quest is generated (the WVP bit is not affected). If the destination location
lies outside the window, the pixel write is inhibited, the V bit is set to 1, and
a window violation interrupt is requested (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is O if the last destination pixel
processed by the instruction lies within the window; otherwise, V is 1. At-
tempts to write to pixels inside the window do not cause interrupt requests to
be generated (the WVP bit is not affected). An attempt to write to a pixel
outside the window causes a window violation interrupt to be requested (the
WVP bit is set to 1) and the instruction aborts. If the interrupt is enabled, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

7.10.3 W=3 Mode - Window Clipping

In the W=3 mode, only writes to pixels within the window are permitted;
writes to pixels outside the window are inhibited. No interrupt request is
generated for any case.

For a PIXBLT or FILL instruction, only the portion of the destination array ly-
ing within the window is drawn. At the start of instruction execution, the
specified destination array is automatically preclipped to lie within the window
before the first pixel is transferred. Hence, no execution time is lost attempting
to write destination pixels which lie outside the window. In the case of a
PIXBLT, the source array is preclipped to fit the adjusted dimensions of the
destination array before the transfer begins.

During execution of a DRAV or PIXT instruction, a write to a pixel inside the
window is permitted, and the V bit is set to 0. An attempted write to a pixel
outside the window is inhibited, and the V bit is set to 1.

For the LINE instruction, writes to pixels outside the window are inhibited at
drawing time; no preclipping is performed. The value of the V bit at the end
of a LINE instruction is determined by whether the last pixel calculated by the
instruction fell inside (V=0) or outside (V=1) the window.

7-27

Graphics Operations - Window Checking

7.10.4 Specifying Window Limits

7-28

The limits of the current window are specified in the WSTART (window start)
and WEND (window end) registers. WSTART specifies the minimum XY co-
ordinates in the window, and WEND specifies the maximum XY coordinates.

As Figure 7-10 shows, WSTART specifies the XY coordinates (Xgtart, Ystart)
at the upper left corner of the window, and WEND specified the XY coordi-
nates (Xend.Yend) at the bottom right corner of the window. The origin is lo-
cated in its default position in the top left corner of the screen.

Dispiay
Origin Memory

X gtart+ Y start)

+y

N a—— (Xend: Yend)
Window

A pixel with ooordinates (X.Y)
lies within the window if both
Xstm $Xs Xend and Ystart <Ysg Yend

Figure 7-10. Specifying Window Limits

Figure 7-10 shows that a pixel that has coordinates (X,Y) lies within the
window if Xgtart € X < Xend and Ygar € Y < Ygpng. If a pixel does not meet
these conditions, it lies outside the window.

When Xstart > Xend OF Ystart > Yend. the window is empty; that is, it contains
no pixels. Under these conditions, the window checking hardware detects all
destination pixel addresses as lying outside the window. Note that the con-
ditions Xgtart = Xend 8nd Ygart = Yend together specify a window containing
a single pixel.

Window start and end coordinates must lie in the range (0,0) to
(+32767,+32767). A window cannot contain pixels with negative X or Y
coordinates.

Graphics Operations - Window Checking

7.10.5 Window Violation Interrupt

A window violation (WV) interrupt is requested (the WVP bit in the INTPEND
register is set to 1) when:

® W=1 and an attempt is made to write to a pixel inside the window

or

[} W=2 and an attempt is made to write to a pixel outside the window

The interrupt occurs if it is enabled by the following conditions:

® The WVE bit in the INTENB register is 1
® The IE bit in the status register is 1

Alternatively, if the WV interrupt is disabled (IE=0 or WVE=0), the window
violation can be detected by testing the value of either the V bit in the status
register or the WVP bit following the operation.

When a WV interrupt occurs, the registers that change during the LINE,
PIXBLT and FILL instructions contain their intermediate values at the time the
violation was detected.

7.10.6 Line Clipping

The TMS34010 supports two methods for clipping straight lines to the
boundaries of a rectangular window: postclipping and preclipping. Postclip-
ping means that just before each pixel on the line is drawn, it is compared with
the window limits. If it lies outside the window, the write is inhibited. In
contrast, preclipping involves determining in advance of any drawing oper-
ations which pixels in the line lie within the window. The algorithm draws
only these pixels, and makes no attempt to write to pixels outside the window.
A preclipped line may take less time to draw since no calculations are per-
formed for pixels lying outside the window. In contrast, postclipping spends
the same amount of time calculating the position of a pixel outside the win-
dow as it does calculating a pixel inside the window.

When postclipping is used, special window comparison hardware compares
the coordinates of the pixel being drawn against all four sides of the window
at once. The W=3 window-checking mode is selected, and window checking
is performed in parallel with execution of the LINE instruction, so no overhead
is added to the time to draw a pixel. However, unless this form of clipping is
used carefully, another type of overhead may become significant. For example,
in a CAD (computer-aided design) environment where only a small portion
of a system diagram is to be displayed at once, potentially a great deal of time
could be spent performing calculations for points (or entire lines) lying off-
screen.

Preclipping is generally faster than postclipping, depending on how likely a
line is to lie outside the window. The first step in preclipping a series of lines
is to identify those that lie either entirely inside or outside the window. This
is accomplished by using an “outcode” technique similar to that of the Co-
hen-Sutherland algorithm. Those lines lying entirely outside are "trivially re-
jected” and consume no more processing time. Those lines lying entirely

7-29

Graphics Operations - Window Checking

7-30

within are drawn from one endpoint to the other with no clipping required.
This still leaves a third category of lines that may cross a window boundary,
and these require intersection calculations. However, this technique is pow-
erful for reducing the number of lines that require such calculations. While the
calculation of outcodes could be performed in software, this would represent
significant overhead for each line considered. The TMS34010 provides a more
efficient implementation via its CPW (compare point to window) instruction,
which compares a point to all four sides of the window at once.

The outcode technique classifies a line according to where its endpoints fall
in relation to the current clipping window. The area surrounding the window
is partitioned into eight regions, as indicated in Figure 7-11. Each region is
assigned a 4-bit code called an outcode. The outcode within the window is
0000,. When an endpoint of a line falls within a particular region, it is as-
signed the outcode for that region.' If the two endpoints of a line both have
outcodes 00005, the line lies entirely within the window. If the bitwise AND
of the outcodes of the two endpoints vields a value other than 0000>, the line
lies entirely outside the window. Lines that fall into neither of these categories
may or may not be partially visible within the window.

+X
+y oi01 1 0100 ; 0110
! ;
1]
) 1
' !
--------- ---=-==-=- Y = Y MIN
0001 0000 0010
—————————————————— Y = Y MAX
1 i
] 1
]]
t]
A '
1001 1 1000 1 1010
Window

X=X MN X=X MAX
Figure 7-11. Outcodes for Line Endpoints

For those lines that require intersection calculations after the outcodes have
been determined, midpoint subdivision is an efficient means of preclipping.
The object again is to ensure that drawing calculations are performed only for
pixels lying within the window. An example of the midpoint subdivision
technique is illustrated in Figure 7-12. The line AB lies partially within the
window. The first step is to determine the coordinates of the line’s midpoint
at C. These are calculated as follows:

Xa+ X YAa+Y
(Xe. Yo) = (Az B_, Az B

Graphics Operations - Window Checking

B
(XB'YB)
———p X
SXg Yg) Y =Y MN
+y
DvXp.Yp)
A
Window
(XA,YA) A/
Y = Y MAX
X = X MIN X = X MAX

X Ye) =(Xa2X8 Ya:Ye)

Xp.Yp) =(XA ;Xc. YA ;Yc)

Figure 7-12. Midpoint Subdivision Method

Comparing the outcodes of B and C, segment BC lies entirely outside the
window and can be trivially rejected. Segment AC still lies partially within the
window and will be subdivided again. The coordinates of point D, the mid-
point of AC, are calculated as before. Point D is determined to lie within the
window. The LINE instruction is now invoked two times, for segments DC
and DA, with D selected as the starting point in each case. For each segment
the W=2 window-checking mode is selected, but the window violation inter-
rupt is disabled. When each line crosses the window boundary, the win-
dow-checking hardware detects this and the LINE instruction aborts. In this
way the LINE instruction performs drawing calculations only for portions of
DA and DC lying within the window.

7-31

This page intentionally left blank.

8.

Interrupts, Traps, and Reset

The TMS34010 supports eight interrupts, including reset. Memory addresses
>FFFF FCOO to >FFFF FFFF contain the 32 vector addresses used during in-
terrupts, software traps and reset. Each vector is a 32-bit address that points
to the beginning of the appropriate interrupt service routine.

This section includes the following topics:

Section
8.1 Interrupt Interface Registers

8.2 EXternal INTErTUPES .oovveviiiie ettt eme e b s re s
8.3 Internal Interrupts
8.4 interrupt Processing ...
8.5 Traps .ccovvvvecrnrnrieeiacce e
8.6 lilegal Opcode iInterrupts
8.7 Reset

Table 8-1 and Figure 8-1 (page 8-2) summarize the TMS34010 interrupts and
their priorities. RESET has the highest priority, and the illegal opcode interrupt
has the lowest. If two interrupts are requested at the same time, the highest
priority interrupt is serviced first (assuming it is enabled). The reset and
nonmaskable interrupt cannot be disabled.

8-1

Interrupts, Traps, and Reset

8-2

Table 8-1. Interrupt Priorities
internal
int. Priority ExternaI/ Description and Source
Reset 1 | .. reset. Taken when the input signal at the
: pin is asserted low.
NMI 2 | Nonmaskable interrupt. Generated by a host
processor.
HI 3 | Host interrupt. Generated by a host processor.
DI 4 | Display interrupt. Generated by the TMS34010.
wv 5 | Window violation interrupt. Generated by the
TMS34010.
INT1 6 Externall (ijnteyrupts 1 and 2. Generated by
xternal devices.
INT2 7 E ¢
ILLOP 8 | lllegal opcode interrupt. Generated by the
TMS34010 when an illegal opcode is en-
countered.
Trap
Number _Aaltesa
o] SIET™ i Stent Reset
1 SFEFF ot External Interrupt 1
2 >FFFF INT2 External interrupt 2
3 >FFFF __ T -
4 >FFFF - .
5 >FFFF | Tr 3-7
8 >FFFF - -
7 >SFFFF
8 >FFFF NMI Ia:n Maskable Interrupt
] >FFFF HI H-st Interrupt
10 >FFFF [Dnojnay Interrupt
11 >FFFF V Window Violation
12 >FFFF [~ 4]
13 >FFFF [~]
14 >FFFF — N
185 >FFFF N
16 >FFFF t]
17 >EFFF [3
16 >FFFF []
Bl -
> .
21 SEFFF : Traps 12-29 :
22 >FFFF —]
23 SEFFF 17]
24 >FFFF N
25 >EFFF —]
28 >FFFF — 3
27 >FEFF [~ 7]
28 >FFFE —]
29 >FFFF
30 >FFFF LIy liegal Opcode
31 >FFFF Tef 3|

— - >

Figure 8-1. Vector Address Map

Interrupts, Traps, and Reset - Registers/External Interupts

8.1 Interrupt Interface Registers

Two registers, a subset of the 1/0 registers discussed in Section 6, monitor and
mask interrupt requests. These registers are summarized below; for more in-
formation, please refer to the register descriptions in Section 6.

The interrupt enable register, INTENB, contains the interrupt mask that se-
lectively enables various interrupts. An interrupt is enabled when the status
IE (global interrupt enable) bit and the appropriate bit in the INTENB register
are both setto 1.

[) X1E (bit 1) enables external interrupt 1.

L] X2E (bit 2) enables external interrupt 2.

) HIE (bit 9) enables the host interrupt.

® DIE (bit 10) enables the display interrupt.

® WVE (bit 11) enables the window violation interrupt.

The interrupt pending register, INTPEND, indicates which interrupts are cur-
rently pending. When an interrupt is requested, the appropriate bit in the
INTPEND register is set.

X7P (bit 1) indicates that external interrupt 1 is pending.

X2P (bit 2) indicates that external interrupt 2 is pending.

HIP (bit 9) indicates that the host interrupt is pending.

DIP (bit 10) indicates that the display interrupt is pending.

WVP (bit 11) indicates that the window violation interrupt is pending.

8.2 External interrupts

External interrupt requests are received via local interrupt pins LINT1 and
LINT2. Each of the two external interrupt pins is dedicated to an individual
interrupt, allowing two independent interrupt requests to be generated. (The
pins are not encoded.) The local interrupt pins are level-sensitive, active-low
inputs. Once an interrupt request has been initiated by driving an interrupt
pin low, it must remain low until the GSP can respond to the interrupting de-
vice. This is necessary to ensure that the GSP detects the request. |f the active
level is maintained after returning from the interrupt service routine, however,
the interrupt will be taken once again.

Signals input to the local interrupt pins are assumed to be asynchronous to the
GSP local clocks, and are synchronized internally by the GSP before they are
processed. If two external interrupt requests are active at the same time, INT1
will be serviced first. Table 8-2 shows the interrupt trap vectors for INT1 and
INT2.

Table 8-2. External Interrupt Vectors

Input Vector
Name Pin Address
INT1 LINT1 >FFFF FFCO
INT2 LINT2 >FFFF FFAO

8-3

Interrupts, Traps, and Reset - Internal Interrupts

8.3 Internal Interrupts

Several internal conditions are associated with specific interrupts. Table 8-3
summarizes these interrupts. If two internal interrupts are requested simul-
taneously, or if two or more internal interrupt requests are pending, the highest
priority interrupt will be serviced first; NMI has the highest priority, followed
by HI, DI, and WV. When internal and external interrupts are pending, the
internal interrupts are serviced first (with the exception of the ILLOP inter-
rupt).

Table 8-3. Interrupts Associated with Internal Events

Vect
Name Function Level Losatioorn Descripiion
NMI | Nonmaskable 8 >FFFF FEEQO | The host processor sets the NMI bit in the
interrupt HSTCTL register to a 1.

HI Host interrupt 9 >FFFF FECQ | The host processor sets the INTIN bit in the
HSTCTL register to a 1.

DI Display interrupt 10 >FFFF FEAO | A particular horizontal line on the video display
is being refreshed. The line number is specified
in the DPYINT register.

wv Window violation 11 >FFFF FESO An attempt has been made to move a pixel to a

interrupt destination location that lies inside or outside a
specified window, depending on the selected
windowing mode.

ILLOP| illegal operand 30 >FFFF FC20 | See Section 8.6.

interrupt

8-4

The nonmaskable interrupt, or NMI, occurs when a host processor requests
an interrupt by writing a 1 to the NMI bit in the HSTCTL register. This inter-
rupt cannot be disabled, and will always occur as soon as possible following
the request. The NMI will be delayed only for completion of an instruction
already in progress, or until the next interruptible point of an interruptible in-
struction such as a PIXBLT is reached.

The NMI mode bit in the HSTCTL register determines whether or not context
information is saved on the stack when a nonmaskable interrupt occurs:

® If NMIM = 0, the PC and ST are pushed on the stack before the interrupt
is serviced.

® If NMIM = 1, nothing is saved on the stack before the interrupt is ser-
viced.

The display interrupt (Dl) is used to coordinate processing activity with the
refreshing of particular areas of the display. The display interrupt request be-
comes active when a particular display line, specified in the DPYINT register,
is output to the monitor screen. At the start of each horizontal blanking period,
the VCOUNT register is compared to the DPYINT register. When the vertical
count value in VCOUNT = DPYINT, a display interrupt request is generated.
If enabled, the interrupt is taken.

Interrupts, Traps, and Reset - Interrupt Processing

8.4 Interrupt Processing

An interrupt is said to be pending if it has been requested but has not yet been
processed. |f a pending interrupt is enabled, and no interrupt of higher priority
is pending at the same time, the interrupt is accepted by the GSP at the end
of the current instruction (or at the next interruptible point in the middle of a
PIXBLT or FILL instruction). When the GSP takes an interrupt, it performs the
following actions:

1) The GSP pushes the PC on the stack.

2) The GSP pushes the ST on the stack. PIXBLT and FILL instructions that
are interrupted by external, host, and nonmaskable (if NMIM=0) inter-
rupts set the PBX bit in the ST before pushing the ST.

3) The GSP modifies the contents of the ST as follows:

31302028272625242322212019 181716 15 4 13121110 9 8 7 6 5 4 3 2 1 O
000 0|0 0]0J0O O 0JloJo 0 0 0 0 00 0 0fofo 0o 00 ofof[t 000 0]
aﬂThva \ v 7 v T\ v

Reserved F&1 F&0
PBX IE FE1 FEO

Reserved
4) The GSP fetches the interrupt vector from external memory into the PC.

5) The GSP begins executing the instruction pointed to by the new PC
value.

In step B, the GSP resumes instruction execution at the entry point of the in-
terrupt service routine. At the time the first instruction of the service routine
begins execution, the new status register contents imply the following condi-
tions:

L] All interrupts are disabled (except NMl| and reset)
® Field 0 is 16 bits long and is zero extended
® Field 1 is 32 bits long and is zero extended

The service routine can allow itself to be interrupted by loading a new inter-
rupt-enable mask into the INTENB register and setting status bit IE to 1. The
INTENB mask value is selected to determine which interrupts can interrupt the
currently executing service routine. The service routine can also load new field
sizes if values other than the defaults are required.

The last instruction in any interrupt service routine must be RETI (return from
interrupt). Unlike the RETS (return from subroutine) instruction, which only
pops the PC from the stack, RETI pops both the ST and PC. This restores the
original state of the interrupted program so that execution can proceed from
the point at which the interrupt occurred.

8-5

Interrupts, Traps, and Reset - Interrupt Processing

8.4.1

8-6

Interrupt Latency

An external interrupt, host interrupt request, or NMI request will be delayed
by an amount of time that depends on the instruction in progress and on the
local memory bus traffic at the time of the request.

The delay from an interrupt request to the time that the first instruction of the
interrupt service routine begins execution is the sum of six potential sources

of delay:

1) Interrupt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

5) Instruction interrupt

6) Interrupt context switch

In the best case, items 2 through 5 cause no delay. The minimum delay due
to items 1 and 6 is 17 machine states.

The interrupt request recognition delay is the time required for a
request to be internally synchronized to the local clock. In the case of
an external interrupt request, the delay is measured from the high-to-low
transition of the TNT1 or INT2 pin. In the case of a host interrupt or NM|
request, the delay is measured from completion of the host's write to the
INTIN or NMI pin.

The screen-refresh and DRAM -refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay an interrupt.

The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends on the application. The delay due to
a single host-indirect cycle is two machine states, assuming no wait
states, but multiple host-indirect cycles occurring within a brief period
of time could cause additional delays. Theoretically, a fast host proces-
sor could generate so many local memory cycles that the GSP would be
prevented from servicing interrupts for an indefinite period.

The instruction interrupt time refers to the time required for an in-
struction that was already executing at the time the interrupt request was
received to either complete or to reach the next interruptible point in an
instruction (such as a PIXBLT, FILL, or LINE).

The interrupt context switch operation pushes the PC and ST onto
the stack, and fetches the PC for the interrupt service routine from the
appropriate vector in memory.

Interrupts, Traps, and Reset - Interrupt Processing

Table 8-4 shows the minimum and maximum times for each of the six oper-
ations listed. The interrupt latency is calculated as the sum of the numbers in
the six rows. In the best case, the interrupt latency is only 17 machine states.
The worst-case latency can be as high as 22 machine states plus the delays
due to host-indirect cycles and instruction completion. Table 8-5 shows in-
struction interrupt times for some of the longer, noninterruptible instructions.
Table 8-5 also shows the instruction completion time for a JRUC instruction
that jumps to itself - the GSP may be executing this instruction if the software
is simply waiting for an interrupt.

Table 8-4. Six Sources of Interrupt Delay

Lat In Stat
Operation : atency (In States)
Min Max
Interrupt recognition 1 2
Instruction interrupt 0 See Table 8-5
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1
Interrupt context switch 16 16

Notes: 1) The latency due to host-indirect cycles depends on both the
hardware system and the application. Theoretically, a host pro-
cessor could generate so many local memory cycles that the GSP
could effectively be prevented from servicing interrupts. The delay
due to a single host-indirect cycle is two machine states, assuming
no wait states.

2) DRAM-refresh and screen-refresh cycle times assume no wait
states.

3) Context switch time assumes that the SP is aligned to a word
boundary; that is, the four LSBs of the SP are Os. If the SP is not
aligned, the delay is 28 states.

Table 8-5. Sample Instruction Completion Times

Worst-Case Instruction
Instruction Interrupt Time (In States)
SP Aligned SP Not Aligned
DIVS AO0,A2 43 43
MMFM SPALL 72 144
MMTM SPALL 73 169
Wait: JRUC wait 1 1

Notes: 1) The worst-case instruction interrupt time is equal to the instruction
execution time less one machine state (except for PIXBLTs, FlLLs,
and LINE).

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

8-7

Interrupts,

Traps, and Reset - Traps/lilegal Opcode Interrupts

8.5 Traps

The TMS34010 supports 32 software traps, numbered O through 31. Soft-
ware traps behave similarly to interrupts, except that they are initiated when
the GSP executes a TRAP instruction. Unlike an interrupt, a software trap
cannot be disabled.

When the GSP executes a TRAP instruction, it performs the same sequence
of actions that it performs for interrupts. The TRAP 1 through TRAP 31 in-
structions cause the status register and the PC to be pushed onto the stack.
TRAP 0 is similar to a hardware reset because it does not push the status re-
gister or PC onto the stack; it differs from a hardware reset because it does not
cause the GSP's internal registers to be set to a known initial state. TRAP 8
is similar to an NMI interrupt, except that the NMIM (NMI mode) bit in the
HSTCTLL register has no effect on instruction execution; the status register
and PC are stacked unconditionally when TRAP 8 is executed.

A 32-bit vector address is associated with each software trap. To determine
the vector address for a trap number N, where N = 0 through 31, subtract
32N from >FFFF FFEQ. Figure 8-1 on page 8-2 shows the vector addresses
for the software traps.

8.6 lllegal Opcode Interrupts

8-8

The GSP recognizes several reserved opcodes as illegal. When one of these
opcodes is encountered in the instruction stream, the GSP will trap to vector
number 30, located at memory address >FFFF FC20. An illegal opcode is si-
milar in effect to a TRAP 30 instruction. The illegal opcode interrupt cannot
be disabled. Table 8-6 lists ranges of illegal opcodes.

Table 8-6. lllegal Opcodes Ranges

>0000 through >00FF
>0200 through >02FF
>0400 through >04FF
>0800 through >08FF
>0A00 through >0AFF
>0CO00 through >0CFF
>0EQQ0 through >0EFF
>3400 through >37FF
>7000 through >7FFF
>9E00 through >9FFF
>BEQO through >BFFF
>D800 through >DEFF
>FEQQ through >FFFF

Interrupts, Traps, and Reset - Reset

8.7 Reset

Reset puts the TMS34010 into a known initial state. It is entered when the
input signal at the RESET pin is asserted low. RESET must remain active low
for a minimum of 40 iocal clock (LCLK1 and LCLK2) periods to ensure that
the TMS34010 has sufficient time to establish its initial internatl state.

While RESET remains asserted, all outputs are in a known state, no DRAM-re-
fresh cycles take place, and no screen-refresh cycies are performed.

At the low-to-high transition of the RESET signal, the state of the HCS input
determines whether the GSP will be halted or begin executing instructions.
The GSP may be in one of two modes, host-present or self-bootstrap mode.

® Host-Present Mode

If HCS is high at the end of reset, GSP instruction execution is haited and
remains haited untii the host clears the HLT (halt) bit in HSTCTL (host
control register). Following reset, the eight RAS-only refresh cycles re-
quired to initialize the dynamic RAMs are performed automatically by the
GSP memory control logic. As soon as the eight RAS-only cycles are
completed, the host is allowed access to GSP memory. At this time, the
GSP begins to automatically perform DRAM refresh cycles at regular
intervals. The GSP remains halted until the host clears the HLT bit. Only
then does the GSP fetch the level-O vector address from location
>FFFF FFEO and begin executing its reset service routine.

® Self-Bootstrap Mode

If HCS is low at the end of reset, the GSP first performs the eight
RAS-only refresh cycles required to initialize the DRAMs. Immediately
following the eight RAS-only cycles, the GSP fetches the level-0 vector
address from location >FFFF FFEQ, and begins executing its reset ser-
vice routine.

Unlike other interrupts and software traps, reset does not save previous ST or
PC values. This is because the value of the stack pointer just before a reset is
generally not valid, and saving its value on the stack is unnecessary. A TRAP
0 instruction, which uses the same vector address as reset, similarly does not
save the ST or PC values.

8.7.1 Asserting Reset

A reset is initiated by asserting the RESET input pin at its active-low level. To
reset the GSP at power up, RESET must remain active low for a minimum of
40 local clock periods after power levels have become stable. At times other
than power up, the GSP is also reset by holding RESET low for a minimum of
40 clock periods. The 40-clock interval is required to bring GSP internal cir-
cuitry to a known initial state. While RESET remains asserted, the output and
bidirectional signals are driven to a known state.

The GSP drives its RAS signal inactive high as long as RESET remains low. The
specifications for certain DRAM and VRAM devices, including the TMS4161,
TMS4164 and TMS4464 devices, require that the RAS signal be driven inac-
tive-high for 100 microseconds during system reset. Holding RESET low for

8-9

Interrupts, Traps, and Reset - Reset

150 microseconds will cause the RAS signal to remain high for the 100 mi-
croseconds required to bring the memory devices to their initial states.
DRAMSs such as the TMS4256 specify an initial RAS high time of 200 micro-
seconds, r~ i:iring that RESET be held low for 250 microseconds. In general,
holding R! - 7 low for t microseconds ensures that RAS remains high initially
for t - 50 microseconds.

8.7.2 Suspension of DRAM-Refresh Cycles During Reset

An active-low level at the RESET pin is con itli1-#1 to be a power-up condition,
and DRAM refresh is not performed until - .: * goes inactive high. Conse-
quently, the previous contents of the local memory may not be valid after a
reset.

8.7.3 Initial State Following Reset

While the RESET pin is asserted low, the GSP’s output and bidirectional pins
are forced to the states listed in Table 8-7.

Table 8-7. State of Pins During a Reset

Outputs Driven QOutputs Driven Bidirectional
To High level To Low Level Pins Driven to
High Impedance
DDOUT BLANK HSYNC
Y VSYNC
- HDO-HD15
e LADO-LAD15
TR/QE
RAS
TAS
W
HINT

Immediately following reset, all |/O registers are cleared (set to >0000), with *
the possible exception of the HLT bit in the HSTCTL register. The HLT bit is
set to 1 if HCS is high just before the low-to-high transition of RESET.

Just before execution of the first instruction in the reset routine, the
TMS34010’'s internal registers are in the following state:

® General-purpose register files A and B are uninitialized.
° The ST is set to >0000 0010.

® The PC contains the 32-bit vector fetched from memory address
>FFFF FFEO.

The instruction cache is in the following state at this time:

[] The SSA (segment start address) registers are uninitialized.

® The LRU (least recently used) stack is set to the initial sequence 0,1,2,3,
where 0 occupies the most-recently-used position, and 3 occupies the
least-recently-used position.

[] All P (present) flags are cleared to Os.

Interrupts, Traps, and Reset - Reset

8.7.4 Activity Following Reset

Immediately following the low-to-high transition of RESET, the GSP performs
a series of eight RAS-only memory cycles to bring the DRAMs and VRAMs to
their initial operating states. These cycles are completed before any accesses
of the GSP’s memory (by either the GSP or host processor) are allowed to
occur. If the host processor attempts to access the GSP memory indirectly
before the eight RAS-only cycles have completed, it will receive a not-ready
signal from the GSP until the cycles have completed. The eight RAS-only cy-
cies occur regardless of the initial value to which the HLT bit in the HSTCTL
register is set.

Each of the eight RAS-only cycles is a standard DRAM-refresh cycle. The RF
bus status signal output with the row address is active low. The row address
is all Os.

Following the eight RAS-only cycles, the GSP automatically begins to initiate
a new DRAM -refresh cycle every 32 GSP local clock cycles. The first DRAM
refresh cycle begins approximately 32 loca! clock periods after the end of reset.
A DRAM-refresh cycle will continue to be initiated every 32 GSP clock cycles
until the DRAM -refresh rate is changed by the GSP or host processor.

The GSP is configured by means of an external signal input on the HCS pin to
either:

[Begin executing instructions immediately after reset is completed (self-
bootstrap mode)
or

® Halt until the host processor instructs it to begin executing (host-present
mode)

8.7.4.1 Self-Bootstrap Mode

in self-bootstrap mode, the GSP begins executing instructions immediately
following reset. This mode is typically used in a system in which the reset
vector and reset service routine are contained in nonvolatile memory, such as
a bootstrap ROM. This type of system does not necessarily require a host
processor, and the GSP may be responsible for performing host processor
functions for the system.

The GSP is configured in self-bootstrap mode when the HCS pin is low just
before the low-to-high transition of RESET. The low HCS level forces the HLT
bit to 0. Immediately following the end of reset and the eight RAS-only cycles,
the GSP fetches the level-0 vector address and begins executing the reset in-
terrupt routine.

At the low-to-high transition of RESET, the HCS input is internally delayed
before being checked to determine how to set the HLT bit. In a system with-
out a host processor, for instance, this permits the HCS and RESET pins to be
tied together, eliminating the need for additional external logic.

Transitions of the HCS and RESET signals are assumed to be asynchronous
with respect to the GSP local clock. HCS and RESET are internally synchro-
nized to the local clock by being held in latches for at least one clock period
before being used by the GSP. The delay through the synchronizer latch is
from one to two local clock periods, depending on the phase of the signal
transitions relative to the clock. To permit the HCS and RESET pins to be wired

Interrupts, Traps, and Reset - Reset

together, GSP on-chip logic delays the HCS low-to-high transition to ensure
that it is detected after the RESET low-to-high transition. The level of the
delayed HCS signal at the time the low-to-high RESET transition is detected
determines the setting of the HLT bit.

8.7.4.2 Host-Present Mode

8-12

Host-present mode assumes that a host processor is connected to the GSP's
host interface pins. In this mode, the GSP local memory can be composed
entirely of RAM (no ROM). Following reset, the host processor must down-
load the initial program code, interrupt vectors, and so on, before allowing the
GSP to begin executing instructions.

The GSP is configured in host-present mode as follows. On the trailing edge
of RESET, the HCS (host interface chip select) input is sampled. If the HCS pin
is inactive high, internal logic forces the HLT (halt) bit to a 1. In this fashion,
the GSP is automatically halted following reset, and will not begin execution
of its reset service routine until the host processor loads a 0 to HLT. In the
meantime, the host processor is able to load the memory and 1/0 registers with
the appropriate initial values before the GSP begins executing instructions.
This may include writing the reset vector and reset service routine into the
GSP’s memory, for example.

" No additional external logic is required to force HCS high before the low-to-

high transition of RESET. The simple external decode logic typically used will
drive the HCS input active low only when one of the GSP’s host interface re-
gisters is addressed by the host processor. Assuming that the host processor
is not actively chip-selecting the GSP at the end of reset, HCS is high.

9. Screen Refresh and Video Timing

The TMS34010 generates the synchronization and blanking signals used to
drive a video screen in a graphics system. The GSP can be programmed to
support a variety of screen resolutions and interlaced or noninterlaced video.
If desired, the GSP can be programmed to synchronize to externally generated
video signals. The GSP also supports the use of video RAMs by generating

the memory-to-shift-register cycles necessary to refresh a screen.

This section includes the following topics:

Section

9.1 Video Timing Signalscccceeviermcneccreccnieee e

9.2 Screen Sizescccceenrennen.

9.3 Video Timing Registers

9.4 Horizontal Video Timing

9.5 Vertical Video Timingccccrveiiriinciincceene
9.6 Display Interruptcc.....

9.7 Dot Ratecoovviininriinnne

9.8 External Sync Mode

9.9 Video RAM Control

9-1

Screen Refresh and Video Timing - Video Timing Signals

9.1 Video Timing Signals

9-2

The TMS34010 generates horizontal sync, vertical sync, and blanking signals

(HSYNC, VSYNC, and BLANK) on chip. The GSP’s video timing logic is driven
by the video input clock (VCLK). The sync and blanking signals control the
horizontal and vertical sweep rates of the screen and synchronize the screen
display to data output by the VRAMSs.

HSYNC

VSYNC

BLANK

VCLK

is the horizontal sync signal used to control external video circuitry.
It may be configured as an input or an output via the DXV and HSD
bits in the DPYCTL register. When DXV=0 and HDS=0, external
video is selected and HSYNC is an input. Otherwise, HSYNC is an
output.

is the vertical sync signal used to control external video circuitry. It
may be configured as an input or an output via the DXV bit in the
DPYCTL register. If DXV=1, internal video is selected and VSYNC is
an output. |f DXV =0, external video is selected and VSYNC is an in-
put.

is used to turn off a CRT’s electron beam during horizontal and
vertical retrace intervals. The signal output at the BLANK pin is a
composite of the internally generated horizontal and vertical blank-
ing signals. BLANK can also be used to control starting and stopping
of the VRAM shift registers.

is derived from the dot clock of the external video system. VCLK
drives the internal video timing logic.

Screen Refresh and Video Timing - Screen Sizes

9.2 Screen Sizes

The TMS34010's 26-bit word address provides direct addressing of up to 128
megabytes of external memory. This address reach supports very high-reso-
lution displays. For example, the designer of a large TMS34010-based system
could decide to use the lower half of the address space for display memory,
and use the upper half for storing programs and data. Half of this memory
space, for example, could be used as a display memory, and the remaining
memory can be used for programs and data. The 64-megabyte display mem-
ory in this example could support the following display sizes:

8192 by 4096 pixels at 16 bits per pixel
8192 by 8192 pixels at 8 bits per pixel

16,384 by 8192 pixels at 4 bits per pixel

16,384 by 16,384 pixels at 2 bits per pixel
® 32,768 by 16,384 pixels at 1 bit per pixel

The video timing registers also support high-resolution displays. The 16-bit
vertical counter register, VCOUNT, directly supports screen lengths of up to
65,636 lines. The 16-bit horizontal counter register, HCOUNT, does not di-
rectly limit the horizontal resolution. Each horizontal line can be programmed
to be up to 65,5636 VCLK (video clock) periods long. The VCLK period,
however, is an arbitrary number of dot-clock periods in length, depending on
the external divide-down logic used to produce the VCLK signal from the dot
clock. Thus, the number of pixels per line supported by the GSP horizontal
timing registers is limited only by the amount of video memory that is present.

9-3

Screen Refresh and Video Timing - Video Timing Registers

9.3 Video Timing Registers

9-4

The video timing registers are a subset of the 1/0 registers described in Section
6. The values in the video timing registers control the video timing signals.
These registers are divided into two groups:

[] Horizontal timing registers control the timing of the HSYNC signal
and the internal horizontal blanking signal.

HCOUNT

HESYNC

HEBLNK
HSBLNK

HTOTAL

counts the number of VCLK periods per horizontal scan
line.

specifies the point in a horizontal scan line at which the
HSYNC signal ends.

specifies the endpoint of the horizontal blanking interval.

specifies the starting point of the horizontal blanking in-
terval.

defines the number of VCLK periods allowed per horizon-
tal scan line.

° Vertical timing registers control the timing of the VSYNC signal and
the internal vertical blanking signal.

VCOUNT
VESYNC
VEBLNK
VSBLNK
VTOTAL

counts the horizontal scan lines in the screen display.
specifies the endpoint of the VSYNC signal.

specifies the endpoint of the vertical blanking interval.
specifies the starting point of the vertical blanking interval.

specifies the value of VCOUNT at which VSYNC may be-
gin.

Figure 9-1 illustrates the relationship between the horizontal and vertical tim-
ing signals in the construction of a two-dimensional raster display pattern.
The vertical sync and blanking signals span an entire frame. The horizontal
sync and blanking signals span a single horizontal scan line within the frame.

HBLNK and VBLNK are the internal horizontal and vertical blanking signals that
combine to form the BLANK signal output. The display is active (not blanked)

only when HBLNK and VBLNK are both inactive high.

Screen Refresh and Video Timing ~ Horizontal Video Timing

9.4 Horizontal Video Timing

9-6

The following discussion applies to internally generated video timing (the DXV
and HSD bits in the DPYCTL register are set to 1 and O, respectively). Hori-
zontal timing signals are the same for interlaced and noninterlaced video.

The HESYNC, HEBLNK, HSBLNK, and HTOTAL registers control horizontal
signal timing as shown in Figure 9-2. All horizontal timing parameters are
specified as multiples of VCLK. The time between the start of two successive
HSYNC pulses is specified by HTOTAL. HCOUNT counts from 0 to the value
in HTOTAL and then repeats. The value in HTOTAL represents the number
of VCLK periods, minus one, per horizontal scan line. The value in HESYNC
represents the duration of the sync pulse, minus one. The values in HEBLNK
and HSBLNK specify the beginning and end points of the horizontal blanking
interval.

= e

! Horz.
| Front
| Porch

| Porch

A
pu—

3
3
O

HESYNC+1
b

Ip— HEBLNIK+1 —b

|o7 HEBLNK+1 — |

— HTOTALH———

!
|
1
|
I
I

P

Figure 9-2. Horizontal Timing

Figure 9-3 shows the internal logic used to generate the horizontal timing
signals. HCOUNT is incremented once each VCLK period (on the high-to-low
transition) until it equals the value in HTOTAL. On the next VCLK period
following HCOUNT=HTOTAL, HCOUNT is reset to 0, and begins counting
again.

The limits of the horizontal sync pulse are defined by the values in HESYNC
and HTOTAL. HSYNC is driven active low when HCOUNT=HTOTAL; it is
driven inactive high when HCOUNT=HESYNC. After HCOUNT becomes
equal to HTOTAL or HESYNC, there is a one-clock delay before the
active/inactive transition takes place at the HSYNC pin.

The internal HBLNK signal is driven active low after HCOUNT=HSBLNK; it is
driven inactive high after HCOUNT=HEBLNK. HBLNK is logically ORed (ne-
gative logic) with VBLNK to produce the BLANK signal; that is, BLANK goes low
when either HBLNK or VBLNK is low. After HCOUNT becomes equal to
HSBLNK or HEBLNK, there is a one-clock delay before the transition takes
place at the BLANK pin.

Screen Refresh and Video Timing - Horizontal Video Timing

| wrotaL | | Heswwc |

o o
oo

| comparator |—-l | Comparator
7N\

AN

VCLK HCOUNT

{ s o}——
N v

[Comparator |—| I Comparator R OQF—HBINK
7\

N

| vnosink | | HEBLNK |

Figure 9-3. Horizontal Timing Logic - Equivalent Circuit

Figure 9-4 illustrates horizontal signal generation. In this example,
HTOTAL=N, HSBLNK=N-2, HESYNC=2, and HEBLNK=4. Signal transitions
at the HSYNC and BLANK pins occur at high-to-low VCLK transitions. After
HCOUNT becomes equal to HTOTAL, HSBLNK, HESYNC, or HEBLNK, there
is a one-clock delay before the transition takes place at the HSYNC or BLANK
pin.

When HCOUNT=HSBLNK (shortly before the end of the horizontal scan),
horizontal blanking begins. At this time, the DIP (display interrupt) bit in the
INTPEND register will be set to 1 if VCOUNT=DPYINT. The next screen-re-
fresh cycle may also occur at this time —the GSP can be programmed to refresh
the screen after one, two, three, or four scan lines.

VCLK

HCOUNT X N-6)X N-4 X N-3(N-2X N-1(N X 0 X 1 X2 X 38 X4 X 56 X 6)
HBYNC - /

\ N A /
Vo Vv \'Z
Horizontal Horizontal Horizontal
Front Porch Sync Pulse Back Porch
HSBLNK = N-2 HTOTAL = N
HESYNC = 2 HEBLNK = 4

Figure 9-4. Example of Horizontal Signal Generation

9-7

Screen Refresh and Video Timing - Vertical Video Timing

9.5 Vertical Video Timing

3-8

The following discussion applies to internally generated video timing (the DXV
bit in the DPYCTL register is set to 1).

The VESYNC, VEBLNK, VSBLNK, and VTOTAL registers control vertical signal
timing as shown in Figure 9-5. All vertical timing parameters are specified as
multiples of the horizontal sweep time H, where

H = (HTOTAL + 1) x (VCLK period)

VTOTAL specifies the time interval between the start of two successive vertical
sync pulses; this value is the number of H intervals, less one, in each vertical
frame. VESYNC represents the duration of the VSYNC pulse, less one, in each
vertical frame. VSYNC's high-to-low and low-to-high transitions coincide with
high-to-low transitions at the HSYNC pin.

VSBLNK and VEBLNK specify the starting and ending points of vertical
blanking. Blanking begins when VTOTAL=VSBLNK and ends when
VTOTAL=VEBLNK. Assuming that horizontal blanking is active at the start
of each HSYNC pulse, transitions of the internal vertical blanking signal,
VBLNK, occur while horizontal blanking is active.

o U

‘ l\:/em.t : vert, | Vert. |
ron .
| Porch | SYM©

| T
i
WVESYNC+1I I|
|

A
)

VSYNC

—

— |
|
I
|
|

',*— VEBLNK+1 — by

|'———-— VEBLNK# ——

e VTOTALH——)

|
|
|
1
I
|
I
I
!

Figure 9-5. Vertical Timing for Noninterlaced Display

Figure 9-6 shows the internal logic that generates the vertical timing signals.
VCOUNT increments at the beginning of each HSYNC pulse until it equals the
value in VTOTAL. When VCOUNT=VTOTAL, VCOUNT is reset to O and be-
gins counting again. VSYNC is driven active low after VCOUNT=VTOTAL, it
is driven inactive high after VCOUNT=VESYNC. The internal VBLNK signal is
driven active low after VCOUNT=VSBLNK; it is driven inactive high after
VCOUNT=VEBLNK. VBLNK is logically ORed (negative logic) with HBLNK to
produce the BLANK signal. This description applies to a noninterlaced display.
The vertical timing changes slightly for an interlaced display.

Screen Refresh and Video Timing - Vertical Video Timing

I VTOTAL I I VESYNC l

8§ o}—
Comparator Comparator R Q}———» VBYNC

HSYNC VCOUNT

s aQ————
Comparator Comparator R O—»VBLNK
AN

l ViU_NK I | \ it NK I

Figure 9-6. Vertical Timing Logic - Equivalent Circuit

i

9.5.1 Noninterlaced Video Timing

Noninterlaced scan mode is selected by setting the NIL bit in the DPYCTL
register to 1. In this mode, each video frame consists of a single vertical field.
Figure 9-7 shows the path traced by the electron beam on the screen. Box A
shows the vertical retrace, which is an integral number of horizontal scan lines
in duration. Box B shows the active portion of the frame. Solid lines represent
lines that are displayed; dashed lines are blanked.

Monltor Screen Monitor Screen

(a) (b)

Figure 9-7. Electron Beam Pattern for Noninterlaced Video

9-9

Screen Refresh and Video Timing - Vertical Video Timing

VCOUNT

HSYNC

HBLNK

VSYNC

VBLNK

Vertical

Sweep

Horlzontal
Sweep

Figure 9-8 illustrates the video timing signals that generate the display. In this
example, VSBLNK=8, VTOTAL=9, VESYNC=1, and VEBLNK=2. (In actual
applications, much larger values are used; these values were chosen for illus-
tration only.) Each horizontal scan line is preceded by a horizontal retrace.
The horizontal scan pattern repeats until VCOUNT=VTOTAL; VCOUNT is then
reset to 0, and vertical retrace returns the beam to the top of the screen. BLANK
is active low during both horizontal and vertical retrace intervals.

VCOUNT is incremented each time HCOUNT is reset to O at the end of a scan
line. The VSYNC output kv ns when VCOUNT=VTOTAL, coinciding with the
start of HSYNC. The VSY:.:" output ends when VCOUNT=VESYNC; this also
coincides with the start of an HSYNC pulse.

The starting screen-refresh address is loaded from DPYSTRT into DPYADR
at the end of the last active horizontal scan line preceding vertical retrace. This
load is triggered when HCOUNT=HSBLNK and VCOUNT=VSBLNK.

T Ty

—_ ‘ |
|
|

E '|_!

AAAAAAAAAAAAAAN

e ® ;E: ®
[
i !

vy — — — - —

——

V- HINK = 8 VTOTAL = 0
VE-:NC =1 VEBLNK = 2

Figure 9-8. Noninterlaced Video Timing Waveform Example

Screen Refresh and Video Timing - Vertical Video Timing

9.5.1.1 Interlaced Video Timing

Interlaced scan mode is selected when the NIL bit in the DPYCTL register is
set to 0. In this mode, each display frame is composed of two fields of hori-
zontal scan lines. The display consists of alternate lines from the two fields.
This doubles the display resolution while only slightly increasing the frequency
with which data is supplied to the screen.

Figure 9-9 illustrates the path traced by the electron beam on the screen.
Figure 9-10 shows the timing waveforms used to generate the display in Fig-
ure 9-9. In this example, VSBLNK=6, VTOTAL=7, VESYNC=1, and
VEBLNK=2. (In actual applications, much larger values are used; these values
were chosen for illustration only.)

In interlaced mode, two separate vertical scans are performed for each frame -
one for the even line numbers (even field) and one for the odd line numbers
(odd field). The even field is scanned first, starting at the top left of the screen
(see Figure 9-9 b). When VCOUNT=VTOTAL, the vertical retrace returns the
beam to the top of the screen, and the odd field is scanned (Figure 9-9 d).
The electron beam starts scanning the odd and even fields at different points.
The reason for this is illustrated in Figure 9-10. The end of the VSYNC pulse
that precedes the even field coincides with start of an HSYNC pulse; however,
the VSYNC pulse that precedes the odd field ends exactly halfway between two
HSYNC pulses

Even Field 0dd Fleld
A A

/!

Mor.ter Screen Minitar Screen ~ 7" Monitor Screan Monitor Screen

¥ ==

Juxtaposition of even
and odd flelds on
monitor screen.

Figure 9-9. Electron Beam Pattern for Interlaced Video

Screen Refresh and Video Timing - Vertical Video Timing

In interlaced mode, video timing logic operation is altered so that the odd field
begins when HCOUNT=HTOTAL/2. The beam is thus positioned so that
horizontal scan lines in the odd field fall between horizontal scan lines in the
even field. To place each line of the odd field precisely between two lines of
the even field, load HTOTAL with an odd number.

The transition from d to a in Figure 9-9 shows that the vertical retrace at the
end of the odd field begins at the end of a horizontal scan line; that is, it co-
incides with the start of an HSYNC pulse, which results from the condition
HCOUNT=HTOTAL. The VSYNC pulse duration is an integral number of hor-
izontal scan retrace intervals. When vertical retrace ends and the active portion
of the next even field begins, the beam is positioned at the beginning of a
horizontal scan line.

Horizontal timing is similar for interlaced and noninterlaced displays.
HCOUNT is reset to O at the end of each horizontal scan line. A screen-refresh
cycle begins before the end of the line, coinciding with the start of the hori-
zontal blanking interval. Assuming that the starting corner of the display is the
upper left corner, the DUDATE field of the DPYCTL register is added to the
screen-refresh address (SRFADR in the DPYADR register) to generate the row
address for the next screen-refresh cycle. In interlaced mode, the DUDATE
value must be twice that of the value needed to produce the same display in
noninterlaced mode (that is, two times the difference in addresses between
consecutive scan lines). This causes the screen refresh to skip alternate lines
during the odd and even fields.

At the beginning of each vertical blanking interval, the screen-refresh address
(SRFADR in the DPYADR register) is loaded with the starting value specified
by the DPYSTRT register. When vertical blanking precedes an even field, the
new DPYADR row address is incremented by half the value in the DUDATE
field. This is in preparation to display line 2 (Figure 9-9 b). When vertical
blanking precedes an odd field, the row address loaded into DPYADR from
DPYSTRT is not incremented. In this case, the starting row address in
DPYSTRT points to the beginning of line 1 (Figure 9-9 d).

Screen Refresh and Video Timing - Vertical Video Timing

1

fe— H —» 2 4 68 8@erH2 13 5 7 |
ABYNC |

| l ! L |
HBLNR 1[‘“‘”‘1[‘][‘”—”‘1[‘““1' [‘|["‘|I [‘||‘||"||‘“‘||"||‘

| I || 1l |
VEYNC l I i TSN } —

| l b [by
Bk | | —! |
v | | ' | |
ortical | |
Sweap | | | |

!
otz A AAAAAAAAAANAAAAAAAN
Sweep

A4 v
Even Fleld Odd Fleld
s].NK=6 VITOTAL =7
LM NC =1 VEBLNK = 2

Figure 9-10. Interlaced Video Timing Waveform Example

Screen Refresh and Video Timing - Display Interrupt

9.6 Display Interrupt

The TMS34010 can be programmed to interrupt the display when a specified
line is displayed on the screen. This is called a display interrupt. It is enabled
by setting the DIE bit in the INTENB register to 1 and loading the DPYINT
register with the desired horizontal scan line number. When VCOUNT =
DPYINT, the interrupt request is generated to coincide with the start of hori-
zontal blanking at the end of the specified line.

The display interrupt request can be polled by disabling the interrupt (setting
DIE=0) and checking the value of the DIP bit in the INTPEND register.
Writing a O to DIP clears the request.

The display interrupt has several applications. It can be used to coordinate
modifications of the bit map with the display of the bit map’s contents, for
example. While the bottom half of the screen is displayed, the GSP can modify
the bit map of the top half of the screen, and vice versa.

The display interrupt is also useful in split screen applications. By modifying
the contents of the DPYADR register halfway through a frame, different parts
of the bit map can be displayed on the top and bottom halves of the screen.
No special steps are necessary to ensure that loading a new value to DPYADR
will not interfere with an ongoing screen-refresh cycle. The display interrupt
is requested at the beginning of the horizontal blanking interval. If a screen-
refresh cycle occurs during the same horizontal blanking interval, the GSP
cannot respond to the interrupt request until the refresh cycle and subsequent
updating of DPYADR are complete. This is true whether the interrupt is taken
or the GSP simply polls the DIP bit and detects a 0-to-1 transition. After DIP
has been set to 1, DPYADR can be loaded with a new value to achieve the
split screen anytime before the next screen-refresh cycle.

Screen Refresh and Video Timing - Dot Rate

9.7 Dot Rate

A typical screen must be refreshed 60 times per second for a noninterlaced
scan or 30 times per second for an interlaced scan. For a noninterlaced dis-
play, the dot period (time to refresh one pixel) is estimated as:

(0.8)(1/60 second)
(pixels/line) x (lines/frame)

Dot Period =

For an interlaced display, the dot period is estimated as

(0.8)(1/30 second)
(pixels/line) x (lines/frame)

Dot Period =

The 0.8 factor in the numerator accounts for the fact that the display is typi-
cally blanked for about 20% of the duration of each frame. This factor varies
somewhat from monitor to monitor.

During each dot period, the complete information for one pixel must be ob-
tained from the display memory (or frame buffer). Thus, the rate at which vi-
deo data must be supplied from the display memory (which is usually the
limiting factor for large systems) is a function of pixel size as well as screen
dimensions.

Screen Refresh and Video Timing - External Sync Mode

9.8 External Sync Mode

External sync mode allows the TMS34010 to use horizontal and vertical sync
signals from an external source. This permits graphics images generated by
the GSP to be superimposed upon or mixed with images from external
sources.

External sync mode is selected by setting the DXV and HSD bits in the
DPYCTL r+1 .1 r to 0. HSYNC and VSYNC are now configured as inputs. (Al-
ternately, i- +*.~ can be configured as an output and VSYNC as an input by
setting DXV=0 and HSD=1.) When an active-low sync pulse is input to one
of these pins, the corresponding counter (HCOUNT or VCOUNT) is forced to
all Os. By forcing the counters to follow the external sync signals, the blanking
intervals and screen-refresh cycles are also forced to follow the external video
signals.

The HSYNC and VSYNC inputs are sampled on each VCLK rising edge.
HCOUNT or VCOUNT will be cleared 2.5 clock periods (on a VCLK falling
edge) following a high-to-low transition at the HSYNC or VSYNC pin, respec-
tively. BLANK remains an output, but its timing is affected because the point
at which HCOUNT and VCOUNT are cleared is controlled by the external sync
signals. The 2.5-clock delay must be considered when selecting values for the
HSBLNK and HEBLNK registers.

9.8.1 A Two-GSP System

One GSP can generate video timing for two GSPs. As Figure 9-11 shows,
GSP #1 is configured for internal sync mode (DXV=1) and generates the sync
timing. GSP #2 is configured for external sync mode (DXV=0 and HSD=0),
and receives the HSYNC and VSYNC inputs from GSP #1. Assume that the vi-
deo timing registers of the two devices are named as follows:

GSP #1 GSP#2

HCOUNT? HCOUNT2
HESYNC1 HESYNC2
HSBLNK1 HSBLNK2
HEBLNK1 HEBLNK2
HTOTALY HTOTAL2
VCOUNT1 VCOUNT2
VESYNC1 VESYNC2
VSBLNK1 VSBLNK2
VEBLNK1 VEBLNK2
VTOTAL1 VTOTAL2

GSP #2’s registers should be programmed in terms of the values in GSP #1's
registers, as shown in Table 9-1. The BLANK signals from GSP #1 and GSP
#2 are the same, and switch in unison on the same VCLK edges. When
HCOUNT1 is cleared on a VCLK falling edge, HCOUNT2 is cleared three full
VCLK periods later. For short horizontal blanking periods, HEBLNK2 may
need to be loaded with a value that is less than zero. For example, assume that
HSBLNK1=HTOTAL1-4 and HEBLNK1=1 (that is, the horizontal blanking
interval is six VCLK periods). To ensure that GSP #2’s horizontal blanking
interval begins and ends at the same time as GSP #1's, GSP #2’s registers
must be loaded with values so that HSBLNK2=HTOTAL1-8 and
HEBLNK2=HTOTAL1-2.

Screen Refresh and Video Timing - External Sync Mode

9.8.2 External Interlaced Video

External sync mode can be used for both interlaced and noninterlaced dis-
plays. When locking onto external interlaced sync signals, the GSP discrimi-
nates between the odd and even fields of the external video signals based on
whether its internal horizontal blanking is active at the time that the start of the
external vertical sync pulse is detected. In Figure 9-10, for example, the even
field begins at a point where HBLNK is active low, and the odd field begins
while HBLNK is high.

In interlaced mode, the discrimination between the even and odd fields of an
external video source is based on the value of HCOUNT at a point two VCLK
periods past the rising VCLK edge at which the GSP detects the VSYNC input's
high-to-low transition. If HCOUNT contains a value greater than the value in
HEBLNK, but less than or equal to the value in HSBLNK, the GSP assumes
that the vertical sync pulse precedes the start of an odd field. Otherwise, the
next field is assumed to be even. Alternatively, the GSP can be placed in
noninterlaced mode, even though the external sync signals it is locking onto
are for an interlaced display. In this case, the GSP will simply cause identical
display information to be output to the monitor during the odd and even fields.

Screen Refresh and Video Timing - Video RAM Control

9.9 Video RAM Control

The TMS34010 automatically schedules the VRAM (video RAM) memory-
to-shift-register cycles needed to refresh a video monitor screen. These cycles
are referred to as screen-refresh cycles.

In addition to automatic screen-refresh cycles, the GSP can be configured to
perform memory-to-shift-register and shift-register-to-memory cycles under
the explicit control of software executing on the GSP’s internal processor.
One of the primary uses for this capability is to facilitate nearly instantaneous
clearing of the screen. The screen is cleared in 256 memory cycles or less by
means of a technique referred to here as bulk initialization of the display me-
mory.

9.9.1 Screen Refresh

A screen-refresh cycle loads the VRAM shift registers with a portion of the
display memory corresponding to a scan line of the display. The internal re-
quests for these cycles occur at regular intervals coinciding with the start of
the horizontal blanking intervals defined by the video timing registers. When
horizontal blanking ends, the contents of the shift registers are clocked out
serially to drive the video inputs of a monitor. A screen-refresh cycle typically
occurs prior to each active line of the display.

9.9.1.1 Display Memory

The display memory is the area of memory which holds the graphics image
output to the video monitor. This memory is typically implemented with
VRAMs. During a screen-refresh cycle, a portion of the display memory cor-
responding to one (or possibly more) scan lines of the display are loaded into
the VRAM shift registers. Depending on the screen dimensions selected, not
all portions of the display memory are necessarily output to the monitor.

The width of the display memory is referred to as the screen pitch, which is the
difference in 32-bit memory addresses between two vertically-adjacent pixels
on the screen. The screen pitch is also the difference in starting memory ad-
dresses of the video data for two consecutive scan lines. When XY addressing
is used, the screen pitch must be a power of two to facilitate the conversion
of XY addresses to memory addresses. The value loaded into the DUDATE
field of the DPYCTL register represents the screen pitch, and is the amount
by which the screen-refresh address is incremented (or decremented) follow-
ing each screen-refresh cycle.

The portion of display memory that is actually output to the monitor is referred
to as the on-screen memory. The starting location of the on-screen memory
is specified by the SRFADR field in the DPYSTRT register.

The starting screen-refresh address is output during the screen-refresh cycle
that occurs at the start of each frame. At the end of the screen-refresh cycle,
the address is incremented to point to the area of memory containing the pixels
for the second scan line. The process is repeated for each subsequent scan
line of the frame.

Screen Refresh and Video Timing - Video RAM Control

A screen-refresh cycle typically affects all video RAMs in the system. A me-
mory-to-shift-register cycle transfers data from a selected row of memory to
the internal shift register of each VRAM. The data is then shifted out to refresh
the display.

A screen-refresh cycle takes place during the horizontal blanking interval that
precedes a scan line to be displayed. Typically, the shift registers containing
the video data for the line are clocked only during the active portion of the
scan line, that is, when the BLANK output is high. At higher dot rates, the pixel
clock or dot clock used to shift video data to the monitor is run through a
frequency divider to create the VCLK signal input to the GSP.

The 8-bit row address output during the screen-refresh cycle specifies the row
in memory to be loaded into the shift register internal to the VRAM. The
number of bits of video data transferred to the shift registers of all the VRAMs
in the system during a single screen-refresh cycle is calculated by multiplying
the number of VRAMs times the length of the shift register in each VRAM.
For example, 64 TMS4161 (64K-by-1) VRAM devices are sufficient to con-
tain the bit map for a 1024-by-1024-pixel display with four bits per pixel. The
length of the shift register in each TMS4161 is 256 bits. Thus, in a single
screen-refresh cycle, a total of 84 times 256, or 16,384, bits are loaded. This
is enough data to refresh four complete scan lines of the display. In general,
a single screen-refresh cycle performed during a horizontal blanking interval
is sufficient to supply one or more complete scan lines worth of data to the
video monitor screen.

9.9.1.2 Generation of Screen-Refresh Addresses

9-20

The DPYADR, DPYCTL, DPYSTRT, and DPYTAP registers are used to gener-
ate the addresses output during screen-refresh cycles. Figure 9-12 shows
these four registers, and indicates the register fields which determine the way
in which screen-refresh addresses are generated.

15 210
DPYADR | =~ ° "sRRAOR ~ ~ - " [
16 210
opyeTRT [. ¢ ¢ “eRefmt, . . T - 77
15 14 13‘12.11 10 9. i - i I2 1'0
DPYCTL | fl{l@."’ 'lrl . owoate - D]
NIL ORG
15 4 13 —— . — '0
oPytAP | [., OPY[AR T T T T T

Figure 9-12. Screen-Refresh Address Registers

Screen Refresh and Video Timing - Video RAM Control

[] DPYADR contains the SRFADR field, which is a counter that generates
the addresses output during screen-refresh cycles.

[] DPYSTRT contains the SRSTRT field, the starting address loaded into
SRFADR at the beginning of each frame.

® DPYCTL contains several fields that affect screen-refresh addresses. The
8-bit DUDATE field is loaded with seven Os and a single 1 that points
to the bit position within SRFADR (bits 2-9 of DPYADR) at which the
address is to be incremented (or decremented) at the end of each
screen-refresh cycle. The ORG bit determines whether the screen-re-
fresh address is incremented or decremented. If ORG=0, the screen or-
igin is located at the top left corner of the screen and the address is
incremented; otherwise, it is decremented. The NIL bit determines
whether the GSP is configured to generated an interlaced (NIL=0) or
noninterlaced (NIL=1) display. The generation of screen-refresh ad-
dresses can be modified to accommaodate either type of display.

® The DPYTAP register is used to specify screen-refresh address bits to
right of the position at which DUDATE increments the address. DPY-
TAP provides the additional control over screen-refresh address gener-
ation necessary to allow the screen to pan through the display memory.

Bits not directly involved in address generation are shaded in Figure 9-12.

The address output during a screen-refresh cycle identifies the starting pixel
on the scan line about to be output to the monitor. Figure 9-13 (page 9-22)
shows a 32-bit logical address of the first pixel on one of the scan lines ap-
pearing on the screen. The screen-refresh address consists of bits 4-23 of the
logical address, which are generated by combining the values contained in
SRFADR and DPYTAP. Where SRFADR and DPYTAP overlap (bits 10-17
of the logical address), the address bits are generated by logical ORing the
corresponding bits of SRFADR and DPYTAP. The 8-bit DUDATE value con-
tains seven Os and a single 1 pointing to the position at which SRFADR is to
be incremented (or decremented). The DPYTAP register should be loaded
with the portion of the pixel address in Figure 9-13 lying to the right of the
position indicated by the DUDATE pointer bit. SRFADR contains the portion
of the pixel address that is incremented by the DUDATE pointer bit.

Following system power up, the software loads the starting screen-refresh
address into the DPYSTRT register and the increment to the screen-refresh
address into the DPYCTL register. For a typical CRT display, the starting ad-
dress is the address in memory of the pixel that appears in the upper left corner
of the display. If ORG bitin DPYCTL is O, the 7’s complement of the starting
address should be loaded into DPYSTRT. If ORG=1, the starting address
loaded into DPYSTRT should not be complemented.

DPYADR is automatically loaded with the starting display address from
DPYSTRT prior to the start of each frame. As shown in Figure 9-14 a, bits
2-15 of DPYSTRT (SRSTRT) are loaded into bits 2-15 of DPYADR
(SRFADR). The load occurs coincident with the start of the horizontal
blanking interval that occurs just at the end of the last active scan line of the
preceding frame.

Screen Refresh and Video Timing - Video RAM Control

9-22

Output During ng Address Time

Y Cutput During
i Columa Acdress Time
7\

B .

[[

328 241 20 18 12! 8 4
| 32-Blt Logloal Pixel Address ~ ~ " N
T M
SRFADR
[({DPYADR Bits 2-15)
]

i
1
i
—i L-ILATE N
! (DPY " il Bits 2-9)

!, DPYTAP __ |
(Bits 0-13)

Figure 9-13. Logical Pixel Address

The address output during each screen-refresh cycle is contained in bits 2
through 15 of the DPYADR register (the 14-bit SRFADR field). As shown in
Figure 9-14 b, DPYADR bits 4-15 are output at the LADO-LAD11 pins during
the row address time of the screen-refresh cycle. If ORG=0, the DPYADR bits
are inverted before being output; otherwise, they are output unaltered. Zeros
(logic-low level) are output on LAD12-LAD14, and a one (logic-high level)
is output on LAD15; this is the RF status bit.

During the column address time of the screen-refresh cycle, bits 2-6 of
DPYADR are output at LAD6-LAD10. If ORG=0, the DPYADR bits are in-
verted before being output. DPYTAP bits 6-10 are ORed with DPYADR bits
2-6 and output at LAD6-LAD10. Bits 0-5 and 11-13 of DPYTAP are output
at LADO-LAD5 and LAD11-LAD13, respectively. Zeros are output at
LAD14~LAD15 (the TR and IAQ status bits).

After the row and column addresses have been output, the address in
DPYADR bits 2-15 is decremented by the 8-bit value in DPYCTL bits 2-9 (the
DUDATE field). This is done in preparation for the next screen-refresh cycle.
The 8-bit DUDATE value is a binary number consisting of seven Os and a
single 1. This single 1 indicates the position at which DPYADR will be dec-
remented. If ORG=0, the screen-refresh address in DPYADR is effectively
incremented; the one’s complement of the address contained in DPYADR is
decremented by the DUDATE amount, but is inverted before being output.
This is equivalent to incrementing the address. If ORG=1, the address is de-
cremented.

Screen Refresh and Video Timing - Video RAM Control

DPYSTRT
Register

DPYADR
Register

SRETRT

1514 13 12 1110 9 8 7 6 § 4 3 2 1 0
T 1 T _ 1 v T+ ¥ 1T T T T T7 T

KNI
N T N T N T N T A T A N A T VO N Y N SOV

SRFADR

(a) Display-Address Initial Value

DPYADR
Reglster

6 14 13121110 8 8 7 6 5 4 3 2 1 0
T 1 1 _ 1 1T T T 1T T 71T T 71 7T T

ORG

Figure 9-14.

LAD Bus Pins
4_? 0 |
= "
.,__2 ' 2]
= 3
7 4 {
5 .
SpSNeEN
(S G
- &
—L 8 |
__}’ >—|—> 10
— =D
- |
|
|
1
|

(b) Row-Address Time

Screen-Refresh Address Generation

Screen Refresh and Video Timing - Video RAM Control

DPYADR 15.“;13(12:117101 9I 8l 7' 6x 5‘ 4' 3[2 1'0
Register T S WU SN S MY SN SN SN S S ITI L |
NSo— —ta i o

ORG 1> Lili

LAD Bus Pins

jm———"

VvV VY v v

0O ~NOO PN =

-
o

e
=

vy v ey
-
)

DPYTAP T T TS LT o—+— 15(1AQ)
Register 1 e

|
|
I
I
I
I
I
I
|
I
I
|
I
|
|
I
i
I
I
) U S W (S S N S S S S S S —_— J
1514181221198 87 865 43210

{(c) Column-Address Time

\

Figure 9-14. Screen-Refresh Address Generation (Continued)

9-24

Screen Refresh and Video Timing - Video RAM Control

v v v A
15'14'13l12 110 8

7 865 43 210
DPYADR T T T T _ T _ T _T T 7T T
Register PUNEE TR R N S IR GY U0 Y SR SVER SN SRR ' G 1
DUDAATE
151413 12 110 9 8 7 8 5 4 3 2 10
DPYTAP :
Reglater U SO S R | ' R TR 'R SR TR &

YYYY

» vy
Adder S |<: 1

(d) Display-Address Update

Figure 9-14. Screen-Refresh Address Generation (Concluded)

9.9.1.3 Screen Refresh for Interlaced Displays

The size of the DUDATE increment specified for an interlaced display should
be twice that required for a noninterlaced display of the same dimensions.
This allows every other line to be skipped during the even or odd field of an
interlaced frame. Before the start of the even field, half the value of the DU-
DATE increment is added to the starting address loaded into DPYADR to ob-
tain the necessary starting displacement. The SRSTRT field in DPYSTRT
points to the area of memory containing the video data for scan line 1 in the
example of Figure 9-9 on page 9-11.

Screen Refresh and Video Timing - Video RAM Control

9.9.1.4 Panning the Display

The DPYTAP register supports horizontal panning of the screen across a dis-
play memory that is larger than the screen. The value contained in the low-
order bits of DPYTAP furnish the LSBs of the column address output during
the screen-refresh cycle. Incrementing this value results in panning to the
right; decrementing this value results in panning to the left.

9.9.1.5 Scheduling of Screen-Refresh Cycles

9-26

The internal request for a screen-refresh cycle is generated when horizontal
blanking begins. This gives the GSP essentially the entire horizontal blanking
interval in which to perform the screen-refresh cycle. The delay from the start
of horizontal blanking to the start of the screen-refresh cycle is called the
screen-refresh latency, and is determined by the internal memory controller.

The best and worst case screen-refresh latencies are given in Table 9-2. In the
best case, the delay from the high-to-low transition of the BLANK output to the
start of the screen-refresh cycle (the time the row address is output) is only
3.25 machine states (or local clock periods). In the worst case, the delay is
(7.25 + 2W) states, where W represents the number of wait states required
per memory cycle. The worst case number is based on the fact that the start
of the screen-refresh cycle can be delayed by up to three states if a read-mo-
dify-write operation began one state before the memory controller received the
request for the screen-refresh cycle. A screen-refresh request is given higher
priority than requests for DRAM-refresh, host-indirect or GSP CPU cycles;
hence, no further delays will occur unless an external device generates a hold
request.

Table 9-2. Screen-Refresh Latency

Min Max
3.25 states (7.25 + 2W) states

Note: W is the number of wait states
pér memory cycle.

The horizontal blanking interval should be sufficiently long in duration for the
screen-refresh cycle to be completed before blanking ends. The required mi-
nimum blanking interval is therefore about (9.26 + 3W) machine states, de-
pending on how soon after the end of blanking the external video logic begins
clocking the VRAM shift registers. Of course, this time must be translated from
machine states (local clock periods) to VCLK periods to program the HEBLNK
register.

The horizontal sync pulse is permitted to be as small as a single VCLK period
in duration.

No screen-refresh cycles are performed during vertical blanking untif nearly the
end of vertical blanking - at the start of the horizontal blanking interval that
precedes the first active scan line of the new frame.

Screen Refresh and Video Timing - Video RAM Control

9.9.2 Video Memory Bulk Initialization

VRAMSs may be rapidly loaded with an initial value using a special GSP feature
that converts pixel accesses to shift register transfers. This rapid loading
method is referred to as bulk initialization of the video memory, and can be
used with VRAMs such as the TMS4161 and TMS4461. When the SRT (shift
register transfer) bit in the DPYCTL register is set to a 1, all reads and writes
-of pixel data are converted at the memory interface of the GSP to shift-
register-transfer cycles. When SRT=0, pixel accesses are performed in normal
fashion.

When SRT=1, the processor can initiate shift-register-transfer cycles under
explicit program control. By performing a series of such cycles, some or all
of the display memory can be set to an initial background color or pattern very
rapidly (in a small fraction of one frame time). First, the VRAM shift registers
are loaded with the initial value. The video memory is then set to the initial
color or pattern one row at a time by writing the shift register contents to the
memory.

During a shift-register-transfer cycie (when SRT=1), the row and column
addresses are output in unaltered form; that is, the address is not affected by
the state of SRT. The 8-bit row address output during the cycle designates
which row in memory is involved in the transfer. The direction of the transfer
is determined by whether the cycle is a read or a write. A write cycle such as
a PIXT transfer from a general-purpose register to memory is converted to a
VRAM shift-register-to-memory cycle. Similarly, a read cycle such as a PIXT
transfer from memory to a general-purpose register is converted to a VRAM
memory-to-shift-register cycle.

Only pixel transfers are affected by the SRT bit. The manner in which all other
data accesses and instruction fetches are performed is not affected.

Before bulk initialization of the display memory, the VRAM shift registers are
loaded with the solid color or pattern with which the display memory will be
loaded. This can be done in one of two ways, by either

° Serially shifting bits into the shift register

or

L] First loading a row of display memory with the color or pattern using a
series of “normal” pixel writes (when SRT=0), and then loading the
contents of this row into the shift register by means of a PIXT memo-
ry-to-register instruction (executed while SRT=1).

To speed up the bulk initialization operation further, a series of transfers can
be made more rapidly by using a single FILL instruction in place of a series of
PIXT instructions. The fill region is selected so that each pixel write cycle
generates a new row address. The fill region is specified to be precisely 16
bits wide, the width of the memory data bus. Also, plane masking is disabled,
transparency is turned off, and the pixel processing rep/ace operation is se-
lected. This ensures that each row is addressed only once during the course
of the fill operation.

The number of bits of the display memory that are altered by a single shift-
register-to-memory transfer cycle is calculated by multiplying the number of
VRAM devices by the number of shift register bits in each device. The entire
frame buffer is loaded with the initial color or pattern in 256 memory cycles.

9-27

This page intentionally left blank.

10. Host Interface Bus

A host processor can communicate with the TMS34010 by means of an
interface bus consisting of a 16-bit data path and several transfer-control
signals. The TMS34010’s host interface provides a host with access to four
programmable 16-bit registers (resident on the TMS34010), which are
mapped into four locations in the host processor's memory or I/O address
space. Through this interface, commands, status information, and data are
transferred between the TMS34010 and host processor.

A host processor may read from or write to TMS34010 local memory indirectly
via an autoincrementing address register and data port. This optional
autoincrement feature supports efficient block moves. The TMS34010 and
host can send interrupt requests to each other. A pin is dedicated to the in-
terrupt request from the TMS34010 to the host. To allow block moves initi-
ated by a host to take place more efficiently, the host may suspend TMS34010
program execution to eliminate contention with the TMS34010 for local
memory. DRAM -refresh and screen-refresh cycles continue to occur while the
TMS34010 is haited.

This section includes the following topics:

Section
10.1 Host Interface Bus PiNs ..ot
10.2 Host Interface Registers ...c.ccceoviiiieeanee
10.3 Host Register Reads and Writes
T0.4 BandwWidth oot e e st enes
10.5 WOrst-Case Delay ...ccccoovviieieniieie et cete e

Host Interface Bus - Pins/Registers

10.1 Host Interface Bus Pins

The GSP’s host interface bus consists of a 16-bit bidirectional data bus and
nine control lines. These signals are described in detail in Section 2.

- HDO-HD15

form a 16-bit bidirectional bus, used to transfer data between the
GSP and a host processor.

HCS is the host chip select signal. It is driven active low to allow a host
processor to access one of the host interface registers.
HFSO, HFS1

are function select pins. They specify which of four host interface
registers a host will access (see Section 10.2).

HREAD s driven active low to allow a host processor to read the contents
of the selected host interface register, output on HDO-HD15.

HWRITE is driven active low to allow a host processor to write the contents
of HDO-HD15 to the selected host interface register.

HLDS is driven low to enable a host processor to access the lower byte
of the selected host interface register.

HUDS is driven low to enable a host processor to access the upper byte
of the selected host interface register.

HRDY informs a host processor when the GSP is ready to complete an
access cycle initiated by the host.

HINT transmits interrupt requests from the GSP to a host processor.

10.2 Host Interface Registers

10-2

The host interface registers are a subset of the |/0 registers discussed in Sec-
tion 6. The host interface registers can be accessed by both the GSP and the
host processor. These registers occupy four 16-bit locations in the host
processor’'s memory or I/O address map. One of these four locations is se-
lected by placing a particular code on the two function select inputs, HFSO
and HFS1, as shown in Table 10-1. A 16-bit host processor will typically
connect two of its low-order address lines to HFS0 and HFS1. An 8-bit pro-
cessor typically connects two low-order address lines to HFSO-HFS1 and uses
a third low-order address bit to enable either the upper or lower byte of the
selected register by activating one of the byte select inputs, HUDS or HLDS.
In the second case, the registers occupy eight 8-bit locations in the host
processor's memory map.

Host Interface Bus - Registers

Table 10-1. Host Interface Register Selection

/'-”.-‘- T)\l‘({/(: s e
HFS1 | HFSO| Selected
Register
0 0 HSTADRL | ¢ & T
0 1 HSTADRH 18 BT
1 0 HSTDATA
veaw| 1 1 HSTCTL 26 BT

HSTADRL and HSTADRH contain the 16 LSBs and 16 MSBs, respectively,
of a 32-bit pointer address. A host processor uses this address to indirectly
access GSP local memory.

The HSTDATA register buffers data that is transferred through the host in-
terface between GSP local memory and a host processor. HSTDATA contains
the contents of the address pointed to by the HSTADRL and HSTADRH reg-
isters.

The HSTCTL register is accessible to the GSP as two separate 1/0 registers,
HSTCTLL and HSTCTLH, but is accessed by a host processor as a single
16-bit register. HSTCTL contains several programmable fields that controi
host interface functions.

NMI. Nonmaskable interrupt, bit 8. Aliows a host processor to interrupt
GSP execution.

NMIM. NMI mode, bit 9. Specifies if the context of an interrupted pro-
gram is saved when a nonmaskable interrupt occurs.

CF. Cache flush, bit 14. Setting this bit flushes the contents of the GSP
instruction cache. A host processor can force the GSP to execute new
code after a download by flushing old instructions out of cache.

LBL. Lower byte last, bit 13. Specifies which byte of a register an 8-bit
host processor will access first.

INCR. Increment address before local read, bit 12. Controls whether the
32-bit pointer in the HSTADR registers will be incremented before being
used in a local read cycle that updates the HSTDATA register.

INCW. Increment address after local write, bit 11. Controls whether the
32-bit pointer in the HSTADR registers will be incremented after being
used in a local write cycle that transfers the contents of the HSTDATA
register to memory.

HLT. Halt GSP program execution, bit 15. A host processor can halt the
TMS34010’s on-chip processor by setting this bit to 1.

MSGIN. Message in, bits 0-2. Buffers a 3-bit interrupt message from a
host processor to the GSP.

INTIN. Input interrupt bit, bit 3. A host must load a 1 into this bit to
generate an interrupt request to the GSP.

MSGOUT. Message out, bits 4-6. Buffers a 3-bit interrupt message from
the GSP to a host.

INTOUT. Interrupt out, bit 7. The GSP must load a 1 to this bit to send
an interrupt request to a host processor.

10-3

Host Interface Bus - Reads and Writes

10.3 Host Register Reads and Writes

10-4

Host interface read and write cycles are initiated by the host processor and are
controlled by means of the HCS, HWRITE, HREAD, HUDS, and HLDS signals.
Host-initiated accesses of the register selected by the function-select code
input on HFSO and HFS1 are controlled as follows:

While HCS, HLDS, and HWRITE are active low, the contents of
HDO-HD?7 are latched into the lower byte of the selected register.

While HCS, HUDS, and HWRITE are active low, the contents of
HD8-HD15 are latched into the upper byte of the selected register.

While HCS, HLDS, and HREAD are active low, the contents of the lower
byte of the selected register are driven onto HDO-HD?7.

While HCS, HUDS, and HREAD are active low, the contents of the upper
byte of the selected register are driven onto HD8-HD15.

As this list indicates, at least three control signals must be active at the same
time to initiate an access. The last of the three signals to become active begins
the access, and the first of the three signals to become inactive signals the end
of the access. A signal that begins or completes an access is referred to in the
following discussion as the strobe signal for the cycle. Any of the signals
listed above may be a strobe. Figure 10-1 shows a functional representation
of the logic that controls the GSP’s host interface.

TMB34010
Write to upper
I I byte of selected
register
Write to lower
@' I | byte of selected
HLDS register
Read from upper
I | byte of selected
reglister

j Read from lower
byte of selected
| Il register

=3

5
a1 R

:

Figure 10-1. Equivalent Circuit of Host Interface Control Signals

Host Interface Bus - Reads and Writes

A data transfer through the host interface takes place only when some com-
bination of HCS, HREAD, HWRITE, HUDS, and HLDS are active simultaneously;
however, the HRDY signal is activated by the HCS input alone. HRDY can be
active-low only while the GSP is chip-selected by the host processor, that is,
only when HCS is active low. A high-to-low transition on HRDY follows a
high-to-low transition on HCS. The benefit of this mode of operation is that
HRDY becomes valid as soon as HCS goes low, which typically is early in the
cycle. HRDY is always driven high when HCS is inactive high.

A transient low level on the HCS input may cause a corresponding low pulse
on the HRDY output. Systems that cannot tolerate such transient signals must
be designed to prevent HCS from going low except during a valid host inter-
face access.

in summary, the following rules govern the HRDY output:

1) If a high-to-low HCS transition occurs while the GSP is still completing
a local memory cycle resulting from a previous host-indirect access,
HRDY will go low. If the register selected is HSTDATA, HSTADRL or
HSTADRH, HRDY will remain low until the local memory cycle is com-
pleted. If the register selected is HSTCTL, the HRDY output will remain
low for one to two local clock periods.

2) If the host is given a ready signal (HRDY high) to allow it to complete
a register access that will cause a local memory read or write cycle,
HRDY stays high to the end of the access. The access ends when the
strobe for the cycle ends. The strobe ends when HREAD and HWRITE are
both inactive high, or when HLDS and HUDS are both inactive high, or
when HCS is inactive high, whichever is the first to occur. As soon as
the strobe ends, a low level on HCS will allow HRDY to go low again.
If the strobe is an input other than HCS, and HCS remains low after the
strobe ends, HRDY can go low as a delay from the end of the strobe. If
HCS is the strobe for the access, the access ends when HCS goes high,
and HRDY can go low again as soon as HCS goes low again.

3) If HSTCTL is selected (FSO = FS1 = 1) at the high-to-low transition
of HCS, HRDY will go low as a delay from the fail of HCS, and will remain
low for one to two local clock periods. To avoid a low-going pulse on
HRDY when accessing a register other than HSTCTL, FSO-FS1 should
be valid prior to the high-to-low transition of HCS.

Figure 10-8 and Figure 10-9 (page 10-10) show examples of host interface
register accesses in which HRDY is driven low.

10-9

Host Interface Bus - Reads and Writes

10.3.3 Indirect Accesses of Local Memory

The host processor indirectly accesses GSP local memory by reading from or
writing to the HSTDATA register. HSTDATA buffers data written to or read
from the local memory. The word in local memory that is accessed is the word
pointed to by the 32-bit address contained in the HSTADRL and HSTADRH
registers. The pointer address is loaded into HSTADRL and HSTADRH by the
host processor before performing one or more indirect accesses of local me-
mory using the HSTDATA register.

The four LSBs of HSTADRL are forced to Os internally so that the address
formed by HSTADRL and HSTADRH always points to a word boundaty in
local memory. Between successive indirect accesses of local memory using
the HSTDATA register, the local memory address contained in the HSTADR
registers can be autoincremented by 16. This allows the host processor to
access a block of sequential words in local memory without the overhead of
loading a new address prior to each access.

During a sequence of one or more indirect reads of local memory by the host,
the GSP maintains in HSTDATA a copy of the local memory word currently
addressed by the HSTADRL and HSTADRH registers. Reading from
HSTDATA returns the word prefetched from the local memory location
pointed to by the HSTADRL and HSTADRH registers, and causes HSTDATA
to be updated from local memory again. Writing to HSTDATA causes the
word written to HSTDATA to subsequently be written to the location in local
memory pointed to by the HSTADRL and HSTADRH registers.

Two increment-control bits, INCR and INCW (contained in the HSTCTL reg-
ister), are set to 1 to cause the pointer address in HSTADRL and HSTADRH
to be incremented by 16 during reads and writes, respectively. in preparing
to use the autoincrement feature, the appropriate increment-control bit, INCR
or INCW, is loaded with a 1, and the HSTADRL and HSTADRH registers are
set up to point to the first location of a buffer region in the local memory.

L When INCR is set to 1, a read of HSTDATA causes the address in
HSTADRL and HSTADRH to be incremented before being used in the
local memory read cycle that updates HSTDATA.

° When INCW is set to 1, a write to HSTDATA causes the address in
HSTADRL and HSTADRH to be incremented after being used in the lo-
cal memory read cycle that writes the new contents of HSTDATA to local
memory.

Loading the pointer address automatically triggers an update of HSTDATA to
the contents of the local memory word pointed to. No increment of HSTADRL
and HSTADRH takes place at this time regardless of the state of the increment
bits. Each subsequent host access of HSTDATA causes HSTADRL and
HSTADRH to be automatically incremented (assuming INCR or INCW is set)
to point to the next word location in the local memory. In this manner, a series
of contiguous words in local memory can be accessed following a singie load
of the HSTADRL and HSTADRH registers without additional pointer-
management overhead.

10-11

Host Interface Bus - Reads and Writes

10.3.3.1

10-12

Indirectly Reading from a Buffer

Figure 10-10 illustrates the procedure for reading a block'of words beginning
at local memory address V. Assume that the INCR bit in the HSTCTL register
is set to 1 and the LBL bit in HSTCTL is set to 0.

In Figure 10-10 a, the host processor loads the 32-bit address A into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
GSP host interface control logic to automatically initiate a read cycle on
the local bus. This read cycle, shown in Figure 10-10 b, transfers the
contents of memory address /V to the HSTDATA register.

in ¢, the host processor reads the HSTDATA register, fetching the data
previously read from address V.)

The read of HSTDATA by the host processor causes the GSP to auto-
matically increment the contents of HSTADRL and HSTADRH by 16,
as shown in d.

The contents of the new address are read into HSTDATA, as shown in
Figure 10-10 e. This data will be available in HSTDATA the next time
it is read by the host processor.

The process shown in ¢ through e repeats for every word read from GSP local
memory.

Host Interface Bus - Reads and Writes

(a)

(b

(c)

(d)

(e)

N+16

N+16
N

N+16
N

Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
* B
A
; HETDATA
Host Host Local
Prooessor Interface Memory
Registers
HSTADRH HSTADRL
[— B
[T A
HSTDATA
Host Host Local
Processor Interface Memory
Reglsters
HSTADRH HSTADRL
’:'Dﬁ B
A
\ HETDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
B
A
HETDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
l:ﬁfﬁé’:}ﬁ B
A
HSTDATA

N+16
N

N+168
N

Figure 10-10. Host Indirect Read from Local Memory (INCR=1)

10-13

Host Interface Bus - Reads and Writes

10.3.3.2 Indirectly Writing to a Buffer

10-14

Figure 10-11 illustrates the procedure for writing a block of words to GSP
local memory. The block begins at address . Assume that the INCW bit is
set to 1 and the LBL bit is set to O.

In Figure 10-11 a, the host processor loads the 32-bit address N into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
GSP host interface control logic to automatically initiate a read cycle on
the local bus. This read cycle, which takes place in Figure 10-11 b,
fetches the contents of memory address NV into HSTDATA.

The data loaded into this register will not be used, however. Instead, the
host processor writes to the HSTDATA register in Figure 10-11 ¢, over-
writing its previous contents. :

In response to the host’s write to HSTDATA, the GSP automatically ini-
tiates a write cycle to transfer the contents of HSTDATA to the local
memory address NV as shown in d.

Following the write, the GSP automatically increments the address in
HSTADRL and HSTADRH to point to the next word, as shown in e. At
this point the host interface registers are ready for the host processor to
write the next word to HSTDATA.

The process shown in ¢ through e repeats for every word written to GSP local
memory.

Host Interface Bus - Reads and Writes

(@

(b)

(c)

)

(e)

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
B N+16
A N
NSTDATA
0
Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
B N+18
A N
HSTDATA
0
Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
B N+16
A N
HSTDATA
0
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
—— - - L
[N
HSTDATA v
0
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
I+18 N+18
2 s ¢ 1IN
HSTDATA
0

Figure 10-11. Host Indirect Write to Local Memory (INCW=1)

10-15

mMmoQT

INToartnmaa D..- ~

Host Interface Bus - Reads and Writes

10.3.3.3 Combining Indirect Reads and Writes

If the HSTDATA register in Figure 10-11 is read by the host processor fol-
lowing step e, the value returned will be the value that the host previously
loaded into the register. The host must read HSTDATA a second time to ac-
cess data from GSP local memory. This principle is illustrated in Figure 10-12,
which shows how the host interface performs when a write is followed by two
reads. For this example, INCW=1 and INCR=0.

10-16

In Figure 10-12 a, HSTADRL and HSTADRH together point to location
N in the GSP's local memory. The host processor is shown writing to
HSTDATA.

In b, the data buffered in HSTDATA is written to location NV in memory.

The address registers are incremented in c.

In d, the host processor reads the HSTDATA register, which returns the
value that the host loaded into the register in step a.

Reading HSTDATA causes a memory read cycle to take place in e, which
loads the value from memory address N+16 into HSTDATA.

In f, a second read of HSTDATA by the host processor returns the value
from memory address NV +16.

Host Host l.ocal
Processor Interface Memory
Registers
HSTADRH HETADRL

B N+16
@] A N
\ HSTDATA
—»[€]
0
Host Host l.ocal
Processor Interface Memory
Registers
HSTADRH, HSTADRL
B N+16
() [o] N
HETDATA
0

Figure 10-12. Indirect Write Followed by Two Indirect Reads
(INCW=1, INCR=0)

Host Interface Bus - Reads and Writes

Host
Processor

Host
Interface
Reglsters

(c)

HETADRI HSTADRL

' -
5

HSTDATA
Cc

Host
Processor

Host
Interface
Registers

(d)

HETADRH HZTADRL
et

HETDATA

Host
Processor

Host
Interface
Reglsters

(e)

HETADRH HSTADRL
N+16

HETDATA

Host
Processor

Host
Interface
Registers

03]

\

HSTADRH HSTADRL

N+18 }

HSTDATA
—{_ B

Local
Memory
B N+18
[o] N
0
Local
Memory
B N+16
[¢] N
0
Lecal
Memory
B N+16
C N
0
Local
Memory
B N+18
C N
0

Figure 10-12. Indirect Write Followed by Two Indirect Reads (INCW=1,
INCR=0) (Concluded)

10-17

Host Interface Bus - Reads and Writes

710.3.3.4 Accessing Host Data and Address Registers

When the TMS34010 internal processor accesses the HSTDATA, HSTADRL,
or HSTADRH register, no subsequent cycle occurs to transfer data between
HSTDATA and local memory. Also, the address in HSTADRL and HSTADRH
is not incremented, regardless of the state of the INCR and INCW bits.

The host processor can indirectly access any register in the GSP’s internal /O
register file by first loading HSTADRL and HSTADRH with the address of the
register, and they writing to or reading from HSTDATA.

No hardware mechanism is provided to prevent simuitaneous accesses of the
HSTDATA, HSTADRL and HSTADRH registers by the host processor and by
the GSP internal processor. Software must be written to avoid simultaneous
accesses, which can result in invalid data being read from or written to these
registers.

10.3.3.5 Downloading New Code

10-18

The TMS34010 host interface provides a means of efficiently downioading
new code from a host processor to GSP local memory. The host initiates this
operation through the following process:

® Before downloading, the host interrupts and halts the GSP by writing
1s to the HLT and NMI bits in the HSTCTL register. The host processor
should then wait for a period of time equal to the TMS34010 interrupt
latency. (GSP hardware will reset the NMI bit if the nonmaskable in-
terrupt is initiated before the halt occurs.)

® The code is then downloaded using the auto-increment features of the
host interface registers.

° After downloading the code, the host should fiush the cache as de-
scribed in Section 5.4.5, Flushing the Cache (page 5-26).

[The nonmaskable interrupt vector is written through the host port to
location >FFFF FEEO so that the new code will begin execution at the
vectored address.

® The NMI bit in the HSTCTL register should be set to 1 to initiate a non-
maskable interrupt. At the same time, the NMIM bit in the HSTCTL re-
gister should be set to 1. If the host does not need the current context
to be stored on the stack, or if the nonmaskable interrupt was taken in
the first step, the NMIM bit should be set to 1. Otherwise, NMIM should
be set to 0.

® The host restarts the GSP by writing a 0 to the HLT bit in the HSTCTL
register.

Setting the HLT and NMI bits to 1 simultaneousiy reduces the worst-case
delay (compared to setting HLT only). NMI latency is the delay from the O-
to-1 transition of the NMI bit and the start of execution of the first instruction
of the NMI service routine. Halt latency is the delay from the 0-to-1 transition
of the HLT bit and the time at which the GSP actually halts (see Section
10.3.4). The maximum NMI latency may be much less than the halt latency

Host Interface Bus - Reads and Writes

if a PIXBLT, FILL, or LINE instruction is in progress at the time of the NMi or
halt request. An NMI request will interrupt instruction execution at the next
interruptible point, but a halt request is ignored until the executing instruction
completes or is interrupted. When NMI and HLT are set to 1 simultaneously,
the GSP will have halted before beginning execution of the first instruction in
the NMI service routine. Therefore, the delay from the setting the NMI and
HLT bits to the time that the GSP actually halts is simply the NMI latency.

10.3.4 Halt Latency

The TMS34010 may be halted by a host processor via the HLT bit in the
HSTCTL register. The delay from the receipt of a halt request to the time that
the TMS34010 actually halts is the sum of five potential sources of delay:

1) Halt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

B) Instruction completion

In the best case, items 2 through 5 cause no delay. The minimum delay to due
item 1 is one machine state.

[The halt request recognition delay is the time required for the setting
of the HLT bit to be internally synchronized after the low-to-high transi-
tion of the HRDY pin.

® The screen-refresh and DRAM-refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay a halt.

® The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends largely on the application. It would
only occur if the host had written to the data register just prior to writing
to the HLT bit. The delay due to a single host-indirect cycle is two ma-
chine states, assuming no wait states.

[The instruction completion time refers to the time required for an in-
struction that was already executing at the time the halt request was re-
ceived to complete. Note that the TMS34010 hait condition is entered
only on instruction boundaries. This means that a PIXBLT, FILL, or
LINE instruction that is already in progress will run to completion before
the GSP halts.

Table 10-2 shows the minimum and maximum times for each of the five op-
erations listed. The halt latency is calculated as the sum of the numbers in the
five rows. In the best case, the halt latency is only one machine state. The
worst-case latency is six machine states plus the delays due to host-indirect
cycles and instruction completion. Table 10-3 shows instruction completion
times for some of the longer instructions. However, a PIXBLT, FILL, or LINE
instruction may take longer than the times shown in Table 10-3, depending
on the size of the pixel array or line specified. Table 10-3 also shows the in-
struction completion time for a JRUC instruction that jumps to itself - the GSP
may be executing this instruction if the software is simply waiting for a halt.

10-19

Host Interface Bus - Reads and Writes

10-20

Table 10-2. Five Sources of Halt Delay

Laten In Stat
Operation cy (In States)
Min Max
Halt recognition 1 2
Instruction completion 0 See Table 10-3]
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1

Notes: 1) The latency due to host-indirect cycles depends
on both the hardware system and the application.
The delay due to a single host-indirect cycle is two
machine states, assuming no wait states.
2) DRAM-refresh and screen-refresh cycle times as-
sume no wait states.

Table 10-3. Sample Instruction Completion Times

Worst-Case Instruction

Instruction Completion Time (In States)
SP Aligned SP Not Aligned
DIVS AQ,A2 43 43
MMFM SPALL 72 144
MMTM SP,ALL 73 169
PIXBLT, FILL, and LINE See Note 1 See Note 1
Wait: JRUC wait 1 1

Notes:

1) The worst-case instruction compietion time is equal to the in-

struction execution time less one machine state.
2) The SP-aligned case assumes that the SP is aligned to a word

boundary in memory.

Host Interface Bus - Reads and Writes

10.3.5 Accommodating Host Byte-Addressing Conventions

Processor architectures differ in the manner in which they assign addresses to
bytes. The GSP host interface logic can be programmed to accommodate the
particular byte-addressing conventions used by a host processor.

This ability is important in ensuring software compatibility between 8- and
16-bit versions of the same processor, such as the 8088 and 8086 or the
68008 and 68000. The 8088 transfers a 16-bit word as a series of two 8-bit
bytes, low byte first, high byte second. The 68008 transfers the high byte first,
and low byte second.

The HSTCTL register's LBL bit is used to configure the GSP host interface to
accommodate different byte-accessing methods. The host interface is con-
figured to operate according to the following two principles:

1) First, when a host processor with an 8-bit data bus reads from or writes
to the HSTDATA register, it will access the high and low bytes of the
register in separate cycles. The GSP will not initiate its local memory
access until both bytes of HSTDATA have been accessed.

2) Second, when HSTADRH and HSTADRL are loaded by the host, the
GSP must not initiate its read of the local memory until the complete
pointer address has been loaded into HSTADRL and HSTADRH.

When LBL=0:

° A local memory read cycle takes place when the host processor reads the
high byte of HSTDATA, or writes to the high byte of HSTADRH.

° A local memory write cycle takes place when the host processor writes
to the high byte of HSTDATA.

When LBL=1:

[A local memory read cycle takes place when the host pracessor reads the
low byte of HSTDATA, or writes to the low byte of HSTADRL.

® A local memory write cycle takes place when the host processor writes
to the low byte of HSTDATA.

When the host processor is an 8088, for example, the GSP is typically con-
figured by setting the LBL bit of the HSTCTL register to 0. When configured
in this manner, the GSP expects the HSTADRL register to be loaded first, and
HSTADRH loaded second. Furthermore, the high byte of the HSTADRH re-
gister is expected to be loaded after the low byte. When LBL is set to 0, a local
read cycle is initiated when the upper byte of the HSTADRH register is written
to by the host pracessor. This permits the lower byte of HSTADRH to be
loaded first without causing side effects.

10-21

Host interface Bus - Bandwidth

10.4 Bandwidth

10-22

One measure of the performance of the host interface is its data rate, or
bandwidth. The bandwidth is the number of bits per second that can be
transferred through the host interface during a block transfer of data to or from
GSP memory. Assume that the host interface address register is programmed
to autoincrement. The maximum data rate through the host interface can be
expected to approach the bandwidth of the GSP’s memory. For example, as-
sume a 50-MHz GSP and a memory requiring no wait states. The memory
cycle time is about 320 nanoseconds (bandwidth = 50 megabits/second).
The host’s access cycle time at the host interface is somewhat longer than this
due to certain additional delays inherent in the operation of the GSP’s internal
host interface logic. Also, the throughput of the host interface may depend
on whether or not the GSP is halted.

The bandwidth is calculated as the width of the host data path (16 bits) times
the frequency of access cycles through the host interface. Given a continuous
series of word accesses, with successive accesses occurring at regular inter-
vals, what is the minimum interval between host accesses that the interface
can sustain without having to send not-ready signals to the host? (The GSP
drives its HRDY output low temporarily to inform the host when the GSP is
not yet ready to complete the host’s current access.)

First, when the GSP is halted, the host interface should support continuous
accesses occurring at regular intervals no less than about 400 nanoseconds
apart. As long as the host attempts to maintain a throughput no greater than
this limit, delays due to not-ready signals will occur rarely, if at all. The
bandwidth for this case is calculated in Table 10-4 a as approximately 40
megabits per second. This value can be expected to vary slightly with sys-
tem-dependent conditions such as the frequency of DRAM-refresh and
screen-refresh cycles.

When the GSP is running, the host interface should support continuous ac-
cesses occurring at regular intervals no less than approximately 550 nanose-
conds. The bandwidth for this case is calculated in Table 10-4 as
approximately 29 megabits per second. This value varies slightly with condi-
tions such as the frequency of DRAM-refresh and screen-refresh cycles, and
also with the characteristics of the program being executed by the GSP.

Tablie 10-4. Host interface Estimated Bandwidth

Assumptions Approximate Throughput
GSP halted 16 bits/transfer .
50-MHz GSP —————— = 40 megabits/s
No wait states 400 ns/transfer
GSP running , 16 bits/transfer)
50-MHz GSP —————— = 29 megabits/s

550 ns/transfer

No wait states

Host Interface Bus - Worst-Case Delay

10.5 Worst-Case Delay

In some applications, designers must determine not only the effective
throughput of the host interface, but also the delays that can occur under
worst-case conditions. These conditions occur too rarely to affect overall
throughput, but the important consideration here is not how often they occur,
but that they can occur at all. First, with the GSP halted, the worst delay is
given by the formula (6 + 2N)T, where N is the number of wait states per GSP
memory cycle, and T is the local clock period (nominally 160 nanoseconds for
a 50-MHz GSP). Second, with the GSP running, the worst delay is given by
the formula (9 + 4N)T. The derivation of these formulas, summarized in Fig-
ure 10-13, may be helpful in illustrating the mechanisms of the host interface.

27 Synchronization delay
2+MT Screen-refresh cycle
+(2+N)T DRAM-refresh cycle
(6 +2N)T Worst-case delay (total)
(a) Worst-Case Delay with GSP Halted
27 Synchronization delay
(1 +MT GSP CPU read
2+MT GSP CPU write
2+MNMT Screen-refresh cycle
+ (2 +N)T DRAM-refresh cycle
(9 +4N)T Worst-case delay (total)

(b) Worst-Case Delay with GSP Running
N = Number of wait states per memory cycle
T Local clock period (nominal 160 nanoseconds for 50- MHz device)

Note: These are worst-case delays and have negligible effect on performance. The case

shown in a, for example, could be expected to occur less than once per thousand
(0.1 percent of) host accesses in a typical system.

Figure 10-13. Calculation of Worst-Case Host Interface Delay

Consider case a, in which the GSP is halted, first; the worst-case delay is cal-
culated as the sum of the three delays. The first of these delays is the time
required to internally synchronize the host interface cycle to the GSP local
clock. The host’s signals are generally not synchronous to the GSP local
clocks. A signal from the host must therefore be passed through a synchron-
izer latch (part of the GSP on-chip host interface logic) before being used by
the GSP. The delay through the synchronizer is from one to two local clock
periods (17 to 27), depending on the phase of the host clock relative to the
GSP’s local clock. The second and third delays in Figure 10-13 represent the
time needed to perform a screen-refresh cycle followed by a DRAM-refresh
cycle. The arbitration logic internal to the GSP assigns these two types of
cycles higher priorities than host-requested indirect accesses. (Screen refresh
has a higher priority than DRAM refresh.) Thus, a host access requested at
the same time as one of these cycles must wait. The worst-case assumption
is that a screen-refresh cycle is generated internal to the GSP on the same
clock edge at which the request for the host access arrives. Furthermore, a
DRAM-refresh cycle is requested during this same clock edge or during the

10-23

Host Interface Bus - Worst-Case Delay

10-24

next 1 + N clock edges. An equivalent delay occurs in the case in which a
DRAM refresh and host access are requested on the same clock edge (the
DRAM refresh wins), and a screen refresh is requested on a later clock edge
before the host access can begin. This case is not shown in Figure 10-13, but
the delay in this instance is also (6 + 2N)T. In a typical system, DRAM-re-
fresh cycles consume about 2 percent of the available memory bandwidth, and
screen-refresh cycles take about 1.5 percent (using VRAMSs). The probability
of either sequence of events is therefore very small (less than one in a thou-
sand, assuming N = 0; that is, no wait states), and the performance degrada-
tion due to these unlikely events is negligible.

Now consider the case in which the GSP is running. Host accesses are of
higher priority than GSP instruction fetches and data accesses, but still of
lower priority than DRAM-refresh or screen-refresh cycles. The worst-case
delay is calculated as the sum of the five delays indicated in Figure 10-13 4.
This assumes that the GSP begins a read-modify-write operation on a memory
word (this is performed as a read cycle followed by a separate write cycle) just
one clock before the GSP receives the host access request. The GSP CPU
read cycle is actually (2 + N)T in duration, but since it begins one clock before
the host access is requested, only (1 + N)T is left in the cycle. The GSP’s
local memory controller treats a read-modify-write operation as indivisible;
once the read.has started, no other request can be granted until the write
completes. The write cycle is (2 + N)T in duration. Again, assume that
sometime before the write cycle does complete, screen-refresh and
DRAM-refresh cycles are also requested. The probability of this case is so-
mewhat more difficult to calculate than that of Figure 10-13 a, since the fre-
quency of read-modify-write operations is very program dependent. This
sequence of events rarely occurs, however.

11. Local Memory Interface

The TMS34010 local memory interface consists of a triple-multiplexed
address/data bus and associated control signals. Several types of memory
cycles, including read, write, screen-refresh, and DRAM-refresh cycles are
supported. During a memory cycle, the row address, column address, and data
are transmitted over the same physical bus lines. The row and column ad-
dresses necessary to address DRAMs and VRAMs are available directly at the
address/ data pins, eliminating the need for external muitiplexing hardware.

The TMS34010 interfaces directly to DRAMs and VRAMs, and can be pro-
grammed to perform DRAM-refresh cycles at regular intervais.
CAS-before-RAS or RAS-only refresh cycles may be selected. The GSP can
aiso be programmed to perform screen refresh by scheduling VRAM shift-re-
gister transfer cycles to occur at regular intervals.

The local memory interface provides a hold/hold acknowledge capability that
allows external devices to request control of the bus. After acknowledging a
hold request, the GSP releases the bus by driving its address/data bus and
control outputs into high impedance.

Section Page
11.1 Local Memory Interface Pinscccccceeviiiii et 11-2
11.2 Local Memory Interface Registers SO UUSR RO 11-3
11.3 Memory Bus Request Priorities e et s 11-4
11.4 Local Memory Interface Timingccccceoeiiiieiieee e 11-5

11.5 Addressing Mechanismscc..oooivmvivieecriceeie et 11-23

11-1

Local Memory Interface Bus - Local Memory Interface Pins

11.1 Local Memory Interface Pins

TMS34010 pin functions are described in detail in Section 2. This section
briefly summarizes the local memory interface pins.

LADO-LAD15

DEN

DDOUT

These pins form the local multiplexed address/data bus.

The local data enable signal is driven active low to allow data to
be written to or read from LADO-LAD15. (Connects to the G pins
of a pair of optional '245-type octal bus transceivers.)

The local data direction out signal is driven high to enable data to
be output on LADQO-LAD15. It is driven low to enable data to be
input on LADO-LAD15. (Connects to the DIR pins of a pair of
optional '245-type octal bus transceivers.)

The high-to-low transition of the local address latched signal is
used by an external '373-type latch to capture the column address
from LADO-LAD15.

The local row address strobe signal drives the RAS inputs of
DRAMs and VRAMs.

The local column address strobe signal drives the CAS inputs of
DRAMs and VRAM:s.

The local write strobe signal drives the W inputs of DRAMSs and
VRAMs.

The local shift register transfer/output enable signal connects to
the TR/QE (or DT/OE) pins of a VRAM.

The local ready signal is driven low by external circuitry to inhibit
the TMS34010 from completing a local memory cycle.

TMS34010 processor functions are synchronous to this input
clock signal. (Video timing is controlled by VCLK.)

These output clocks are available to the board designer for syn-
chronous control of externai circuitry.

Interrupt requests are transmitted to the GSP on these pins.

Local Memory Interface Bus - Local Memory Interface Registers

11.2 Local Memory Interface Registers

The local memory interface registers are summarized below. These registers
are a subset of the 1/0 registers which are detailed in Section 6.

The memory CONTROL register contains several programmable parameters
that provide control of the local memory interface:

RM. DRAM refresh mode, bit 2. Selects RAS-only or CAS-before-RAS
refresh cycles.

RR. DRAM refresh rate, bits 3 and 4. Controls the frequency of DRAM
refresh cycles.

7. Transparency enable, bit 5. Enables or disables the pixel attribute of
transparency.

W. Window violation detection mode, bits 6 and 7. Selects the course
of action the GSP will follow when it detects a window violation.

PBH. PixBlt horizontal direction, bit 8. Determines the horizontal direc-
tion (increasing X or decreasing X) for pixel operations.

PBV. PixBlt vertical direction, hit 8. Determines the vertical direction
(increasing Y or decreasing Y) for pixel operations.

PPOP. Pixel processing operation select, bits 10-14. Selects among
several Boolean and arithmetic pixel processing options.

CD. Instruction cache disable, bit 15. Enables or disables the instruction
cache.

The CONVDP register contains the destination pitch conversion factor that
is used during XY -to-linear conversion of a destination pixel address.

The CONVSP register contains the soutrce pitch conversion factor that is used
during XY -to-linear conversion of a source pixel address.

The PMASK (plane mask) register selectively disables or enables various
planes in a multiple-bit-per-pixel bit map display.

The PSIZE (pixel size) register specifies the number of bits per pixel.

The REFCNT (refresh count) register generates the addresses output during
DRAM-refresh cycles and counts the intervals between successive
DRAM -refresh cycles.

Local Memory Interface Bus - Memory Bus Request Priorities

11.3 Memory Bus Request Priorities

The GSP’s local memory interface controlier assigns priorities to requests from
various sources, both on and off chip, for local memory cycles. Table 11-1
lists these priorities (priority 1 is highest).

Table 11-1. Priorities for Memory Cycle Requests

Priority Memory Cycle Requested
1 Hold request from external bus master device
2 Screen-refresh cycle
3 DRAM-refresh cycle
4 Host-initiated indirect read or write cycle
5 GSP CPU memory cycle

A GSP CPU memory cycle is a read or write performed by the GSP’s on-chip
32-bit processor. Insertion of a field (or a portion of a field spanning multipie
words) into a word requires two CPU memory cycles when the field does not
begin and end on word boundaries. The two cycles are a read followed by a
write. This sequence is called a read-modify-write operation. The read and
write are performed as separate memory cycles, but are treated as indivisible;
that is, the memory controller will not permit another memory request to be
serviced between the read and its accompanying write. The only exception to
this statement is the hold request.

While a read-modify-write operation on an individual memory word is indi-
visible, the accesses necessary to extract or insert a field spanning multiple
memory words are not. For example, if a field spans portions of two memory
words, a higher priority access such as a host-indirect cycle can occur be-
tween the two read-modify-write operations required to insert the field.

The hold request has the highest priority. An external device requests control
of the bus by signalling a hold request to the GSP. The external device may
perform multiple memory cycles following acknowledgment from the GSP.
However, the device should not control the bus for so long that necessary
screen-refresh and DRAM-refresh cycles are prevented from occurring. Indi-
rect accesses initiated by a host processor will be blocked as long as the ex-
ternal device continues to control the bus. If the host processor attempts to
initiate another indirect access during this time, the host will be forced to wait
at the host interface (the GSP sends it a not-ready signal) until the external
device releases the local bus.

A memory cycle already in progress will always be permitted to complete, even
if a higher priority request is received while the cycle is still in progress.

Local Memory Interface Bus - Local Memory Interface Timing

11.4 Local Memory Interface Timing

The TMS34010 memory interface contains a triple-multiplexed address/data
bus on which row addresses, column addresses and data are transmitted.
Figure 11-1 illustrates multiplexing of addresses and data.

Gep pivens | Rdiuss Deta
RF 1AQ 15
26 TR 14
25 29 13

Bit 31 BItO BIt15
(MsB) (LsB) (MsB) (LsB)
RF = DRAM-Refresh bus status bit

IAQ = Instruction acquisition bus status bit
= VRAM 8hift-Register-Transfer bus status bit

Figure 11-1. Triple Multiplexing of Addresses and Data

The TMS34010 LAD pins directly provide the multiplexed row and column
addresses needed to drive dynamic RAMs and video RAMs. Any eight adja-
cent pins in the range LADO-LAD10 provide 16 contiguous logical address
bits; the eight MSBs are output as part of the row address, and the eight LSBs
are output as part of the column address. For example, Figure 11-1 shows
that logical address bits 5-20 are output at LAD1-LADS.

The control signals output to memory support direct interfacing to DRAMSs
and VRAMs. At the beginning of a memory cycle, the address is output in
multiplexed fashion as a row address foliowed by a column address. The re-
mainder of the cycle is used to transfer data between the TMS34010 and
memory. Figure 11-2 (page 11-6) illustrates general timing (the local
address/data pins are identified as the LAD Bus)

Local Memory Interface Bus - Local Memory Interface Timing

Row Column
LAD Bus ddre: Address Data x

me -\ [
cAe [

Figure 11-2. Row and Column Address Phases of Memory Cycle

Figure 11-3 through Figure 11-8 show functional timing of the local memory
interface. Several timing features are common to the memory read and write
cycles in Figure 11-3 and Figure 11-4, and to the shift-register-transfer cycles
in Figure 11-6 and Figure 11-7. A row address is output on LADO-LAD15 at
the start of the cycle, and is valid before and after RAS falls. A column address
is then output on LADO-LAD15. The column address is valid briefly before
and after the falling edge of TAL, but is not valid at the falling edge of CAS.
The column address is clocked into an external transparent latch (such as a
74AS373 octal latch) on the falling edge of LAL to provide the hold time on
the column address required for DRAMs and VRAMs. A transparent latch is
required so that the row address is available at the outputs of the latch during
the start of the cycle.

Local Memory Interface Bus - Local Memory Interface Timing

11.4.1 Local Memory Write Cycle Timing

Figure 11-3 illustrates a memory write cycle. Data are output on
LADO-LAD15 following the latching of the column address. DEN goes active
low at the same time the data become valid, and remains low as long as the
data remain valid. In a large system that requires buffering of the data bus to
memory, DEN is typically used as the enable signal to an external bidirectional
buffer (such as a 74AS245 octal buffer). DDOUT is used as the direction
control signal to the buffer. The write strobe, W, goes active low after the data
have become valid and CAS is low. This is interpreted as a "late write” cycle
by the DRAMs and VRAMs, which are prevented by the inactive-high TR/QE
signal from enabling their read drivers. Because the data are valid on both
sides of the W write strobe, external devices can latch the data on either the
high-to-low or low-to-high edge of W,

Q1 |Q21a3 Q4| Q1 [02] a3 Q4] Q1]
| | |
LeLK1 L | '

1
:
LCLK2| I i i I I | i P !
1
1
LADO-LAD15 X Row Data X

3

DDoUT

L

|
e |
| !
my] AN
| 1 | [II: |
CAB | | i t
L R N R I
l : | [. | |
w1 T N
R T R A B I
___l 1 l:l L L
TR/QEII](ngl;h) :;I |I i
i ;
—} et} |
BN L/ 1 1\ LV
i Py |
! = 1
! b i
i [T 1

LRDY =

Figure 11-3. Local Bus Write Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.2 Local Memory Read Cycle Timing

Figure 11-4 illustrates a memory read cycle. LADO-LAD15 are forced to high
impedance following the latching of the column address. DEN and TR/QE both
go active low after CAS becomes low in order to enable read data from the
memory to the LAD pins. TR/QE enables the output drivers of the DRAMs and
VRAMs. DEN enables the external bidirectional buffers needed with memories
so large that external buffering (using a device such as a 74AS8245 octal buf-
fer) of the data bus is required. The DDOUT signal serves as the direction
control for the external bidirectional buffers, and is low well in advance of the
high-to-low transition of DEN, and remains low well after the low-to-high
transition of DEN. The data that is read from memory must be valid during the
middle of the Q4 clock phase, as indicated in Figure 11-4. The low-to-high
transitions of TR/QE and DEN occur well in advance of the time at which the
LAD drivers turn on to output the row address of the next cycle. This prevents
bus conflicts.

=Q1I02|03I|04:01|02|03:04|01|

LCLK1

LCLK2

LADO-LAD15

RAS

DDOUT

LRDY

Figure 11-4. Local! Bus Read Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.3 Local Shift-Register-to-Memory Cycle Timing

A shift-register-to-memory cycle is a special type of cycle used in systems
with VRAMs. The cycle transfers the contents of the VRAM's internal shift
register to a selected row of its internal memory array. The cycle typically af-
fects all VRAMSs in the system.

During the shift-register-to-memory cycle shown in Figure 11-5, both TR/QE
and W are low during the fall of RAS. VRAMs will recognize this timing as the
beginning of a shift-register-to-memory cycle. Conventional DRAMs may
need to be de-selected (by withholding the row or column address strobe, for
example) to prevent them from interpreting the cycle as a conventional read
cycle. Aiternately, the output enable signal required by a DRAM such as the
TMS4464 can be synthesized by connecting DEN and DDQUT to the inputs
of a two-input OR gate. (In fact, any pair of the « .1 als DEN, DDOUT, and
TR/QE will work.) The low-to-high transition of TR, 1:! oceurs after the fall of
CAS but prior to the rising edge of RAS. This timing provides compatibility
with a variety of VRAMSs.

The GSP performs a shift-register-to-memory cycle when writing to a pixel
while the DPYCTL register’'s SRT bit is set to 1. For example, the instruction
PIXT AO0,*Al writes the pixel in AO to the address pointed to by A1. The
PSIZE register should contain the value 16 so that the write cycle is not pre-
ceded by a read cycle. When SRT is set to 1, this write is converted to the
shift-register-to-memory cycle shown in Figure 11-5. The row address is se-
lected from bits 12-26 of A1, which are output on LADO-LAD14 during the
cycle.

LCLK1 i I H | 1
t
1
LCKL2 | i ! ! | I ! | | |
| i
Undeflned x
i
I 13
v |
fma=
L] |
b |
I

—

mj

T
!
|
|
!
|
!

——~<g
p—)__._._.__.

:

L

DDOUT

TN T8

|
1
|
"
|
'|
|
i
]

i
i
i
1
]
1
]
i
i
i
Il
4
'
i
i
i
T
1
'
]

|
|
I
i
!
1
l
|

LRDY ¥

Local Memory Interface Bus - Local Memory Interface Timing

11.4.4 Local Memory-to-Shift-Register Cycle Timing

11-10

A memory-to-shift-register cycle is a special type of cycle used in systems
with VRAMs. The cycle transfers the contents of a selected row of a video
RAM’s memory array to its internal shift register.

VRAM memory-to-shift-register cycles are primarily used to refresh the screen
of a CRT monitor. The cycles referred to elsewhere in this document as
screen-refresh cycles are in fact memory-to-shift-register cycles. The GSP
also performs a memory-to-shift-register cycle when reading a pixel (for ex-
ample, by executing a PIXT *AQ,A1 instruction) while the SRT bit of the
DPYCTL register is set to 1.

During the memory-to-shift-register cycle shown in Figure 11-6, TR/QE is low
during the fall of RAS, but W remains high. VRAMs will recognize this timing
as the beginning of a memory-to-shift-register cycle, and their data outputs
will remain in high impedance. Conventional DRAMs may need to be de-
selected to prevent them from interpreting the cycle as a memory read cycle.
Alternately, the output enable signal required by a DRAM such as the
TMS4464 can be synthesized by connecting DEN and DDOUT to the inputs
of a two-input OR gate. The low-to-high transition of TR/QE occurs after the
fall of CAS but prior to the rising edge of RAS. This timing provides compat-
ibility with a variety of VRAMSs.

l ot 02| a3 | a4 o1 02031 Q4| Q1
! | ! |

LCLK1 | [|

| t
1]

Leike || Pl P
| : ; | | :

——4——1-kc—-}

I
LADO-LAD15 X Row Undefined)(
I i ! o I I I]
RAS | | | !] P |
I IR
— 1
Wy i N N S
L1 RENREEEEEP
CAS | f g i ! [
| | |
_I L I'
w | I
||
‘\ P
TR/QE [
I
—
I
|
b
[
[

Figure 11-6. Local Bus Memory to Shift Register Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing

During the RAS-only DRAM refresh cycle shown in Figure 11-7, RAS and LAL
are the only active control signals. All other signals, including CAS, W, and
TR/QE, remain inactive high through the cycle. The row address, output on the
LAD pins during the high-to-low transition of RAS, is generated by the
REFCNT (DRAM-refresh counter) register.

| Q|02 Q@ |Q4} a1 Q2] a3 | Q4| at |

o
2

LCLK1 m b | N
N LT
Lok || | Lo N\ P
L A

LADO-LAD15 X Row Undeflned X _
1 T T T 1

== T | 4{/‘5—1—!_
RAS | 1 1 Ll P
Iy L]
tay/ I i I T A
R T N
cas | | (High) l P !
Lo T
_I ; I 1 1 Lt 1 L
Wi | (Hgh R
I RN
e |] t t + + 4
TRGE| | (Hgn R
L T
f t t E—— +
| | byl |
R
|] |j‘ I i
I | [|

l H |

Figure 11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing

11-11

Local Memory Interface Bus - Local Memory Interface Timing

11.4.7 Local Memory Internal Cycles

When the GSP is not performing one of the memory operations shown in
Figure 11-3 through Figure 11-8, its memory interface control signals remain
inactive, as shown in Figure 11-9. This is called an internal cycle. Figure 11-9
shows two sequential internal cycles. During internal cycles, the LRDY input

is ignored.
ja1lozlosfaelarjazlosloetanl
Lewt /| ! T : |
P P : |
ewe | N T N
L | | g1] | | | |
LADO-LAD15 X Undefined X
| T 17 1 T T .1 1
] —
RAS | | gt |y 1
Vo ey e
T 1 T T I T | B T
Wy b i
| \ | | 1y { | | |
cas I g T 71 1 T T
| | ! l:] | | I |
N W N IS T N SN S AUV NN N N
w | I(ngh)l:l | | |i| |
A S N U N S T N A
TRAGE | | Hgw | o ¢ L bl
! o | ;
| | i | | [|
L I Fl bed ! L I:I L
F—<I T T T T T T
BN/ 0 v bbb
i | | I | i [|
DDOUTI | I:] | [1
—/ 1 i]
! ' 1

LRDY

Figure 11-9. Local Bus Internal Cycles Back to Back

11-13

Local Memory Interface Bus - Local Memory Interface Timing

11.4.8 1/O Register Access Cycles

11-14

A special memory read or write cycle is performed when the GSP addresses
an on-chip 1/0 register. During this cycle, the external RAS signal falls, but the
external CAS remains inactive high for the duration of the cycle. 1/0 register
locations begin at address >CO000 0000, and all 32 bits of the 1/O register
address are decoded internally. The two MSBs of the 32-bit logical address
are not output at the LADO-LAD15 pins.

Figure 11-10 shows an |/O register read cycle and Figure 11-11 shows an
I/O register write cycle. These cycles occur when one of the TMS34010's
on-chip 1/0 registers is accessed by the on-chip processor or by the host
processor via a host-indirect access. An address in the range >C000 0000 to
>CO000 O1FF is interpreted as an |/0O register access by on-chip decode logic,
and the read or write cycle is modified as shown in Figure 11-10 or Figure
11-11. The two MSBs of the internal address (bits 30 and 31) are available
internally and are included in the internal decoding operation.

An 1/0 register read or write cycle is always two clock periods in duration, and
LRDY is ignored. The . . control outtmt . that are active low during the cycle
are RAS and LAL. The ' -, W, TR/QE, .-v". and DDOUT outputs all remain in-
active high. The row and column addresses output at the LADO-LAD15 pins
are all Os. All three bus status bits are inactive (RF is high, IAQ is low, and TR
is high). During the read cycle shown in Figure 11-10, the LADO-LAD15 pins
are driven to high impedance during the data phase of the cycle. During the
write cycle shown in Figure 11-11, the LADO-LAD15 pins contain the valid
data being written to the I/0 register.

LCLK1

LCLK2 L—i/_::_::\-i;—le——ll/—’_-\i—i—ll/_
:‘ —- :

LADO-LAD1S

za

|
|
="
[!
| Lo
| 11 : |
———
_ b 1
LN-V‘l 1 [N N I
[2 Saaae T
[AU N N T Y N I A
cAs T | (gw T 1T T T DT
T
L 'l
w | High) | I I T
o
TR/GE | Toigh | | ol
A
S A R N
| R P
;I—l 1'} T T |'||
DDOUT / : i
— L e
LRDY

Figure 11-10. 1/O Register Read Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

' . v ' ' '

| @1 (0270304} Q1) 02]08 |04, Q1
1
Lewkt I/ | '\ LT |\ | I/ |
|] | | |

!
!
Data
!
)

|

]

—_—]

1
|
]
!
I
|
|
i
|
I
|
]
|
!
T
i

—4 x4
—_—

i

Figure 11-11. 1/O Register Write Cycle Timing

11.4.9 Read-Modify-Write Operations

The GSP’s read-modify-write operation, which consists of separate read and
write cycles, is not the same as the read-modify-write cycle specified for some
DRAMs. As explained in Section 5, when inserting a field into memory that
is not aligned to 16-bit word boundaries, the GSP memory interface logic may
be required to perform read-modify-write (RMW) operations on one or more
words in memory. A RMW operation consists of the following sequence of
steps:

1) A word is read from memory.

2) The portion of that word corresponding to the field being inserted is
loaded with the new value. ‘

3) The modified word is written back to memory.

The read cycle is as shown in Figure 11-4 (page 11-8), and the write cycle is
as shown in Figure 11-3 (page 11-7).

11-15

Local Memory Interface Bus - Local Miemory Interface Timing

Figure 11-13 is an example of a write cycle extended by one wait state. The
first time LRDY signal is sampled, a low level is detected by the GSP, causing
the cycle to be delayed by a wait state. When LRDY is sampled again one
local clock period later, a high level is detected, permitting the cycle to com-

plete. The time during which RAS, CTAS, TAL, W and DEN remain low is ex-
tended by one state.

j¢— Walt State —»{
[Q1]a2|a3| 4| Q1|02 |Q3|Q4|Q1 (02|03 |Q4|01]|a2|

wwr N\
e [T\ T\
LADO-LAD15 x Row @ Data

ms \

TR/QE (High)

DEN

DDOUT

LRDY

Figure 11-13. Local Bus Write Cycle with One Wait State

Figure 11-14 (page 11-18) is an example of a shift-register-to-memory cycle
extended by one wait state. The first time the LRDY signal is sampled, a low
level is detected by the GSP, causing the cycle to be delayed by a wait state.
When LRDY is sampled again one local clock period later, a high level is de-
tected, permitting the cycle to complete. The time during which RAS, CAS, and
TAL remain low is extended by one state. The W and TR/QE low times are not
extended, however. Similarly, during a memory-to-shift-register cycle, TR/QE
is not extended.

11-17

Local Memory Interface Bus - Local Memory Interface Timing

j¢—Walt State —|
|a1|Q2| 03] 04 |Q1|02]|Q3 | Q4| Q1 [Q2|Q3| Q4| Q1|02 |

LCLK1 _/_-___J \ [\ /
e [\ [\ [
LADO-LAD1S Y row ELX Undefined X:
—
—
—

5

LLEEJJJ

P TR RRRRAXRRKREN R

Ak Dont Care #d Don't Care

Figure 11-14. Local Bus Shift-Register-to-Memory Cycle with One
Wait State

11.4.11 Hold Interface Timing

11-18

The TMS34010 contains a hold interface through which external bus-master
devices can request control of the local memory bus. When the GSP grants a
hold request, it drives its local memory address/data bus and control outputs
to high impedance, and the requesting device becomes the new bus master.
When the requesting device no longer requires the bus, it removes its hold
request, and the GSP again assumes control of the local bus.

Figure 11-15 shows the GSP releasing control of the local bus in response to
a hold request. The GSP samples the state of the HOLD input at each LCLK2
rising edge (at the end of the Q1 phase of the clock). The state of the hold
acknowledge signal (active or inactive) is output on the HLDA/EMUA pin dur-
ing the Q3 and Q4 clock phases (LCLK1 low). During the first (or leftmost)
LCLK2 rising edge, the hold request is inactive. Consequently, the hold ac-
knowledge signal remains inactive during the first LCLK1 low phase. By the
second LCLK2 rising edge, the hold request has been activated, and the GSP
responds by acknowledging the hold request during the next LCLK1 low
phase. The address/data lines and majority of the control lines are driven to
high impedance at the start of the next Q2 phase (LCLK2 rising edge). The
DDOUT and DEN pins are driven to high impedance a quarter clock later.

Local Memory Interface Bus - Local Memory Interface Timing

11-20

For instance, if the LRDY signal in Figure 11-15 were low instead of high at
the second rising edge of LCLK2, the GSP would be forced to wait, and would
therefore not acknowledge the hold request until later, when the not-ready
condition was removed. Also, if the hold request in Figure 11-15 was asserted
initially during the first LCLK2 rising edge rather than the second, the GSP
would delay its hold acknowledgment until the second LCLK1 low clock
phase, knowing that the cycle in progress would not be completed until the
third Q2 phase in the diagram.

A hold request has a higher priority than any internally generated memory cy-
cle requests, including:

L] Screen refresh
® DRAM refresh
[] Indirect access by the host processor
[] GSP instruction fetch or data access

A hold request will be delayed only to allow a memory cycle already in pro-
gress to complete.

External devices can activate or deactivate the HOLD input at any time, as long
HOLD is at a valid logic level during each rising edge of LCLK2, and meets the
required setup and hold times with respect to this edge. After the GSP grants
the bus to an external device (via an active-low level on the HLDA/EMUA out-
put during the Q3 clock phase}, it will continue to acknowledge the hold re-
quest during the Q3 phases of subsequent clock cycles. The external device
will retain control of the bus until it deactivates its hold request.

External devices should avoid placing the GSP in hold for long periods. While
the GSP is in hold, it can perform neither screen-refresh nor DRAM-refresh
cycles. Furthermore, a host processor attempting to access the GSP’s local
memory through the host interface registers while the GSP is in hold may re-
ceive a not-ready signal. When this occurs, the host will be forced to wait to
complete its access until the GSP leaves the hold state.

If a request for a DRAM-refresh or screen-refresh cycle is generated within the
GSP while an external device controls the bus, the GSP will retain the request
and perform the DRAM-refresh or screen-refresh cycle after the external de-
vice has returned control of the bus to the GSP. However, if a requested
DRAM-refresh cycle is prevented from occurring for so long that a second
DRAM-refresh cycle is requested before the first DRAM-refresh cycle can oc-
cur, the first DRAM-refresh request will be lost. Similarly, if a screen-refresh
request is prevented from occurring for so long that a second screen-refresh
cycle is requested before the first screen-refresh cycle can occur, the first
screen-refresh request will be lost.

The HLDA/EMUA output is multiplexed between the hold acknowledge
(HLDA) and emulate acknowledge (EMUA) signals. The HLDA signal is output
during the LCLK1 low phase, and the EMUA signal is output during the LCLK1
high phase.

Local Memory Interface Bus - Local Memory Interface Timing

[@11'Q2:Q3:Q4|Q1:02:03 1 Q41 Q1:Q2 +Q3 1 Q4|

wi /TN /NS N\
085 ~——ne————— — — G @
g ———HZ——— e ———/ \
AL ———HI—Z———————/ﬁ_
A8 — — —HI-Z ———————/__

W —— e HleZ e e e e/

TRIGE — — HrZ— — e e e e
DEN - == —HI-Z — e e e e e/

DDOUT we e e HI-Z + s o s e e e e e /

HOLD)

HLDA/EMUA Ack je— AN(?k —

Figure 11-16. TMS34010 Resumes Control of Local Bus

11-21

Local Memory Interface Bus - Local Memory Interface Timing

11.4.12 Local Bus Timing Following Reset

11-22

Figure 11-17 shows the timing of the local bus signals following reset. At the
end of reset, the TMS34010 automatically performs a series of eight RAS-only
refresh cycles, as required to initialize certain DRAMs (such as the TMS4256
and TMS4464) and VRAMs (such as the TMS4461) following power-up.
The asynchronous low-to-high transition of RESET is sampied at the second
high-to-low LCLK1 transition in Figure 11-17. In less than two local clock
periods following this LCLK1 transition, the first of the eight RAS-only cycles
begins, as shown at the right side of Figure 11-17.

Each of the eight RAS cycles following reset is two clock periods in duration,
but can be extended by a not-ready signal (LRDY low). The timing for each
cycle is identical to that of a RAS-only DRAM-refresh cycle, including the bus
status codes output during the row and column address times. The row ad-
dress for each of the eight RAS-only cycles is all Os.

RESET HiGH LEVEL FIRST OF § RAB-ONLY
I8 LATZIED TERNALLY — ¢ Ty ¥/~ CiCLES BEG

a1 |oz|oa|o4|o1|oz|os|04|o1|ozloslo4|o1|oz a3 a4l

an SN NS AN
we T\ / T\
-_ [7 ;

LADO-LAD®S + = HinZm
N
L\

CA8, W, TR/GE,
N)

Figure 11-17. Local Bus Timing Following Reset

Local Memory Interface Bus - Addressing Mechanisms

11.5 Addressing Mechanisms

The GSP addresses memory by means of a 32-bit logical address. As ex-
plained in Section 3, each 32-bit logical address points to a bit in memory.

Logical address bits are numbered from 0 to 31, where bit 0 is the LSB and
bit 31 is the MSB. Figure 11-18 illustrates the manner in which address bits

"~ 4-29 are output to physical memory. Each column in the figure indicates an
address/data bus pin, LADO-LAD15, and below it is the corresponding bit of
the logical address output at the LAD pin during the fall of RAS and during the
fall of CAS. Bus status bits RF, TR and IAQ are output on LAD14-LAD15.

LAD Pin Numbers

15114113112111110(9| 8| 7{6 5|4 |3]2|1
GSP At Fall RF|26|25]|24|23(22121{20119[18|17|16|15|14]|13}12
Logical of RAS
Address At Fall |Aq7‘ﬁ29 28127]14113}112111110/ 9| 8|76 {5} 4
Bitst of CAS

T Bus status signals:
RF — DRAM refresh cycle
IAQ - Instruction acquisition cycle
TR - Shift-register-transfer cycle

Figure 11-18. External Address Format

Key features of the local bus addressing mechanism include the following:

® The two MSBs of the 32-bit logical address (bits 30 and 31) are not
output.

® The four LSBs of the 32-bit logical address (bits O to 3) are not output,
but are used internally to designate a bit boundary within a 16-bit word
accessed in the external memory.

° The address bits output on LADO-LAD10 during the falling edges of RAS
and CAS are aligned so that 16 consecutive bits from the logical address
are available at any eight consecutive pins in the range LADO to LAD10.
The address bits are output in this way in order that the 8-bit row ad-
dress and 8-bit column address presented to the dynamic RAMs can al-
ways be taken from the same eight address/data pins. This eliminates
the need for external address multiplexers.

® Logical address bits 12-14 are output twice during a memory cycle -
during both the RAS and CAS faliing edges - but at different pins. This
allows a variety of memory organizations and decoding schemes to be
used, as will be explained shortly.

Pins LADO-LAD10 form an 11-bit zone in which logical address bits 12-14
are overlapped (that is, they are issued in both cycles, but on different pins).
The row and column address bus is connected to any eight consecutive pins
within this zone. The actual position is determined by the bank-decoding
scheme selected for a particular memory organization.

11-23

Local Memory Interface Bus - Addressing Mechanisms

Output along with the address are three bus status signals:

® The RF (DRAM refresh) bit is output on LAD15 during the fall of RAS.
It is low if the cycle that is just beginning is a DRAM-refresh cycle (ei-
ther RAS-only or CAS-before-RAS); otherwise, RF is high.

® The TR (VRAM shift-register-transfer) bit is output on LAD14 during the
fall of CAS, and is low if the cycle in progress is a video RAM shift-re-
gister transfer. Otherwise, TR is high. In either event, the state of the TR
bit reflects the state of the TR/QE output during the falling edge of RAS
within the same cycle.

® The IAQ bit is output on LAD15 during the fall of TAS, and is high if the
cycle is an instruction fetch; otherwise, IAQ remains low. The term in-
struction fetch includes not only reads of opcodes, but also immediate
data, immediate addresses, and so on. The instruction cache may or may
not be disabled.

IAQ is active high when words are fetched from memory to load the instruc-
tion cache. A block (or subsegment) of words is fetched in a series of read
cycles, during which 1AQ is active high. The PC points to an instruction word
within the block, but the block may contain data as well as instruction words
(opcodes, immediate addresses, immediate data, and so on). Only during ex-
ecution will the GSP distinguish instruction words from data words residing
in the cache. Instruction words will be fetched from the cache as they are
needed, but data inadvertently loaded into the cache will be ignored and all
memory data reads or writes will result in accesses of the memory rather than
the cache.

When the cache is disabled, 1AQ is active high only during a cycle in which
an instruction word (a word pointed to by the PC) is fetched.

11.56.1 Display Memory Hardware Requirements

11-24

The minimum number of bits of memory required to implement the display
memory is the product of the total number of pixels (on-screen and off-screen
areas combined) and the number of bits per pixel. The minimum number of
VRAMs required to contain the display memory is calculated as follows:

(pixels per line) x (lines per frame) x (bits per pixel)
Number of bits per VRAM

Number of VRAMs =

This calculation yields the minimum number of VRAMs needed, but additional
VRAMSs may be required in some applications. For instance, XY addressing
can be supported by making the number of pixels per line of the display me-
mory a power of two, but this may require more than the minimum number of
VRAMs needed to contain the display.

Local Memory Interface Bus - Addressing Mechanisms

11.5.2 Memory Organization and Bank Selecting

During a single local memaory cycle, one data word (16 bits) is transferred
between the GSP and the selected bank of memory. The memory is parti-
tioned into a number of banks, where each bank contains the number of me-
mory devices that can be accessed in a single memory cycle. The number of
“devices per bank is therefore determined by dividing the width of the data bus
by the number of data pins per device. The GSP data bus is 16 bits wide, and
can access 16 memory data pins during a single cycle. This means, for ex-
ample, that a bank composed of 64K-by-1 RAMs contains 16 RAM devices.
A bank composed of 64K-by-4 RAMs contains 4 RAM devices.

In a typical system, the local memory is divided into two parts, one consisting
of the display memory and the other consisting of additional DRAMs needed
to store programs and data. This additional RAM can be called the system
memory. A high-order address bit is typically used to select between the dis-
play memory and system memory. Within the display memory or system me-
mory, some address bits are provided as the row and column addresses to the
selected bank, while other address bits are used to select one of the banks.

The number of banks of VRAM needed for the display memory is calculated
by dividing the total number of VRAMs by the number of VRAMs per bank.
This in turn determines how many bank select bits must be decoded.

11.56.3 Dynamic RAM Refresh Addresses

DRAMs (and VRAMs) require periodic refreshing to retain their data. The
GSP automatically generates DRAM-refresh cycles at regular intervals. The
interval between refresh cycles is programmable, and DRAM refreshing can
be disabled in systems that do not require it.

The GSP can be configured to generate one of two types of DRAM-refresh
cycle timing: RAS-only or CAS-before-RAS. Figure 11-7 shows RAS-only tim-
ing, and Figure 11-8 shows CAS-before-RAS timing. During a RAS-only re-
fresh cycle, the GSP provides the 8-bit row address needed to refresh a
particular row within each of the DRAMs in the memory system. DRAMs that
support CAS-before-RAS cycles each contain an on-chip counter which gen-
erates the row address needed during the cycle. In other words, these devices
do not rely on the GSP to provide the row address during the CAS-before-RAS
cycle.

The row address output by the GSP during a DRAM-refresh cycle is the same
regardless of whether the GSP is configured for RAS-only or CAS-before-RAS
refresh timing. The fact that the GSP outputs a valid row address during a
CAS-before-RAS cycle makes possible a hybrid system in which some DRAMs
use CAS-before-RAS refresh timing while others use RAS-only timing. This
hybrid approach configures the GSP to perform CAS-before-RAS refresh, and
relies on external decode logic to prevent the active-low column address
strobe from reaching those DRAMs that require RAS-only refreshing. The de-
code logic detects the fact that CAS falls before RAS during a CAS-before-RAS
cycle, and uses this to inhibit transmitting the CAS signal to the RAS-only.
DRAMs.

11-25

Local Memory Interface Bus - Addressing Mechanisms

11-26

Several bits in the CONTROL register determine the manner in which the GSP
performs DRAM refreshing. The RM bit selects the type of DRAM-refresh
cycle:

o RM=0 selects RAS-only cycles
] RM=1 selects CAS-before-RAS cycles

The RR bits determine the interval between DRAM-refresh cycles:

® RR=00 selects refreshing every 32 local clock periods
[] RR=01 selects refreshing every 64 local clock periods
[RR=10 is a reserved code

o RR=11 inhibits DRAM refreshing

At reset, internal logic forces the RM bit to 0 and the RR field to 00. While the
RESET signal to the GSP is active, no DRAM-refresh cycles are performed.
Following reset, the GSP begins to automatically perform DRAM-refresh cy-
cles at regular intervals.

Both the interval between DRAM-refresh cycles and the addresses output
during the cycles are generated within the REFCNT (DRAM-refresh count)
register. Bits 2-15 of REFCNT form a continuous binary counter. The RINTVL
field occupies bits 2-7, and counts the length of the interval between succes-
sive internal requests for DRAM-refresh cycles. The eight MSBs of REFCNT
form the ROWADR field, containing the row address output to memory during
the DRAM-refresh cycle.

GSP

== (DRAM Refresh
LADIS[] RF "Bug Status BI)

LAD14[| ROWADRS = REFCNT14
LAD13[_| ROWADRS = REFCNT13
LAD12[_| ROWADR4 = REFCNT12, etc.
LAD11[| ROWADR3
LAD10[_} ROWADR2
LAD® "] ROWADR1
LAD8 [] ROWADRO
LAD7 [} ROWADR?
Example:
é ROWADRE | LAD2-LADS provide the

8-bit row u2iweis to 8
ROWADRS [block of {1iaMs or VRAMS.

LAD®
LADS
LAD4 [| ROWADR4
LAD3 [| ROWADR3
LAD2 B ROWADR?2 J
LAD1 [| ROWADR1
LADO [_| ROWADRO

Figure 11-19. Row Address for DRAM-Refresh Cycle

Local Memory Interface Bus - Addressing Mechanisms

During a DRAM-refresh cycle, the 8-bit row address in the ROWADR field of
the REFCNT register is output on the LAD pins during the high-to-low tran-
sition of RAS. As shown in Figure 11-19, the eight bits of ROWADR are
output on LADO-LAD7. The seven LSBs of ROWADR are also output on
LAD8-LAD14. LAD15 transmits the RF bus status signal, low during the fall
of RAS.

Assume that LAD2-LADS are used as the 8-bit row address by a bank of
DRAMSs, as indicated in Figure 11-19. The address bits output on
LAD2-LADSY are the same eight bits output on LADO-LAD?7, but in a different
order. During a series of 256 DRAM-refresh cycles, the row addresses output
on LADO-LAD7 and LAD2-LADS contain the same bits. - Thus, if the ad-
dresses output on LADO-LAD7 cycle through all 256 row addresses then the
addresses output on LAD2-LADS will also cycle through all 256 row ad-
dresses, but in a different order.

11.5.4 An Example - Memory Organization and Decoding

As an example, consider a memory organization based on the address decod-
ing scheme shown in Figure 11-20. Three logical address bits (4, 21, and 26)
are used as bank-select bits. Logical address bits 5-12 are used as the 8-bit
column address, and bits 13-20 are used as the 8-bit row address. Referring
to Figure 11-18, the row and column addresses are multiplexed out on the
same eight pins, LAD1-LAD8. The total number of address bits used to ad-
dress external memory is 19, for a total address reach of one megabyte. The
remaining address bits output by the GSP are not used for this example.

le 32-Bit Loglcal Address)|
3130202827 2825242322212019 18 17 16 156 413 12110 9 8 7 6 5§ 4 3 2 1 O
]
[v - \ \/—/ \ \/ /\ —_ / \ \/—/
Don't Don't 8-Bit Row 8-Bit Column Bit
Care Care Address Address Select
Bank Bank Bank
St Select Select
Bit £ BIt 1 Bit 0
(852) (BS1) (8BS0}

Figure 11-20. Address Decode for Example System

Bank select bit 2 (BS2) in Figure 11-20 selects between the display memory
(BS2=0) and the system memory (BS2=1). System memory is a block of
conventional DRAM used for program and data storage. BS2 becomes valid
before RAS falls, and thus can be used to determine whether the row-address
strobe is gated to the display memory or to the system memory. The average
power dissipation is reduced because only one or the other (the display me-
mory or the system memory) is enabled during a particular memory read or
write cycle.

Figure 11-21 shows the structure of the display memory. Its dimensions are
1024 by 1024 at four bits per pixel. Bank select bit 1 (BS1) selects between
the top (BS1=0) and bottom (BS1=1) halves of the display memory. Since
BS1 becomes valid before the fall of RAS, it can be used to gate RAS to either
the upper or lower half of the display memory during a memory read or write

11-27

Local Memory Interface Bus - Addressing Mechanisms

11-28

cycle. By transmitting the row address strobe to only half of the display me-
mory, the power dissipation for the cycle is significantly reduced.

Bank select bit 0 (BS0) selects between the even word and odd word of each
pair of adjacent words in the display memory. Each word contains four adja-
cent pixels. Odd and even words are stored in two separate banks of VRAMs,
and the decode logic gates the column address strobe to the selected bank
only. The row address strobe is gated to both banks (odd and even words).
This increases the power dissipation over that required if only one bank were
active. A compensating benefit of this organization, however, is that it reduces
the rate at which each VRAM must supply serial data to refresh the screen.
During screen refresh, the bank containing the even words and the bank con-
taining the odd words alternately provide data to the video monitor. Alter-
nating between the two banks in this fashion reduces the data bandwidth
requirements of each bank to about 10 MHz, which is an eighth of the video
bandwidth.

Esen Word 'w1a Word
Bs1 =0 (B&:=1)

[

:'.. rines

» . Llnes
=1

{—— 1024 Pixels per Line -——id Bits
per Pixel

Figure 11-21. Display Memory Dimensions for the Example

The decode logic must be capable of more than just selecting a particular bank
of the display memory or system memory during a memory read or write cycle.
It must also be capable of enabling all DRAMs and VRAMs during a
DRAM-refresh cycle, and enabling all VRAMs during a screen-refresh (me-
mory-to-shift-register) cycle. This means that the decode logic must distin-
guish DRAM-refresh and screen-refresh cycles from memory access cycles,
and during a refresh cycle broadcast the row and column address strobes to
all devices that require them. The timing of the RF and TR bus status bits has
been designed to make these signals convenient for the design of the decode
logic.

Local Memory Interface Bus - Addressing Mechanisms

During a read or write cycle, the value of BS2, output with the row address,
determines whether RAS is gated to the display memory or to system memoty.
During a DRAM-refresh cycle, the decode logic must broadcast the row-ad-
dress strobe to all dynamic RAMs (including the VRAMs). The decode logic
must be able to determine prior to the fall of the row address strobe whether
the cycle that is beginning is a DRAM-refresh cycle, or a memory read or write
cycle. This is the reason the GSP outputs the RF bus status signal prior to the
fall of RAS.

The decode logic uses the value of BS1 to determine whether the top or bot-
tom half of the display memory receives an active row-address strobe during
a memory read or write cycle. The same logic must also be capable of broad-
casting RAS to all VRAMSs during either a DRAM-refresh cycle or a shift-
register-transfer cycle. The decode logic therefore monitors the state of the
GSP’s TR/OE output prior to the fall of RAS. A low level on TR/QE indicates
that the cycle just beginning is a shift-register-transfer cycle, and that RAS
should be broadcast.

While the decode logic uses the vaiue of BSO to determine whether the even
or odd word receives a column-address strobe during a read or write cycle
involving the display memory, the same logic must be capable of broadcasting
CAS to all VRAMs during a screen-refresh cycle. Rather than require an ex-
ternal latch to capture the state of the TR/QE during the fall of RAS, the GSP
outputs the same information a second time in the form of the TR bus status
signal, which is valid prior to and during the fali of CAS.

11-29

This page intentionally left blank.

12. The TMS34010 instruction Set

This section contains the TMS34010 instruction set (in alphabetical order).
Related subjects, such as addressing modes, are presented first.

Section
12.1 Symbols and Abbreviations
12.2 Addressing MOEScccoeciviiiiiiiriiiee e eae e e
12.3 Move Instructions SUMMATYoccrviiiirerrieirecee e v e
12.4 PIXBLT Instructions Summary
12.5 PIXT Instructions Summaryccoeeene.

- TMS34010 Instruction Set Summary
- Example Instruction

12-1

TMS34010 Instruction Set - Symbols and Abbreviations

12.1 Symbols and Abbreviations

The symbols and abbreviations in Table 12-1 are used in the addressing
modes discussion, the instruction set summary, and in the individual instruc-
tion descriptions.

Table 12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions

Symbol Definition Symbol Definition
Register File A| Registers AO-A14, including SP |Register File B| Registers BO-B14, inciuding SP
Rs Source register Rd Destination register
RsX X half of source register RsY Y half of source register
RdX X haif of destination register RdY Y half of destination register
An Register 11 in register file A Bn Register n in register file B
PC Program counter pC’ PC prime. Specifies the PC of the
next instruction (PC + instruction
length)
ST Status register N Status sign bit
Cc Status carry bit Z Status zero bit
" Status overflow bit IE Global interrupt enable bit
sp Stack pointer TOS Top of stack
SAddress Source address DAddress Destination address
MSW Most significant word LSW Least significant word
LSB Least significant bit MSB Most significant bit
> Hexadecimal number K 5-bit constant
IW 16-bit immediate value 1L 32-bit immediate vaiue
W 16-bit immediate value L 32-bit immediate value
F Field select. F=0 selects FSO, FEO R Register file select. Indicates
in the status register, F=1 selects which register file (A or B) the
FS1, FE1 operand registers are in. R=0
specifies register file A, R=1
specifies register file B
() In instruction syntax, contents Concatenation. For example,
of. For example, (Rd) specifies Rd:Rd + 1 means the concatena-
the contents of the destination tion of one register and the next
register into a 64-bit value, as in AO:A1
- Becomes the contents of ~ 1’s complement
| Absolute value {3 Optional parameter
* Indirect addressing @ Absolute addressing
<text> In instruction syntax, indicates a “fill in the blank” — substitute an actual vaiue,
address, or register for the text enclosed in the angle brackets. For example, substitute
an actual source register for <Rs>; substitute an actual destination address for
<DAddress>.

12-2

TMS34010 Instruction Set - Addressing Modes

12.2 Addressing Modes

The TMS34010 supports a variety of addressing modes. Most instructions
use only one addressing mode; however, the MOVB, MOVE, and PIXT in-
structions each support several addressing modes. The following subsections
describe the TMS34010 addressing modes.

12.21 Immediate Addressing

In this addressing mode, the source operand may be one of the following:

e A 16-bit immediate value (designated as |W)
® A 32-bit immediate value (designated as iL)
e A constant (designated as K)

Figure 12-1 shows an example of the MOVI <IL>,<Rd> instruction. A 32-bit
immediate value, >FCOO, is loaded into the destination register, A3.

Execution Unit Program Memory
31 0 15]
AO °
-
L]
A3 FFFF FCO00 t———| N >08C3 MOVI >FCO0, A3
>FC00
N+2
B-Flle
sT {N[c]z]v]
8P
PC N :’@

Figure 12-1. Immediate Addressing Mode

12.2.2 Indirect XY

A source operand or a destination operand can be specified using this ad-
dressing mode.

e *Rs. XY - The register contains the XY address of the data.
e *Rd. XY - The register contains the XY address where the data will be
moved.

12-3

TMS34010 Instruction Set - Addressing Modes

12.2.3 Absolute Addressing

A source operand or a destination operand can be specified as an absolute
address.

® @SAddress - The specified address contains the data.

[@DAddress - The data will be moved into the specified address.

Figure 12-2 shows an example of the MOVB @<SAddress>, <R@> instruction.
In this example, the symbol FADDR represents a memory address; the data at
this address are loaded into register A4.

Exscution Unit Program Memory
31 0 15 o]
Ao .
B N, >07E4 MOVB eFADDR, A4
Ad N+1 FADDR (L.&6W)
N+2 FADDR (MSW)
N+3
B-Flie
Data Memory
sT INJc[z]V]
sP 0
PC N

Figure 12-2. Absolute Addressing Mode

12.2.4 Register Direct

12-4

A source operand or a destination operand can be specified using register di-
rect addressing mode.

® Rs — The source register contains the data.
e Rd - The data will be moved into the destination register.
Figure 12-3 shows an example of the MOVE <Rs>,<Rd> instruction. The

contents of the source register, A3, are moved into the destination register,
B2.

TMS34010 Instruction Set - Addressing Modes

Execution Unit

31

0

A3 >FCO00 >0C

B2
L]

st [Njc[z]v]

sP

PC N

N+1

Program Memory

15 [¢]

>4E62 MOVE A3, B2

Figure 12-3. Register Direct Addressing Mode

12.2.5 Register Indirect

A source operand or a destination operand can be specified using register in-

direct addressing modé.

*Rs - The register contains the address of the data.
*Rd - The register contains the address where the data will be moved.

Figure 12-4 shows an example of the MOVE <Rs>,*<Rd>, [<F>] instruction.
Register A4 contains the source operand. Register A3 contains an address
(represented by the symbol FADDR) where the data in A4 will be moved.

A3
A4

ST
SP
PC

Execution Unit

Program Memory

31 0 31 0
.
. >8083
FADDR
L fDATA
.
.
B-Flle
Data Memo!
N[c[Z]V] FADDR i
15 l 0
N FDATA } -~ Y. . _l

5

(Default)

N
MOVE A4, #A3, 0

(Indirection)

Memory Address

l

Figure 12-4. Register Indirect Addressing Mode

12-5

TMS34010 Instruction Set - Addressing Modes

12.2.6 Register Indirect with Displacement

A0

A3

sT
sP
PC

A source operand or a destination operand can be specified using this ad-
dressing mode.

® *Rs(Displacement) ~ The address of the data is found by adding the re-
gister contents to the signed displacement.

® *Rd(Displacement) - The data will be moved to the address specified
by the sum register contents and the signed displacement.

Figure 12-5 shows an example of the MOVE <Rs>,*<Rd> (<Displacement>)
instruction. Register A4 contains the source operand. Register A3 contains
an address (represented by the symbol FADDR). The displacement, 16, is
added to FADDR, to point to the location where the data in A4 will be moved.
FSO contains the field size.

Execution Unit Program Memory
31 0
(Displacement)

FADDR >8083 N

FDATA | e >10 N+ 1
i P AN r MOVE A4, ®A3(16), O

N+2
(Indirection)
B-Flle
Data Memory
N c[Zlvl FADDR+18
Memory Address
FDATA

l

Figure 12-5. Register Indirect with Displacement Addressing Mode

12.2.7 Register Indirect with Predecrement

12-6

A source operand or a destination operand can be specified using this ad-
dressing mode.

® -*Rs — The address of the data is found by decrementing the register
contents by the field size of the move.

® -*Rd - The data will stored at the address found by decrementing the
register contents by the field size of the move.

Figure 12-6 shows an example of the MOVE <Rs>, *-<Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by the symbol FADDR). This address is decremented by the field
size of the move, so that it points to the location where the data in A4 will be
moved. FS1 contains the field size.

TMS34010 Instruction Set - Addressing Modes

Execution Unit Program Memory

31 0 15 0
AO Predecrement

>A0843 N
-

A3 Fafo o — FADDC - FS N+1

MOVE A4, %-A3, 1

B-Flle
Data Memory
eT ,ﬂcl ZIVI FADDR-FS
&P '
Memory Address
PC N A FDATA e - l
FS=Fleid Size

Figure 12-6. Register Indirect with Predecrement Addressing Mode

12.2.8 Register Indirect with Postincrement

A source operand or a destination operand can be specified using this ad-
dressing mode.

® *Rs+ — The register contains the address of the data. The register con-
tents are incremented after the move.

[*Rd+ - The register contains the address where the data will be moved.
The register contents are incremented after the move.

Figure 12-7 shows an example of the MOVE <Rs>, *-<Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by FADDR) where the data in A4 will be moved. The register
contents are incremented after the move. FSO contains the field size.

Execution Unit Program Memory
31 [+] 15 0
AO . Postincrement
. 0083 N
lI————
A3 FAODR — FADDR + F§ N+1
A4 FivATA
———— A0 e e
. MOVE A4, %A3+, 0
.
B-Fiie
Data Memory
sT [N[c[Z]V] FADDR
sp Memory Address
PC N 1 FDATA l
FS=Flield Size

Figure 12-7. Register Indirect with Postincrement Addressing Mode

12-7

TMS34010 Instruction Set - Move Instructions Summary

12.3 Move Instructions Summary

The move instructions use the GSP’s bit-addressing and field operation capa-
bilities to provide flexible memory management. All memory addresses for
move operations are bit addresses. When a field is moved from memory to a
register. Register bits to the left of the field are filled with either Os or the sign
bit, depending on the field extension mode. When a field is moved to memory
from a register, the data for the field is assumed to be right justified within the
register, and the bits to the left of the field are ignored. Table 12-2 summarizes
the GSP move instructions.

Table 12-2. Summary of Move Instructions

Move Type Mnemonic Description
Register . MOVE Move register to register
Constant MOVK Move constant (5 bits)
MOVI Move immediate (16 bits)
MOVI Move immediate (32 bits)
XY MOVX Move 16 LSBs of register {X half)
MOVY Move 16 MSBs of register (Y half)
Multiple Register MMFM Move multiple registers from memory
MMTM Move multiple registers to memory
Byte MOVB Move byte (8 bits, 9 addressing modes)
Field MOVE Move field to/from memory/register
(15 addressing modes)

12.3.1 Register-to-Register Moves

The register-to-register MOVE instruction moves data directly between register
files A and B. This is a 32-bit move; the entire contents of the destination re-
gister are replaced.

12.3.2 Constant-to-Register Moves

The MOVK and MOVI instructions load a register with a constant value.
MOVK places a zero-extended value of 1 to 32 in the register. MOVI has two
modes, 16-bit and 32-bit. The 32-bit MOVI uses two extension words which
explicitly define the value to be stored in the register. The extension word for
the 16-bit MOVI contains a value which is sign extended to 32 bits when
moved into the register. Use the CLR instruction to store O in a register.

12.3.3 X and Y Register Moves

The MOVX and MOVY instructions move the X and Y halves, respectively; the
other half ot the destination register is not affected. These are 16-bit moves
within the register file. XY addressing is discussed in Section 4.

12-8

TMS34010 Instruction Set - Move Instructions Summary

12.3.4 Multiple Register Moves

Multiple-register moves save and restore select members of up to an entire file
of registers to memory. A 16-bit mask specifies which of the 16 registers in
the designated file are to be moved to or from memory. One register from the
selected file acts as a pointer register for the move. Any of the registers in the
file, including the SP, may be used as the pointer register. The selected reg-
isters are input as a list; the assembler checks that they and the pointer register
are all in the same file. The pointer register contains a bit address for the reg-
ister "stack.” The stacking operation follows the same conventions as the
system stack, growing in the direction of lower memory. If the SP is used,
both register files may be moved to the same stack area (since SP may be ac-
cessed from both filess). MMTM moves multiple registers to the stack while
MMFM moves them from memory back to the register file.

12.3.5 Byte Moves

Byte moves are special 8-bit cases of the field moves described in Section
12.3.6. Byte moves are implicitly 8-bit moves. They transfer data:

® From memory to a register (using field extraction),

® From a register to memory (using field insertion),
or

[From memory to memory (using field extraction and field insertion).
A byte can begin on any bit boundary within a word. When a byte is moved
from memory to a general-purpose register, it is right justified within the reg-

ister so that the LSB of the byte coincides with the rightmost bit (bit 0) of the
register. The byte is sign extended to fill the 24 MSBs of the register.

Table 12-3 lists the possible combinations of source and destination address-
ing modes for MOVBs.

Table 12-3. MOVB Addressing Modes

Source Destination Addressing Mode
Addressing

Mode Rd *Rd *Rd{disp) @Address
Rs [[] ®
*Rs o [
*Rs({Disp) [] [
@Address ®]

Note: The ® symbol indicates a valid operation; a blank box indicates an
invalid operation.

Sequences of byte-move operations can be expected to execute more effi-
ciently if the byte address points to an even 8-bit boundary within memory.
This occurs when the three LSBs of the 32-bit starting address of the byte are
0. A byte that straddles a word boundary requires twice as many memory cy-
cles to access.

12-9

TMS34010 Instruction Set - Move Instructions Summary

12.3.6 Field Moves

A field is a configurable data structure in memory. It is identified by two pa-
rameters — size and data address. A field’s length can be defined to be any
value from 1 to 32 bits. Field moves manipulate arbitrarily-sized data fields in
memory and the register file.

® Field data in memory is addressed by its bit address and is treated as a
string of contiguous bits; it may start at any bit address in memory.
® Field data in the register file is right justified in the register; the LSB of

the field is stored in the LSB of the register.

When field data is moved into a register, it is right justified within the register.
The register bits to the left of the field are all 1s or all Os, depending on the
values of both the appropriate FE (field extension) bit in the status register,
and sign bit (MSB) of the field. If FE=1, the field is sign extended; if FE=0,
the field is zero extended. When data is moved from a register, these non-field
bits of the register are ignored.

Fields are transferred between the general-purpose registers and memory by
means of the memory-to-register and register-to-memory move instructions.
Fields are transferred from one memory location to another via the memory-
to-memory move instructions.

Table 12-4 lists the possible combinations of source and destination address-
ing modes for MOVEs.

Table 12-4. Field Move Addressing Modes

Source Destination Addressing Mode
Addressing
Mode Rd *Rd *Rd+ -*Rd *Rd(disp) @Address
Rs [] [] [] [] []
*Rs [] []
"Rs+ [[]
-"Rs [] ®
*Rs(Disp) ° . °
@Addr ® [] ®

Note: The ® symbol indicates a valid operation; a blank box indicates an invalid operation.

12-10

Two field sizes are simultaneously available for field moves. The lengths of
fields O and 1 are defined by two 5-bit fields in the status register, FSO and
FS1. The status register also contains the FEQ and FE1 parameters, which
define the field extension properties of the data when it is moved into a reg-
ister.

The SETF instruction specifies the size and signed/unsigned condition of ei-
ther field O or 1 by placing this data in one of two 6-bit fields located in the

TMS34010 Instruction Set - Move Instructions Summary

status register. One bit specifies sign/zero extension, and five bits store the
field size (in bits).

The EXGF instruction may also set either of the two field types, while pre-
serving a copy of the previous definition.

The address of a field points to its least significant bit. A field can begin at
an arbitrary bit address in memory. Field data addresses for particular moves
are derived from values in registers and extension words following the in-
struction. Field moves transfer data:

® From memory to a register (using field extraction),

® From a register to memory (using field insertion),
or
® From memory to memory (using field extraction and field insertion).

12.3.6.1 Register-to-Memory Field Moves

Figure 12-8 illustrates the register-to-memory move operation. In this type
of move, the source register contains the right-justified field data (width is
specified by the field size). The destination memory location is the bit position
pointed to by the destination memory address. The address consists of a
portion defining the starting word in which the field is to be written and an
offset into that word, the bit address. Depending on the bit address within this
word and the field size, the destination location may extend into two or more
words. The field size for the move is one of two indirect values stored in ST,
as selected by the programmer. The field extension bit is not used.

Move from Register to Memory

31 4 3 0
Destination Memory Address I Word Address I Adgﬁss l
31 0
Source Register [Fleld Data
|4—— Fleld Size —»
Word Address + 16 Word Address \
15 018 ~
4 1] -
Destination Memory Location I . Fleid) Data]
It——FleId S)ze—»’i—Blt Address—'[

Field Size = 1 to 32 blts

Figure 12-8. Register-to-Memory Moves

12-11

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.2 Memory-to-Register Field Moves

12-12

Figure 12-9 shows the memory-to-register move operation. The source me-
mory location is the bit position pointed to by the source memory address.
The address consists of a portion defining the starting word in which the field
is to be written and an offset into that word, the bit address. Depending on
the bit address within this word and the field size, the source location may
extend into two or more words. After the move, the destination register LSBs
contain the right-justified field data (width is specified by the field size). The
MSBs of the register contain either all 1s or all Os. [f the sign extension bit
FEO or FE1 associated with the field size selected is 0, the MSBs are Os. If the
sign extension bit selected is 1, the MSBs contain the value of the sign bit of
the field data (its MSB). The field size for the move is one of two indirect
values stored in ST, as selected by the programmer.

Move from Memory to Reglster.

31 43 0
Source Memory Address r Word Address [AddBrRess I
Word Address + 16 \ Word Address w

15 015 0

Source Memory Location [FIaldJI Data |]
{¢—Fleld 8ize —»j¢——Bit Addrees —a)

31 0

Destination Reglster, FE=0 [0000........... .cc.......... 000| Fedpata |

Slgn Bit
31 I 0
Destination Reglster, FE=1 fe— Sign BIt — Fleld Data |

Fleld size = 1 to 32 blits

Figure 12-9. Memory-to-Register Moves

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.3 Memory-to-Memory Field Moves

Figure 12-10 shows a memory-to-memory field move operation. The source
memory location is the bit position pointed to by the source memory address.
The destination memory location is the bit position pointed to by the destina-
tion memory address. Depending on the bit addresses within the respective
words and the field size, either the source location or destination locations
may extend into two or more words. After the move, the destination location
contains the field data from the source memory location. The field size for the
move is one of two indirect values stored in ST, as selected by the program-
mer. The field extension bit is not used.

Move from Memory to Memory

31 4 3 0
Source Memory Address l Word Address A | Ads:t .
Word Address A+16 Word Address A\
1 015 n
Source Memory Location [- Fleld ' Data 1

¢—Fleld 8ize —se—— g, dirass

31 “ 43 0
Destination Memory Address I Word Addresg B l Adc?:t
Word Address B+16 Word Address B \
15 0|15 0
Destinatlon Memory Location | Fleid Data

Destination
l¢— Fieid Size —p{¢—— Bit Address

Fleid size = 1 to 32 bits

Figure 12-10. Memory-to-Memory Moves

12-13

TMS34010 Instruction Set - PIXBLT/PIXT Instructions Summary

12.4 PIXBLT Instructions Summary

The TMS34010 supports 6 different PIXBLT instructions. PIXBLTs vary ac-
cording to the format of the source and destination pixel blocks. Table 12-5
summarizes the PIXBLT instructions.

Table 12-5. PIXBLT Instruction Summary

Syntax Formats Page
PIXBLT B,L Binary to linear 12-157
PiIXBLT B,XY Binary to XY 12-162
PIXBLT L,L Linear to linear 12-169
PIXBLT L XY Linear to XY 12-175
PIXBLT XY,L XY to linear 12-181
PIXBLT XY XY XY to XY 12-186

12.5 PIXT Instructions Summary

The PIXT instructions move single pixels. The pixel may originate from a reg-
ister or a memory location, and may be moved to a register or a memory lo-
cation. There are 6 variations of the PIXT instruction; each uses a different
combination of the addressing modes described in Section 12.2.

Table 12-6 lists the possible combinations of source and destination address-
ing modes for PIXTs.

Table 12-6. PIXT Addressing Modes

Source Destination Addressing Mode
Addressing

Mode Rd *Rd *Rd.XY
Rs ®]
‘Rs [®
‘Rs. XY ® []

Note: The ® symbol indicates a valid operation; a blank box
indicates an invalid operation.

12-14

TMS34010 Instruction Set - Summary Table

Table 12-7. TMIS34010 Instruction Set Summary

Graphics Instructions
Machi 16-Bit O d
Syntax and Description Words sz:gt:;e 1t Ppcode
ADDXY Rs,Rd 1 1,4 1110 000S SSSR DDDD
Add registers in XY mode
CMPXY Rd,Rd 1 3,6 1110 010S SSSR DDDD
Compare X and Y halves of registers
CPW Rs,Rd 1 1,4 1110 011S SSSR DDDD
Compare point to window
CVXYL Rs,Rd 1 3,6 1110 100S SSSR DDDD
Convert XY address to linear address
DRAV Rs,Rd 1 t 1111 011S SSSR DDDD
Draw and advance
FILL L 1 T 0000 1111 1100 0000
Fill array with processed pixels, linear
FILL XY 1 i 0000 1111 1110 0000
Fill array with processed pixels, XY
MOVX Rs,Rd 1 1,4 1110 110S SSSR DDDD
Move X half of register
MOVY Rs,Rd 1 1.4 1110 111S SSSR DDDD
Move Y half of register
PIXBLT B,L 1 i 0000 1111 1000 0000
Pixel block transfer, binary to linear
PIXBLT B,XY 1 1t 0000 1111 1010 0000
Pixel block transfer and expand, binary to XY
PIXBLT L,L 1 § 0000 1111 0000 0000
Pixel block transfer, linear to linear
PIXBLT L, XY 1 § 0000 1111 0010 0000
Pixel block transfer, linear to XY
PIXBLT XY,L 1 § 0000 1111 0100 0000
Pixel block transfer, XY to linear
PIXBLT XY, XY 1 § 0000 1111 0110 0000
Pixel block transfer, XY to XY
PIXT Rs,”Rd 1 t 1111 100S SSSR DDDD
Pixel transfer, register to indirect
PIXT Rs,*Rd.XY 1 t 1111 000S SSSR DDDD
Pixel transfer, register to indirect XY
PIXT *Rs,Rd 1 T 1111 101S SSSR DDDD
Pixel transfer, indirect to register
PIXT *Rs,*Rd 1 T 1111 110S SSSR DDDD
Pixel transfer, indirect to indirect
PIXT *Rs.XY,Rd 1 t 1111 001S SSSR DDDD
Pixel transfer, indirect XY to register
PIXT *Rs.XY,"Rd.XY 1 T 1111 010S SSSR DDDD
Pixel transfer, indirect XY to indirect XY
SUBXY Rs,Rd 1 1,4 1110 001S SSSR DDDD
Subtract registers in XY mode
LINE Z 1 A 1101 1111 Z001 1010
Line draw

T See instruction
See Section 13.3, FiLL Instructions Timing

11 See Section 13.5, PIXBLT Expand Instructions Timing

§ See Section 13.4, PIXBLT Instructions Timing
A See Section 13.6, The LINE Instruction Timing

12-15

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions

M i 16-Bi

Syntax and Description Words Si:tt‘:;e MSB it Opcode LSB
MOVB Rs,*Rd 1 m 1000 1108 SSSR DDDD
Move byte, register to indirect
MOVB *Rs,Rd 1 m 1000 1118 SSSR DDDD
Move byte, indirect to register
MOVB *Rs,*Rd 1 T 1001 1108 SSSR DDDD
Move byte, indirect to indirect .
MOVB *Rs,*Rd(Disp) 2 T 1010 1108 SSSR DDDD
Move byte, register to indirect with displacement
MOVB *Rs(Disp),Rd 2 T 1010 1118 SSSR DDDD
Move byte, indirect with displacement to register
MOVB *Rs(Disp),*Rd(Disp) 3 T 1011 110S SSSR DDDD
Move byte, indirect with displacement to indirect
with displacement
MOVB Rs,@DAddress 3 T 0000 0101 111R S8S8S
Move byte, register to absolute
MOVB @SAddress,Rd 3 T 0000 0111 111R DDDD
Move byte, absolute to register
MOVB @SAddress,@DAddress 5 w 0000 0011 0100 0000
Move byte, absolute to absolute
MOVE Rs,Rd 1 1,4 0100 11MS SSSR DDDD
Move register to register
MOVE Rs,"Rd,F 1 w 1000 OOFS SSSR DDDD
Move field, register to indirect
MOVE Rs,-*Rd,F 1 m 1010 OOFS SSSR DDDD
Move field, register to indirect (predecrement)
MOVE Rs,"Rd+,F 1 T 1001 OOFS SSSR DDDD
Move field, register to indirect (postincrement)
MOVE *Rs,Rd.F 1 i) 1000 01FS SSSR DDDD
Move field, indirect to register
MOVE -*Rs,Rd,F 1 w 1010 O1FS SSSR DDDD
Move field, indirect (predecrement) to register
MOVE *Rs+,Rd,F 1 i) 1001 O01FS SSSR DDDD
Move field, indirect (postincrement) to register
MOVE *Rs,"Rd,F 1 i) 1000 10FS SSSR DDDD
Move field, indirect to indirect
MOVE -*Rs,-*Rd,F 1 w 1010 10FS SSSR DDDD
Move field, indirect (predecrement) to indirect
(predecrement)
MOVE *Rs+,*Rd+,F 1 w 1001 10FS SSSR DDDD
Move field, indirect (postincrement) to indirect
(postincrement)
MOVE Rs,"Rd(Disp),F 2 w 1011 OOFS SSSR DDDD
Move field, register to indirect with displacement)
MOVE *Rs(Disp),Rd,F 2 w 1011 O1FS SSSR DDDD
Move field, indirect with displacement to register

W See Section 13.2, MOVE and MOVB Instructions Timing

12-16

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions {(Continued)
Machi 16-Bit

Syntax and Description Words s‘{gt;'s‘e MSB It Opcode LSB
MOVE *Rs(Disp),*Rd+,F 2 T 1101 OOFS SSSR DDDD
Move field, indirect with displacement to indirect
(postincrement) .
MOVE *Rs(Disp),” Rd(Disp),F 3 i 1011 10FS SSSR DDDD
Move field, indirect with displacement to indirect
with displacement
MOVE Rs,@DAddress,F 3 w 0000 O1F1 100R DDDD
Move field, register to absolute
MOVE @SAddress,Rd,F 3 T 0000 O1F1 101R DDDD
Move field, absolute to register
MOVE @SAddress,”Rd +,F 3 m 1101 O1FO0 OOOR DDDD
Move field, absolute to indirect (postincrement)
MOVE @SAddress, @DAddress,F 5 w 0000 O1F1 1100 DDDD
Move field, absolute to absolute

General Instructions
Machi 16-Bit d

Syntax and Description Words sat(;tege MSB It Opcode LSB
ABS Rd 1 1,4 0000 0011 100R DDDD
Store absolute value
ADD Rs,Rd 1 1,4 0100 000S SSSR DDDD
Add registers
ADDC Rs,Rd 1 1,4 0100 001S SSSR DDDD
Add registers with carry
ADDI IW,Rd 2 2,8 0000 1011 OOOR DDDD
Add immediate (16 bits)
ADDI IL,Rd 3 3,12 0000 1011 OO1R DDDD
Add immediate (32 bits)
ADDK K,Rd 1 1,4 0001 OOKK KKKR DDDD
Add constant (5 bits)
AND Rs,Rd 1 1,4 0101 000S SSSR DDDD
AND registers
ANDI IL,Rd 3 3,12 |0000 1011 100R DDDD
AND immediate (32 bits)
ANDN Rs,Rd 1 1.4 0101 001S SSSR DDDD
AND register with complement
ANDNI IL,Rd 3 3,12 |0000 1011 100R DDDD
AND not immediate (32 bits)
BTST K,Rd 1 1,4 0001 11KK KKKR DDDD
Test register bit, constant
BTST Rs,Rd 1 2,5 0100 101S SSSR DDDD
Test register bit, register
CLR Rd 1 1,4 0101 011D DDDR DDDD
Clear register
CLRC 1 1.4 0000 0011 0010 0000
Clear carry
CMP Rs,Rd 1 1,4 0000 1011 O10R DDDD
Compare registers

T See Section 13.2, MOVE and MOVB Instructions Timing

12-17

B

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)

Complement register

Machin 16-Bit Opcod

Syntax and Description Words Sat(a:tese MSB peode LSB
CMP! IW,Rd 2 2,8 0000 1011 010R DDDD
Compare immediate (16 bits)
CMPI IL,Rd 3 3,12 |0000 1011 011R DDDD
Compare immediate (32 bits)
DEC Rd 1 1.4 0001 0100 001R DDDD
Decrement register
DINT 1 3.6 0000 0011 0110 0000
Disable interrupts
DIVS Rs,Rd 1 40,43 |0101 100S SSSR DDDD
Divide registers signed 39,42 A
DIVU Rs,Rd 1 37,40 |0101 101S SSSR DDDD
Divide registers unsigned
EINT 1 3,6 0000 1101 0110 0000
Enable interrupts
EXGF Rd,F 1 1.4 1101 01F1 00OR DDDD
Exchange field size
LMO Rs,Rd 1 1,4 0110 101S SSSR DDDD
Leftmost one
MMFM Rs,List 2 t 0000 1001 101R DDDD
Move multiple registers from memory
MMTM Rs, List 2 t 0000 1001 100R DDDD
Move multiple registers to memory
MODS Rs,Rd 1 40,43 10110 110S SSSR DDDD
Modulus signed i
MODU Rs,Rd 1 3538 {0110 111S SSSR DDDD
Modulus unsigned
MOVI IW,Rd 2 2,8 0000 1001 110R DDDD
Move immediate (16 bits)
MOVI IL,Rd 3 3,12 (0000 1001 111R DDDD
Move immediate (32 bits)
MOVK K,Rd 1 1.4 0001 10KK KKKR DDDD
Move constant (5 bits)
MPYS Rs,Rd 1 20,23 |0101 110S SSSR DDDD
Multiply registers (signed)
MPYU Rs,Rd 1 21,24 10101 111S SSSR DDDD
Multiply registers (unsigned)
NEG Rd 1 1,4 0000 0011 101R DDDD
Negate register
NEGB Rd 1 1.4 0000 0011 110R DDDD
Negate register with borrow
NOP 1 1,4 0000 0011 0000 0000
No operation
NOT Rd 1 1.4 0000 0011 111R DDDD

t See instruction
1 I1f F=1, add 1 to cycle time
A Rd even/Rd odd

12-18

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)
Machi 16-Bit d
Syntax and Description Words S‘"’t‘;t;';e MSB it Opcode
OR Rs,Rd 1 1,4 0101 010S SSSR DDDD
OR registers
OR! L,Rd 3 3,12 [0000 1011 101R DDDD
OR immediate (32 bits)
RL K,Rd 1 1,4 0011 O0KK KKKR DDDD
Rotate left, constant
RL Rs,Rd 1 1.4 0110 10SS SSSR DDDD
Rotate left, register
SETC 1 1,4 0000 1101 1110 0000
Set carry
SETF FS,FE,F 1 1,4 t 0000 O0O1F1 O1FS SSS8S
Set field parameters 2,5
SEXT Rd,F 1 3,6 0000 01F1 OOOR DDDD
Sign extend to iong
SLA K,Rd 1 3,6 0010 00KK KKKR DDDD
Shift left arithmetic, constant
SLA Rs,Rd 1 3.6 0110 000S SSSR DDDD
Shift left arithmetic, register
SLL K,Rd 1 1.4 0010 01KK KKKR DDDD
Shift left logical, constant
SLL Rs,Rd 1 1,4 0110 001S SSSR DDDD
Shift left logical, register
SRA K,Rd 1 1,4 0010 10KK KKKR DDDD
Shift right arithmetic, constant
SRA Rs,Rd 1 1,4 0110 0D10S SSSR DDDD
Shift right arithmetic, register
SRL K,Rd 1 1,4 0010 11KK KKKR DDDD
Shift right fogical, constant
SRL Rs,Rd 1 1.4 0110 011S SSSR DDDD
Shift right logical, register
SUB Rs,Rd 1 1,4 0100 010S SSSR DDDD
Subtract registers
SUBB Rs,Rd 1 1,4 0100 0118 SSSR DDDD
Subtract registers with borrow
SUB! IW,Rd 2 2,8 0000 1011 111R DDDD
Subtract immediate (16 bits)
SUBI IL,Rd 3 3,12 0000 1101 111R DDDD
Subtract immediate (32 bits)
SUBK K,Rd 1 1.4 0001 01KK KKKR DDDD
Subtract constant (5 bits)
XOR Rs,Rd 1 1.4 0101 011S SSSR DDDD
Exclusive OR registers
XORI IL,Rd 3 3,12 (0000 1011 110D DDDD
E- ive OR immediate value (32 bits)
Z + RdF 1 1.4 0000 0O1F1 OO1R DDDD
Zero extend to long

T See instruction
1 If F=1, add 1 to cycle time
A Rd even/Rd odd

12-19

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Concluded)

Program Control and Context Switching Instructions

Software interrupt

Machi 16-Bit O d

Syntax and Description Words sigt:;e MSB 't Ppcode LSB
CALL Rs 1 3+(3).9 0000 1001 001R DDDD
Call subroutine indirect 3+(9),15O
CALLA Address 3 4+(2),15_ {0000 1101 0101 1111
Call subroutine address 4+(8),21O
CALLR Address 2 3+(2),11_|0000 1101 0011 1111
Call subroutine relative 3+(8),17®
DSJ Rd,Address 2 3.9 0000 1101 100R DDDD
Decrement register and skip jump 28 N
DSJEQ Rd,Address 2 3,9 0000 1101 101R DDDD
Conditionally decrement register and skip 2,8 N
jump
DSJNE Rd,Address 2 3.9 0000 1101 110R DDDD
Conditionally decrement register and skip 28 N
jump
DSJS Rd,Address 1 2,5 0011 1DKK KKKR DDDD
Decrement register and skip jump short 3, n
EMU 1 6,9 0000 0001 0000 0000
Initiate emulation
EXGPC Rd 1 25 0000 0001 001R DDDD
Exchange program counter with register
GETPC Rd 1 1,4 0000 0001 010R DDDD
Get program counter into register
GETST Rd 1 1.4 0000 0001t 100R DDDD
Get status register into register
JAcc Address 3 3,6 1100 code 1000 0000
Jump absolute conditional 4,7 n
JRcc Address 2 3.6 1100 code 0000 0000
Jump relative conditional 1.4 N
JRcc Address 1 2,5 1100 code xxxx XXxXX
Jump relative conditional short 2,5 n
JUMP Rs 1 2,5 0000 0001 011R DDDD
Jump indirect
POPST 1 8,11 {0000 0001 1100 0000
Pop status register from stack 10,139
PUSHST 1 2+(3).8 0000 0001 1110 0000
Push status register onto stack 2+(8).1 30
PUTST Rs 1 3.6 0000 0001 101R DDDD
Copy register into status
RETI 1 11,14, 10000 1001 0100 0000
Return from interrupt 15,18%
RETS [N] 1 710, 10000 1001 011N NNNN
Return from subroutine 9,12‘9
TRAP N 1 6,1 0000 1001 OOON NNNN

0.3

© SP aligned/SP nonaligned
N Jump/no jump
@ Stack aligned/stack nonaligned

12-20

EXAMPLE

Example Instruction EXAMPLE

Syntax

Execution

Encoding

Operands

Fields

Description

This line shows you how to enter an instruction. Here are some sample
syntaxes:

[EXAMPLE <source operand>,<destination operand>

If an operand is enclosed in angle brackets (< and >), substitute ac-
tual source and destination operands (such as a register or constant)
for the text that is shown.

[EXAMPLE B, XY

If an operand is not enclosed in angle brackets, then enter it as
shown. In this example, you would actually enter EXAMPLE B, XY.

® EXAMPLE <source operand>[,< destination operand>)

If an operand is enclosed in square brackets ([]), then the operand
is optional. (Do not enter the brackets.) This example could be en-
tered as EXAMPLE source operand, destination operand or
as EXAMPLE source operand.

This section describes instruction execution. The general form is:

<operand> operator <operand> — <operand>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 Ol <source opd> IR I<destination opd;l

This section displays the contents of the instruction word.

This section describes any instruction operands and elements of the pre-
ceding opcode format. Any assembler exception handling for operands may
be described here.

This line discusses any fields in the opcode that are not explicit operands.

This section describes the instruction execution and its effect on the rest
of the processor or memory contents. Any constraints on the operands
imposed by the GSP or the assembler are also described here. Special in-
struction applications may follow the description.

12-21

EXAMPLE

Example Instruction EXAMPLE

Implied
Operands

This section describes any operands which are implicit inputs to the in-
struction. These operands are usuaily B file registers and 1/0 registers and
are described in detail in Sections 5 and 6. You must load these registers
with appropriate values before instruction execution.

B File Registers

Register Name Format Description
1/0 Registers
Address Name Description and Elements (Bits)

Special Graphics Topics

Interrupts

Words

Machine
States

Status Bits

Examples

12-22

Graphics instructions (DRAV, PIXBLTs, etc.) may present special topics of
discussion under the following headings:

Source Array

Source Expansion
Destination Array

Pixel Processing
Window Checking
Transparency

Corner Adjust

Plane Mask

Shift Register Transfers

Discusses the effects of possible interrupts.

Specifies the number of memory words required to store the instruction and
its extension words.

Cache resident + (Hidden ¢ycles), Cache disabled

Specifies instruction cycle timing for the instruction. Not all instructions
have hidden cycles. Section 13, Instruction Timings, provides a complete
explanation of instruction timing.

N Describes the instruction’s effects on the sign bit.

C Describes the instruction’s effects on the carry bit.

Z Describes the instruction’s effects on the zero bit.
V Describes the instruction’s effects on the overflow bit.

Each instruction description contains sample code, and shows the effects
of the code on memory and/or registers.

ABS Store Absolute Value ABS
Syntax ABS <Rd>
Execution |(Rd)| = Rd
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description

Words

Machine
States

Status Bits

Examples

[0 o o o o 0o 1 1 1 0 O|R | Rd |

ABS stores the absolute value of the contents of the destination register
back into the destination register. This is accomplished by subtracting the
destination register data from O and storing it if status bit N indicates that
the result is positive. |f the result of the subtraction is negative, then the
original contents of the destination register are retained.

1

14

N 7 if the original data is positive, O otherwise. This status bit is the in-
verse of its normal function; it is the output of the subtract-from-0 op-

eration.
C Unaffected
Z 7 if the original data is O, 0 otherwise.
V 7 if there is an overflow, O otherwise. An overflow occurs if Rd con-

tains >8000 0000 (>8000 0000 is returned).
Code Before After

A1 NCZV A1l

ABS Al >7FFF FFFF 1x00 >7FFF FFFF
ABS Al >FFFF FFFF 0x00 >0000 0001
ABS Al >8000 0000 1x01 >8000 0000
ABS Al >8000 0001 0x00 >7FFF FFFF
ABS Al >0000 0001 1x00 >0000 0001
ABS Al >0000 0000 0x10 >0000 0000
ABS Al >FFFA 0011 0x00 >0005 FFEF

12-23

ADD Add Registers ADD

Syntax ADD <Rs>,<Rd>

Execution (Rs) + (Rd) - Rd

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0o o o o0 o Rs [R] Rd |

Description

Words

Machine
States

Status Bits

Examples

12-24

ADD adds the contents of the source register to the contents of the desti-
nation register; the result is stored in the destination register.

Multiple-precision arithmetic can be accomplished by using this instruction

in conjunction with the ADDC instruction.

The source and destination registers must be in the same register file.

1

1.4

7 if the result is negative, 0 otherwise.
7 if there is a carry, O otherwise.
7 if the result is O, 0 otherwise.

N

C

4

V 7 if there is an overflow, 0 otherwise.
Cod

e Before After
Al AQ NCZV AQ
ADD Al1,AO0 >FFFF FFFF >FFFF FFFF 1100 >FFFF FFFE
ADD A1l,AO0 >FFFF FFFF >0000 0001 0110 >0000 0000
ADD A1,AO >FFFF FFFF >0000 0002 0100 >0000 0001
ADD A1,AO >FFFF FFFF >8000 0000 0101 >7FFF FFFF
ADD Al,AO >FFFF FFFF >8000 0001 1100 >8000 0000
ADD Al,AOQ >7FFF FFFF >8000 0001 0110 >0000 0000
ADD A1,AO0 >7FFF FFFF >8000 0000 1000 >FFFF FFFF
ADD A1l,AOD >7FFF FFFF >0000 0001 1001 >8000 0000
ADD A1l,AO0 >0000 0002 >0000 0002 0000 >0000 0004

ADDC Add Register with Carry ADDC

Syntax ADDC <Rs> <Rd>

Execution (Rs) + (Rd) + (C) - Rd

Encoding 15 14 13 11 10 9 7 6 5 4 3 1 0
o 1 o 0o 0 1] Rs [r] Rd

Description

Words

Machine
States

Status Bits

Examples

ADDC adds the contents of the source register and the status carry bit to
the contents of the destination register; the result is stored in the destination

register. Note that the status bits are set on the collective add.

The source and destination registers must be in the same register file.

1

1.4

N 7 if the result is negative, 0 otherwise.

C 7 if there is a carry, 0 otherwise.
Z 7 if the resultis 0, 0 otherwise.

V 7 if there is an overflow, 0 otherwise.

Code

ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC

Al,AQ
Al,AQ
Al,A0
Al,AQ
Al,A0
Al,A0
Al,AQ
Al,A0Q
Al,A0
Al,AQ
Al,AQ
Al,A0
Al,AQ
Al,AQ
Al,AQ
Al,AQ
Al,AQ
Al,RO0

COO0OO0OO0OO0OOOO—= == 223

Before

A1
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> 7FFF FFFF
>0000 0002
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
> FFFF FFFF
>7FFF FFFF
>7FFF FFFF
>7FFF FFFF
> 0000 0002

A0
> FFFF FFFF
> 0000 0001
>0000 0002
> 8000 0000
> 8000 0001
>8000 0001
> 8000 0000
>0000 0001
> 0000 0002
> FFFF FFFF
>0000 0001
>0000 0002
>8000 0000
>8000 0001
>8000 0001
>8000 0000
> 0000 0001
>0000 0002

After

NCzv
1100
0100
0100
1100
1100
0100
0110
1001

0000
1100
0110
0100
0101

1100
0110
1000
1001

0000

A0
> FFFF FFFF
> 0000 0001
>0000 0002
> 8000 0000
> 8000 0001
> 8000 0001
> 0000 0000
> 8000 0001
> 0000 0005
> FFFF FFFE
> 0000 0000
>0000 0001
> 7FFF FFFF
> 8000 0000
>0000 0000
> FFFF FFFF
> 8000 0000
> 0000 0004

12-25

ADDI Add Immediate - 76 Bits ADDI
Syntax ADDI </W>,<Rd>[,W]
Execution IW + (Rd) - Rd
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 1 1 0 0 O|R] Rd
w
Operands IW is a 16-bit, sign-extended immediate value.

Description

Words

Machine
States

Status Bits

Examples

12-26

ADDI adds the sign-extended, 16-bit immediate value to the contents of
the destination register; the result is stored in the destination register.

The assembler will use the short (16-bit) add if the immediate value has
been previously defined and is in the range -32,768 < IW < 32,767. You
can force the assembler to use the short form by following the instruction

with W:
ADDI <IW>,<Rd>,W

If the IW value is outside the legal range, the assembler will discard all but
the 16 LSBs and issue an appropriate warning message.

Multiple-precision arithmetic can be accomplished by using ADDI in con-
junction with the ADDC instruction.

2
2,8
N 7 if the result is negative, O otherwise.
C 17 if there is a carry, 0 otherwise.
Z 1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.
Code Before After

A0 NCZV A0
ADDI 1,AO0 >FFFF FFFF 0110 >0000 0000
ADDI 2,A0 >FFFF FFFF 0100 >0000 0001
ADDI 1,A0 >7FFF FFFF 1001 >8000 0000
ADDI 2,A0 >0000 0002 0000 >0000 0004
ADDI 32767,A0 >0000 0002 0000 >0000 8001
ADDI >FFFF0010,A0,W >FFFF FFFO 0110 >0000 0000

ADDI Add Immediate - 32 Bits ADDI
Syntax ADD!l </L> <Rd>[,L]
Execution IL + (Rd) = Rd
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o o0 0 1 0 1 1 0 0 1[R| Rd
IL (LSW)
IL (MSW)
Operands IL is a 32-bit immediate value.

Description

Words

Machine
States

Status Bits

Examples

ADDI adds the 32-bit, signed immediate data to the contents of the desti-
nation register; the result is stored in the destination register.

The assembler wili use the long (32-bit} ADDI if it cannot use the short
form. You can force the assembler to use the long form by following the
instruction with L:

ADDI <IL>,<Rd>,L

312

N 7 if the resuit is negative, 0 otherwise.
C 7 if there is a carry, O otherwise.

Z 7 if the resultis 0, O otherwise.

V 7 if there is an overflow, 0 otherwise.

Code Before After

A0 NCZV AQ
ADDI >FFFFFFFF,AQ >FFFF FFFF 1100 >FFFF FFFE
ADDI >80000000,A0 >FFFF FFFF 0101 >7FFF FFFF
ADDI >80000000,A0 >7FFF FFFF 1000 >FFFF FFFF
ADDI 32768,A0 >7FFF FFFF 1001 >8000 7FFF
ADDI 2,A0,L >FFFF FFFF 0100 >0000 0001

12-27

ADDK Add Constant (5 Bits) ADDK

Syntax ADDK <K>,<Rd>

Execution K+ (Rd) - Rd

Encoding 15 14 13 12 11t 170 9 8 7 6 5 4 3 2 1 0
[0 o o 1 0o of K [R | Rd

Operands K is a constant from 1 to 32.

Description

Words

Machine
States

Status Bits

Examples

12-28

ADDK adds a 5-bit constant to the contents of the destination register; the
result is stored in the destination register. The constant is treated as an
unsigned number in the range 1-32, where K = 32 is converted to O in the
opcode. The assembler will issue an error if you try to add O to a register.

Mu|t|p|e precision arithmetic can be accomplished by using this mstructnon
in conjunction with the ADDC instruction.

1

1.4

N 7 if the result is negative, 0 otherwise.
C 7 ifthereisa carry, 0 otherwise.

Z 7 if the result is 0, 0 otherwise.

V 7 if there is an overflow, O otherwise.
Co

Before After

AQ NCZV A0
ADDK 1,A0 >FFFF FFFF 0110 - >0000 0000
ADDK 2,A0 >FFFF FFFF 0100 >0000 0001
ADDK 1,A0 >7FFF FFFF 1001 >8000 0000
ADDK 1,A0 >8000 0000 1000 >8000 0001
ADDK 32,A0 >8000 0000 1000 >8000 0020
ADDK 32,A0 >0000 0002 0000 >0000 0022

ADDXY Add Registers in XY Mode ADDXY
Syntax ADDXY <Rs>,<Rd>
Execution (RsX) + (RdX) — RdX
(RsY) + (RdY) - RdY
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1+ 1 1 0o o o o] Rs [R] Rd |

Description

Words

Machine
States

Status Bits

Examples

ADDXY adds the signed source X value to the signed destination X value,
and adds the signed source Y value to the signed destination Y value. The
result is stored in the destination register. The source and destination reg-
isters are treated as if they contained separate X and Y values. When they
are added, the carry out from the lower (X) half of the register does not
propagate into the upper (Y) half.

If you only want to add the X halves together, then the Y value of one of
the operands must be O (the method for adding the Y halves is similar).

This instruction can be used for manipulating XY addresses in the register

file and is particularly useful for incremental figure drawing.

The source and destination registers must be in the same register file.

1

1.4

N 7 if resulting X field is all Os, 0 otherwise.
C The sign bit of the Y half of the result.

Z 7ifY field is all Os, O otherwise.

V The sign bit of the X half of the result.

Code Before After

Al AO AO NCZV
ADDXY Al,A0 >00000000 >0000 0000 >0000 0000 1010
ADDXY Al,A0 >00000000 =>0000 0001 =>0000 0001 0010
ADDXY Al,AQ0 >00000000 =>0001 0000 >0001 0000 1000
ADDXY A1l,A0 >00000000 >0001 0001 >0001 0001 0000
ADDXY Al,A0 >0000 FFFF >0000 0001 =>0000 0000 1010
ADDXY Al,A0 >0000 FFFF >0001 0001 >0001 0000 1000
ADDXY Al,A0 >0000 FFFF >0000 0002 =>0000 0001 0010
ADDXY Al,AO0 >0000FFFF >0001 0002 =>0001 0001 0000
ADDXY Al,a0 >FFFFO0000 =>0001 0000 >0000 0000 1010
ADDXY Al,A0 >FFFFO0000 =>0001 0001 >0000 0001 0010
ADDXY Al,AO0 >FFFFO0000 >0002 0000 >0001 0000 1000
ADDXY Al,AO0 >FFFF 0000 =>0002 0001 >0001 0001 0000
ADDXY Al,AQ0 >FFFFFFFF >000%1 0001 >0000 0000 1010
ADDXY Al,AQ >FFFFFFFF >0001 0002 >0000 0001 0010
ADDXY Al,AO0 >FFFF FFFF >0002 0001 =>0001 0000 1000
ADDXY Al,AQ0 >FFFFFFFF =>0002 0002 >0001 0001 0000

12-29

AND AND Registers AND

Syntax AND <Rs>,<Rd>

Execution (Rs) AND (Rd) — Rd

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 1t o 1 0o o o] Rs [R | Rd

Description AND bitwise-ANDs the contents of the source register with the contents

Words

Machine
States

Status Bits

Examples

12-30

of the destination register; the result is stored in the destination register.
The source and destination registers must be in the same register file.

Unaffected
Unaffected

7 if the result is O, 0 otherwise.

Unaffected

AND
AND

Al,A0
Al1,A0
Al,A0
Al,A0Q
Al,A0
Al,A0
Al1,A0

Before

A1
>FFFF FFFF
>FFFF FFFF
>0000 0000
>AAAA AAAA
> AAAA AAAA
>5555 5555
>5555 5555

A0
>FFFF FFFF
>0000 0000
>0000 0000
>5555 5555
> AAAA AAAA
>5555 5555
> AAAA AAAA

After

NCZV
xx0x
xx1x
XX1x
xx1x
xx0x
xx0x
xx1x

A0
>FFFF FFFF
>0000 0000
>0000 0000
>0000 0000
> AAAA AAAA
>55565 5555
>0000 0000

ANDI AND Immediate (32 Bits) ANDI
Syntax ANDLI </L> <Rd>
Execution iL AND (Rd) - Rd
Encoding 15 14 13 12 11 10 9 8 7 6 B 4 3 2 1 0
0o 0 0 o 1 0 1 1 1 0 O[rR] Rd
~IL (LSW)
~IL (MSW)
Operands IL is a 32-bit immediate value.

Description

Words

Machine
States

Status Bits

Examples

ANDI! bitwise-ANDs the value of the 32-bit immediate value, IL, with the
contents of the destination register; the result is stored in the destination
register.

This is an alternate mnemonic for ANDNI IL,Rd. The assembler stores the
1’s complement of IL in the two extension words.

3

3.12

N Unaffected

C Unaffected

Z 7 if the result is O, O otherwise.
V Unaffected .

Code Before After
AO NCZV AQ

ANDI >FFFFFFFF,AQ >FFFF FFFF xx0x >FFFF FFFF
ANDI >FFFFFFFF,AQ >0000 0000 xx1x >0000 0000
ANDI >00000000,A0 >0000 0000 xx1x >0000 0000
ANDI >AAAAAAAA,AQ >B555 5555 xX1x >0000 0000
ANDI >AAAAAAAA,AQ >AAAA AAAA xx0x > AAAA AAAA
ANDI >55555555,A0 >55655 5555 xx0x >5555 5555
ANDI >55555555,A0 >AAAA AAAA xx1x >0000 0000

12-31

ANDN

AND Register with Complement ANDN

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

12-32

ANDN
NOT(Rs) AND (Rd) — Rd

<Rs>, <Rd>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 o 1 o o 1] Rs [R | Rd

ANDN biwise-ANDs the 1's complement of the contents of the source re-
gister with the contents of the destination register; the result is stored in the
destination register.

The source and destination registers must be in the same register file. Note
that ANDN Rn,Rn has the same effect as CLR Rn.

1,4
N Unaffected
C Unaflfected
Z 7 if theresult is O, 0 otherwise.
V Unaffected
Code Before After

A1 A0 NCZV A0
ANDN A1,AO0 >FFFF FFFF >FFFF FFFF xx1x >0000 0000
ANDN A1,AQ >FFFF FFFF >0000 0000 xx1x >0000 0000
ANDN Al,A0 >0000 0000 >0000 0000 xx1x >0000 0000
ANDN A1,AQ >AAAA AAAA >B555 bhb5 xx0x >bbbb 5565
ANDN Al1,A0 >AAAA AAAA >AAAA AAAA xx1x >0000 0000
ANDN Al,A0 >bbbhb5 bbh5 >b5555 5555 xx1x >0000 0000
ANDN Al1l,A0 >b5b55 5655 >AAAA AAAA xx0x > AAAAAAAA

ANDNI AND Not Immediate (32 Bits) ANDNI
Syntax ANDNI </L>,<Rd>
Execution NOT IL AND (Rd) - Rd
Encoding 16 14 13 12 11 10 9 8 7 6 & 4 3 2 1 O
0o 0 0 o 1 o 1 1 1 0o oflRr] Rd
IL (LSW)
IL (MSW)
Operands L is a 32-bit immediate value.

Description

Words

Machine
States

Status Bits

Examples

ANDNI! bitwise-ANDs the 1’s complement of the 32-bit immediate data
with the contents of the destination register; the result is stored in the des-
tination register. ANDI also uses this opcode.

3
3,12
N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected
Code Before After

AO NCZV AO
ANDNI >FFFFFFFF,AQ >FFFF FFFF xx1x >0000 0000
ANDNI >FFFFFFFF,AQ >0000 0000 xx1x >0000 0000
ANDNI >00000000,A0 >0000 0000 xx1x >0000 0000
ANDNI >AAAAAAAA,AQ >5555 5555 xx0x >b5555 5555
ANDNI >AAAAAAAA,AQ >AAAA AAAA xx1x >0000 0000
ANDNI >55555555,A0 >5555 5555 xx1x >0000 0000
ANDNI >55555555,A0 >AAAA AAAA xx0x >AAAA AAAA

12-33

BTST

Test Register Bit - Constant BTST

Syntax
Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Examples

12-34

BTST <K>,<Rd>
Set status on value of bit K in Rd

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 o0 1 1 1] ~K

K is a constant in the range of 0 to 31.

31 0
< K i

| | | R
MSB LSB

~

BTST tests the specified destination register bit, K, and sets status bit Z
accordingly. The K value must be an absolute expression that evaluates to
a value in the range O to 31; if the value specified is greater than 31, the
assembler issues a warning and truncates the K operand value to the five
LSBs. The specified bit number is 1’s complemented by the assembler be-
fore it is inserted into the K field of the opcode.

1,4
N Unaffected
C Unaffected
Z 7 if the bit tested is O, O if the bit tested is 1.
V Unaffected
Code Before After
AQ NCZV
BTST O,A0 >5555 5555 xx Ox
BTST 15,A0 >bbbb bbb xx1x
BTST 31,A0 >5b55 5555 xx1x
BTST 0,A0 > AAAA AAAA xx1x
BTST 15,A0 > AAAA AAAA xx 0x
BTST 31,A0 > AAAA AAAA x x Ox
BTST 0O,AQ >FFFF FFFF xx 0x
BTST 15,A0 >FFFF FFFF xx0x
BTST 31,A0 >FFFF FFFF xx 0x
BTST 0,AQ >0000 0000 xx1x
BTST 15,A0 >0000 0000 xX1x
BTST 31,A0 >0000 0000 xx1x

BTST

Test Reqgister Bit - Register

BTST

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Examples

BTST <Rs>,<Rd>

Set status on value of bit (Rs) in Rd

15 14 13 11 10 9 7 6 5 4 3 2 0
| o 0 R Rs JIENI Rd |
Rs contains the number of the bit in Rd to be tested.
31 0
|' | | | ra
MEB Le8

2

BTST tests the specified destination register bit and sets status bit Z ac-
cordingly. The five LSBs of the source register specify the bit to be tested
(the 27 MSBs are ignored).

The source and destination registers must be in the same register file.

1

2,5
N Unaffected
C Unaffected
Z 17 if the bit tested is O, 0 if the bit tested is 1.
V Unaffected
Code Before

A1l AO
BTST Al,AO0 >0000 0000 >55565 55565
BTST Al,AQ >0000 000F >5b55 5555
BTST Al,A0 >0000 001 F >5555 5555
BTST Al,AQ >0000 0000 >AAAA AAAA
BTST Al1,AQ >0000 O00F >AAAA AAAA
BTST Al,AQ >0000 001F >AAAA AAAA
BTST A1l,A0 >FFFF FF8F >FFFF 7FFF
BTST Al,A0 >0000 0000 >FFFF FFFF
BTST Al,A0 >0000 000F >FFFF FFFF
BTST Al1,A0 >0000 001F >FFFF FFFF
BTST Al,A0 >0000 0000 >0000 0000
BTST Al,A0 >0000 000F >0000 0000
BTST A1l,A0 >0000 001F >0000 0000

After

NCZV
xx0x
XXX
xx1x
xx1x
xx0x
xx0x
x x Ox
x xOx
x X Ox
xx0x
xx1x
xx1x
xXTx

12-356

CALL

Call Subroutine - /ndirect CALL

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Example

12-36

CALL <As>

(PC’) - TOS
(Rs) = PC
(SP) - 32 —» SP

15 14 13 12 11 10 9 8 7 6 b 4 3 2 1 0
[0 0o o o 1 0o o 1 o o 1]R] Rs

CALL pushes the address of the next instruction (PC’) onto the stack, then
jumps to a subroutine whose address is contained in the source register.
This instruction can be used for indexed subroutine calls. Note that when
Rs is the SP, Rs is decremented after being written to the PC (the PC
contains the original value of Rs).

The TMS34010 always sets the four LSBs of the program counter to 0, so
instructions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC’ is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.
1

3+(3),9 (SP aligned)
3+(9),15 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALL AO
Before Aflter
A0 PC SP PC SP
>0123 4560>0444 2210 >0F00 0020 >0123 4560 =>0F00 0000

Memory will contain the following values after instruction execution:

Address Data
>0F00 0010 >2220
>0F00 0020 >0444

CALLA

Call Subroutine - Absolute CALLA

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Example

CALLA <Address>

(PC) - TOS
Address —» PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 1 0 1 1 1 11

Address (LSW)

Address (MSW)

Address is a 32-bit absolute address.

CALLA pushes the address of the next instruction (PC’) onto the stack,
then jumps to the address contained in the two extension words. This in-
struction is used for long (greater than +32K words) or externally refer-
enced calls.

The lower four bits of the program counter are always set to O, so in-
structions are always word-aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC’ is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

3

4+(2),15 (SP aligned)
4+(8),21 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

CALLA >01234560

Before After
PC SP PC SP
>0444 2210 >0F00 0020 >0123 4560 >0F00 0000

Memory will contain the following values after instruction execution:

Address Data
>0F00 0010 >2240
>0F00 0020 >0444

12-37

CALLR

Call Subroutine - Relative CALLR

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Examples

12-38

CALLR <Address>

(PC) - TOS
PC’ + (Displacementx16) — PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0o o o 1 1 0 1 0 0 1 1 1 1 1 1

Displacement

Address is a 32-bit address within +32K words (-32,768 to 32,767) of
PC.

CALLR pushes the address of the next instruction (PC’) onto the stack,
then jumps to the subroutine at the address specified by the sum of the next
instruction address and the signed word displacement. This instruction is
used for calls within a specified module or section.

The displacement is computed by the assembler as (Address - PC’)/16.
The address must be defined within the section and within -32,768 to
32,767 words of the instruction following CALLR. The assembler will not
accept an address value that is externally defined or defined within a dif-
ferent section than PC'.

The lower four bits of the program counter are always set to 0, so in-
structions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. The PC is pushed on to the stack and the SP is predecremented
by 32 before the return address is loaded onto the stack. Stack pointer
alignment affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

2

3+(2),11 (SP aligned)
3+(8),17 (SP nonaligned)

N Unaffected
C Unaffected
Z Unatfected
V Unaffected

Code Before After

PC SP PC SP
CALLR >0447FFF0 >0440 0000 >O0F00 0020 >0447 FFFO > 0QF00 0000
CALLR >04480000 >0440 0000 >0F00 0020 >0448 0000 > 0F00 0000

Memory will contain the following values after instruction execution:

Address Data
>0F00 0010 >0000
>0F00 0020 >0440

CLR

Clear Register CLR

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

CLR <Rd>
(Rd) XOR (Rd) — Rd

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0

4
[o 1 0o 1 0o 1 1] Rd | R | Rd

CLR clears the destination register by XORing the contents of the register
with itself. This is an alternate mnemonic for XOR Rd,Rd.

1

1.4
N Unaffected
C Unaffected
z 1
V Unaffected
Code Before After

A0 A0 NCZV
CLR AO >FFFF FFFF >0000 0000 xx1x
CLR AO >0000 0001 >0000 0000 xx1x
CLR AO >8000 0000 >0000 0000 xx1x
CLR AO >AAAA AAAA >0000 0000 xx1x

12-39

CLRC

Clear Carry CLRC

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

12-40

CLRC
0-C

5 14 13 12 117 10 9 8 7 6 5 4 3 2 1 O
0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 O

CLRC sets the status carry bit (C) to 0. The rest of the status register is
unaffected. The SETC instruction is a counterpart to this instruction.

This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

1

1,4

N Unaffected
c 0

Z Unaffected
V Unaffected

Code Before After

ST NCZV ST NCzZV
CLRC >F000 0000 1111 >B0O0O 0000 1011
CLRC >4000 0010 0100 >0000 0010 0000
CLRC >B0O00 001F 1011 >B000 O01F 1011

CMP Compare Registers CmP

Syntax CMP <Rs>,<Rd>

Execution Set status bits on the result of (Rd) - (Rs)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0o o 1 0o o] Rs [r] Rd i

Description

Words

Machine
States

Status Bits

Examples

CMP subtracts the contents of the source register from the contents of the
destination register and sets the condition codes accordingly. Both the
source and destination registers remain unaffected. This instruction is often
used in conjunction with the JAcc or JRce conditional jump instructions.

The source and destination registers must be in the same register file.

1

1.4

N 7 if the resuit is negative, 0 otherwise.
C 7 if a there is a borrow, 0 otherwise.
Z 7 if the result is 0, 0 otherwise.

V 7 if there is an overflow, 0 otherwise.
Cod

Before After Jumps Taken

A1l A0 NCZV
CMP Al,A0 >0000 0001 >00000001 0010 UCNN,NC,ZNV,LS,GELEHS
CMP Al,A0 >0000 0001 >00000002 0000 UC,NN,NC,NZ,NV,P HI,GEGT HS
CMP Al,a0 >00000001 >FFFFFFFF 1000 UCN,NCNZNV,PHILT LEHS
CMP Al,a0 >0000 0001 >8000 0000 0001 UC,NN,NC,NZV HLLTLE, HS
CMP Al,A0 >FFFFFFFF >7FFF FFFF 1101 UC,N,C,NZV LS GEGT,LO
CMP Al,A0 >FFFFFFFF >80000000 1100 UC,N,C,NZ,NV,LSLTLELO
CMP Al,A0 >80000000 >7FFF FFFF 1101 UC,N,C,NZV,LS GEGTLO

12-41

CMPI

Compare Immediate - 76 Bits CMPI

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Examples

12-42

CMPL
Set status bits on the result of (Rd) - IW

</W>,<Rd>[,W]

5 14 13 12 1 10 9 8 7 6 65 4 3 2 1 O

0 0 0 0 1 0 1 1 0 1 OfR | Rd

~IW

w

CMPI subtracts the sign-extended, 16-bit immediate data from the contents
of the destination register and sets the condition codes accordingly. The
destination register remains unaffected.

is a 16-bit signed immediate value.

The assembler places the 1's complement of the specified value into the
extension word (~IW).

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 < IW < 32,767. You can force
the assembler to use the short form by following the register specification

with W:
CMPI <IW>,<RdA>,W

The assembler will truncate the upper bits and issue an appropriate warning
message if the value is greater than 16 bits.

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

2
2,8
N 7 if the result is negative, 0 otherwise.
C 7 if there is a borrow, 0 otherwise.
Z 7 if the result is 0, 0 otherwise.
V 7 if there is an overflow, O otherwise.
Code Before After Jumps Taken

A0 NCZV
CMPI 1,A0 >0000 0002 0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMP1 1,A0 >0000 0001 0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI 1,A0 >00000000 1100 UC,N,C,NZNV,LS,LTLELO
CMPI 1,A0 >FFFF FFFF 1000 UC,N,NC,NZ,NV,P,HI,LT,LEHS
CMP1I 1,A0 >8000 0000 0001 UC,NN,NC,NZV,HI,LT,LEHS
CMPI -2,A0 >0000 0000 0100 UC,NN,C,NZ,NV,P,LS,GE,GT.LO
CMPI -2,A0 >FFFF FFFF 0000 UC,NN,NC,NZ NV,P,LI,GE,GT HS
CMPI -2,A0 >FFFF FFFE 0010 UC,NN,NC,ZNV,LS,GE,LE HS
CMPI -2,A0 >FFFF FFFD 1100 UCN,C,NZNV,LS,LTLELO
CMPI -1,A0 >7FFF FFFF 1101 UC,N,C,NZ,V,LS,GE,GT,LO

CMPI

Compare Immediate - 32 Bits CMPI

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

Examples

CMPI </L>,<Rd>[,L]

Set status bits on the result of (Rd) - IL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0 1t 0 1 1 0 1 1]R Rd

~IL (LSW)

~IL (MSW)

L is a 32-bit immediate value.

CMPI1 subtracts the signed, 32-bit immediate data from the contents of the
destination register and sets the condition codes accordingly. The desti-
nation register remains unaffected.

The assembler places the 1's complement of the specified value into the
extension words {(~IL).

The assembler will use this opcode if it cannot use the short form. You can
force the assembler to use the long form by following the register specifi-
cation with L:

CMPI <IL>,<Rd>,L

This instruction is often used in conjunction with the JAce or JRce condi-
tional jump instructions.

3

312

N 7 if the result is negative, 0 otherwise.
C 7 if there is a borrow, 0 otherwise.

Z 7 if the result is 0, O otherwise.

V 7 if there is an overflow, O otherwise.

Code Before After Jumps Taken

A0 NCZ V
CMPI >8000,A0 >0000 8001 000 0 UC,NN,NC,NZ,NV,PHI,GEGT,HS
CMPI >8000,A0 >0000 8000 001 0 UC,NN,NCZNV,LS,GELEHS
CMPI >8000,A0 >00007FFF 110 0 UCN,C,NZ,NV,LS,LT,LELO
CMPI >8000,A0 >FFFFFFFF 100 C¢ UC,N,NC,NZ,NV,P,HI LT LEHS
CMPI >8000,A0 >8000 7FFF 000 1 UC,NN,NC,NZV,HI,LT,LEHS
CMPI >FFFF7FFF,AQ >0000 0000 010 0 UC,NN,C,NZNV,P,LS GEGTLO
CMPI >FFFF7FFE,AO0 >FFFF 7FFF 000 0O UC,NN,NC,NZ NV,P,Hi,GE,GT,HS
CMPI >FFFF7FFE,AO0>FFFF7FFE 001 0 UC,NN,NC,Z,NV,LS,GE,LEHS
CMPI >¥FFF7FFE,AQ >FFFF 7FFD 110 0 UCN,C,NZNV,LSLTLELO
CMPI >FFFF7FFF,A0>7FFF7FFF 110 1 UC,N,C,NZV,LS,GE GT,LO

12-43

CMPXY

Compare X and Y Halves of Registers CMPXY

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

12-44

CMPXY <Rs> <Rd>
Set status bits on the results of:
(RdX) - (RsX)

(RAY) - (RsY)

15 14 13 12 11 10 9 8 7 6 5
[+ 1 1 0 o 1 o] Rs

4 3 2 1 0
1] A |

CMPXY compares the source register to the destination register in XY mode
and sets the status bits as if a subtraction had been performed. The regis-
ters themseives remain unaffected. The source and destination registers are
treated as signed XY registers. Note that no overflow detection is provided.

The source and destination registers must be in the same register file.

1

1.4

N 7 if source X field = destination X field, 0 otherwise.
C Sign bit of Y half of the result.
2 1 if source Y field = destination Y field, 0 otherwise.
V Sign bit of X half of the result.

Code Before After Jumps Taken
A1l AQ NCZV
CMPXY A1,A0 >00090009 =>00010001 0101 NN,CNZVLSLT
CMPXY Al1,A0 >0009 0009 =>0009 0001 0011 NN,NCZV,LSLT
CMPXY Al,A0 >0009 0009 =>0001 0009 1100 N,C,NZNV.LSLT
CMPXY Al,A0 >00090009 =>00090009 1010 N,NC.ZNV,LS.LT
CMPXY A1,A0 >0009 0009 >00000010 0100 NN.C,NZNV,LS,GE
CMPXY Al,A0 >0009 0009 =>0009 0010 0010 NN,NC,Z NV, LS,GE
CMPXY Al1,A0 >0009 0009 =>00100000 0001 NN,NC,NZV.HILT
CMPXY A1,A0 >0009 0009 =>00100009 1000 N,NC,NZNV,HILT
CMPXY Al,A0 >00090009 =>00100010 0000 NN,NC,NZNV,HI,GE

CcPW Compare Point to Window cPW
Syntax CPW <Rs>,<Rd>
Execution Point Code — Rd
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
(1t 1 0 o 1 1] Rs [r | Rd]
Description CPW compares a point represented by an XY value in the source register to
the window limits in the WSTART and WEND registers. The contents of
the source register are treated as an XY address that consists of 16-bit
signed X and Y values. WSTART and WEND are also treated as signed
XY -format registers. WSTART and WEND should contain positive values;
negative values produce unpredictable results. The location of the point
with respect to the window is encoded as follows and loaded into the
destination register.
Codes:
0101 . 0100 © 0110
Window ’ 31 98 64 0
0001 | 0000 | o010 loco...000 | copEe | nooos] ra
; f x
1001 [1000 1010
: : 3
Note that the five LSBs of the destination register are set to 0 so that Rd
can be used as an index into a table of 32-bit addresses.
This instruction can also be used to trivially reject lines that do not intersect
with a window. The CPW codes for the two points defining the line are
ANDed together. If the result is nonzero, then the line must lie completely
outside the window (and does not intersect it). A O result indicates that the
line may intersect the window, and a more rigorous test must be applied.
The source and destination registers must be in the same register file.
Implied
Operands B File Registers
Register Name Format Description
B5 WSTART XY Window start. Defines inclusive starting
corner of window (lesser value corner).
B6 WEND XY Window end. Defines inclusive ending
corner of window (greater value corner).
Words 1
Machine
States 1.4

12-45

CcPW

Compare Point to Window

cPW

Status Bits

Examples

12-46

N Unaffected
C Unaffected
Z Unaffected
VvV

7 if point lies outside window, 0 otherwise.

You must select appropriate implied operand values before executing the
instruction. In this example, the implied operands are set up as follows,
specifying a block of 36 pixels.

WSTART =55
WEND = AA

>000B 0006

NCZV
xxx0
xxx0
xxx0
Xxx1
xxx1
xxx0
xxx0
xxx0
xxx0
xxx1
XX x1
xxx0
xxx0
xxx0
xxx0
xxx0

After

A0
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000

00AO
0080
0080
00CO
0020
0000
0000
€040
0020
0000
0000
0040
0120
0100
0100
0140

NCZV
xxx1
xxx1
Xxx1
Xxx1
xxx1
xxx0
xxx0
xxx1
xxx1
xxx0
xxx0
Xxx1
xxx1
xxx1
xxx1
xxx1

CVXYL Convert XY Address to Linear Address CVXYL

Syntax CVXYL <Rs>,<Rd>

Execution (Rs XY) — Rd (Linear)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
f1 1 1 0 1 o o] Rs [R | R& |

Operands Rs The source register contents are treated as an XY address that contains

Description

Implied
Operands

Words

Machine
States

Status Bits

signed 16-bit X and Y values. The X value must be positive.

CVXYL converts an XY address to a linear address.

The source register

contains an XY address. The X value occupies the 16 LSBs of the register
and the Y value occupies the 16 MSBs. This is converted into a 32-bit li-
near address which is stored in the destination register.
conversion formula is used:

The following

Address = (Y x Display Pitch) OR (X x Pixel Size) + Offset

Since the TMS34010 restricts the screen pitch and pixel size to powers of
two (for XY addressing), the multiply operations in this conversion are ac-
tually shifts. The offset value is in the OFFSET register. The CONVDP value
is used to determine the shift amount for the Y value, while the PSIZE reg-
ister determines the X shift amount.

The source and destination registers must be in the same register file.

B File Registers

Register Name Format Description
B3 DPTCH Linear Destination pitch
B4 OFFSET Linear Screen origin (location 0,0)
1/O Registers
Address Name Description and Elements (Bits)
>C0000140 | CONVDP XY -to-linear conversion (destination pitch)
>C0000150 | PSIZE Pixel size (1,2,4,8,16)
1
3,6
N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-47

CVXYL Convert XY Address to Linear Address CVXYL
Examples
Code Before After
A0 OFFSET PSIZE CONVDP A1
CVXYL AQ,Al >0040 0030 >0000 0000 >0010 >0014 >0002 0300
CVXYL AQ,Al >0040 0030 >0000 0000 >0008 >0014 >0002 0180
CVXYL AOQ,Al >0040 0030 >0000 0000 >0004 >0014 >0002 0000
CVXYL AOQ,Al >0040 0030 >0000 8000 >0004 >0014 >0002 8000
CVXYL AOQ,Al >0040 0030 >0F00 0000 >0004 >0014 >0F02 0000
CVXYL AQ,Al >0040 0030 >0000 0000 >0002 >0014 >0002 0060
CVXYL AQ,Al >0040 0030 >0000 0000 >0001 >0014 >0002 0030
CVXYL AO,Al >0040 0030 >0000 0000 >0001 >0013 >0004 0030
CVXYL AOQ,Al >0040 0030 >0000 0000 >0001 >0015 >0001 0000
CONVDP = >0013 corresponds to DPTCH = >0000 1000
CONVDP = >0014 corresponds to DPTCH = >0000 0800
CONVDP = >0015 corresponds to DPTCH = >0000 0400

12-48

DEC

Decrement Register DEC

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

DEC
(Rd) -1 - Rd

<Rd>

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
[0 o o 1 o 1 0o o o 0 1[R] Rd

DEC subtracts 1 from the contents of the destination register; the result is
stored in the destination register. This instruction is an alternate mnemonic
for SUBK 1,Rd.

Multiple-precision arithmetic can be accomplished by using this instruction

in conjunction with the SUBB instruction.

1

1,4
N 7 if the result is negative, 0 otherwise.
C 7 if there is a borrow, 0 otherwise.
Z 7 if the result is 0, O otherwise.
V 17 if there is an overflow, 0 otherwise.
Code Before After

Al Al NCZV
DEC Al >0000 0010 >0000 000F 0000
DEC Al >0000 0001 >0000 0000 0010
DEC Al >0000 0000 >FFFF FFFF 1100
DEC Al >FFFF FFFF >FFFF FFFE 1000
DEC Al >8000 0000 >7FFF FFFF 0001

12-49

DINT

Disable Interrupts DINT

Syntax

Execution

Encoding

Description

Words

Machine
States

Status Bits

Examples

12-50

DINT
0 - IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o o 0o 0 o 0 1 1 0 1 1 0 0 0O 0 O

DINT disables interrupts by setting the global interrupt enable bit (IE, status
bit 21) to 0. All interrupts except reset and NMI are disabled; the interrupt
enable mask in the INTENB register is ignored. The remainder of the status
register is unaffected.

The EINT instruction enables interrupts.
1

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

IE 0
Code Before After
ST ST
DINT >0000 0010 >0000 0010
DINT >0020 0010 >0000 0010

DIVS

Divide Registers - Signed DIVS

Syntax

Execution

Encoding

Operands

Description

Words

Machine
States

Status Bits

DIVS <Rs>,<Rd>

Rd Even: (Rd):(Rd+1)/(Rs) - Rd, remainder - Rd+1
Rd Odd: (Rd)/{Rs) - Rd

i 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 o 1 1 o of Rs [R | Rd |
Rs is a 32-bit signed divisor.

Rd

is a 32-bit signed dividend, or the most significant half of a 64-bit
signed dividend.

There are two cases:

Rd Even DIVS performs a signed divide of the 64-bit operand contained

Rd Odd

in the two consecutive registers, starting at the specified desti-
nation register, by the 32-bit contents of the source register.
The specified even-numbered destination register, Rd, contains
the 32 MSBs of the dividend. The next consecutive register
{which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). The re-
mainder is always the same sign as the dividend (in Rd:Rd+1).
Avoid using A14 or B14 as the destination register, since this
overwrites the SP; the assembler will issue a warning in this
case.

DIVS performs a signed divide of the 32-bit operand contained
in the destination register by the 32-bit value in the source re-
gister. The quotient is stored in the destination register; the re-
mainder is not returned.

The source and destination registers must be in the same register file.

1

40,43 (Rd even)

39,42 (Rd odd)

41,44 if resuit = >80000000
7,10 if (Rd) > (Rs) or (Rs) <0

<NOZ

7 if the quotient is negative, 0 otherwise.

Unaffected .

7 if the quotient is 0, O otherwise.

7 if quotient overflows (cannot be represented by 32 bits), 0 otherwise.
The following conditions will set the overflow flag:

Divisor is 0
Quotient cannot be contained within 32 bits

12-51

DIVS

Divide Registers - Signed

DIVS

Examples

DIVS A2,AQ

Before

A0
>1234 5678
>EDCB AS87
>EDCB AS87
>1234 5678
>1234 5678
>0000 0000
>0000 0000
>8765 4321

Al
>8765 4321
>789A BCDF
>789A BCDF
>8765 4321
>8765 4321
>0000 0000
>0000 0000
>0000 0000

DIVS AZ2,Al

Before

A0
>0000 0000
>0000 0000
>0000 0000
>0000 0000
>0000 0000
>0000 0000

12-52

Al
>8765 4321
>8765 4321
>789A BCDF
>789A BCDF
>8765 4321
>0000 0000

A2
>8765 4321
>8765 4321
>789A BCDF
>789A BCDF
>0000 0000
>0000 0000
>8765 4321
>8765 4321

A2
>1234 5678
>EDCB A988
>EDCB A988
>1234 5678
>0000 0000
>0000 0000

After

A0
>D95B C60A
>26A4 39F6
>D95B C60A
>26A4 39F6
>1234 5678
>0000 0000
>0000 0000
>8765 4321

After

AQ
>0000 0000
>0000 0000
>0000 0000
>0000 0000
>0000 0000
>0000 0000

Al
>15CA 1DD7
>EA35 E229
>EA35 E229
>16CA1DD7
>8765 4321
>0000 0000
>0000 0000
>0000 0000

A1l
>FFFF FFFA
>0000 0006
>FFFF FFFA
>0000 0006
>8765 4321
>0000 0000

A2
>8765 4321
>8765 4321
>789A BCDF
>789A BCDF
>0000 0000
>0000 0000
>8765 4321
>8765 4321

A2
>1234 5678
>EDCB A988
>EDCB A988
>1234 5678
>0000 0000
>0000 0000

NCZV
1x00
0x00
1x00
0x00
0x01
0x 01
0x10
0x01

NCZV
1x00
0x00
1x00
0x00
0x01
0x01

DIVU Divide Registers - Unsigned DIVU
Syntax DIVU <Rs> <Rd>
Execution Rd Even: (Rd):(Rd+1)/(Rs) — Rd, remainder = Rd+1
Rd Odd: (Rd)/(Rs) - Rd
Encoding %5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1 1 0 1| Rs [r] Rd
Operands Rs is a 32-bit unsigned divisor.
Rd is a 32-bit unsigned dividend or the most significant half of a 64-bit

Description

Words

Machine
States

Status Bits

unsigned divisor.

There are two cases:

Rd Even

Rd Odd

DIVU performs an unsigned divide of the 64-bit operand con-
tained in the two consecutive registers, starting at the destina-
tion register, by the 32-bit contents of the source register. The
specified even-numbered destination register, Rd, contains the
32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). Avoid
using A14 or B14 as the destination register, since this over-
writes the SP; the assembler will issue a warning in this case.

DIVU performs an unsigned divide of the 32-bit operand con-
tained in the destination register by the 32-bit value in the
source register. The quotient is stored in the destination regis-
ter; the remainder is not returned.

The source and destination registers must be in the same register file.

1

37,40 (Rd even)
37,40 (Rd odd)
5,8 if (Rd) > (Rs) or (Rs) < 0

Unaffected

Unaffected

7 if the quotient is 0, 0 otherwise.

7 if guotient overflows (cannot be represented by 32 bits), 0 otherwise.
The following conditions set the overflow flag:

<NGOZ2

Divisoris O
Quotient cannot be contained within 32 bits

12-53

DIVU Divide Registers - Unsigned DIVU

Examples
DIVU A2,AQ
Before After
A0 Al A2 A0 Al A2 NCZV
>1234 5678 >8765 4321 >789A BCDF >26A4 39F6 >15CA 1DD7 >789A BCDF xx00
>1234 5678 >87654321 >0000 0000 >1234 5678 >8765 4321 >0000 0000 xxO01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 xxO01
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >87654321 xx10
>8765 4321 >0000 0000 >8765 4321 >8765 4321 >0000 0000 >87654321 xx01
DIVU A2,Al
Before After
AO0 Al A2 A0 A1 A2 NCZV
>0000 0000 >789A BCDF >1234 5678 >0000 0000 >0000 0006 >12345678 xx00
>0000 0000 >1234 5678 >0000 0000 >0000 0000 >1234 5678 >00000000 xx01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 xxOt1
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >87654321 xx10
>0000 0000 >8765 4321 >8765 4321 >0000 0000 >0000 0001 >8765 4321 xx00

12-54

DRAV

Draw and Advance DRAV

Syntax

Execution

Encoding

Description

Implied
Operands

Pixel
Processing

Window
Checking

DRAV <Rs>,<Rd>

(pixel) COLORT ~ *Rd
(RsX) + (RdX) - RdX
(RsY) + (RdY) - RdY
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 1 1 1 0o 1 1] Rs [R | Rd

DRAYV writes the pixel value in the COLOR1 register to the location pointed
to by the XY address in the destination register. Following the write, the
XY address in the destination register is incremented by the value in the
source register: the X half of Rs is added to the X half of Rd, and the Y half
of Rs is added to the Y half of Rd. Any carry out from the lower (X) half
of the register will not propagate into the upper (Y) half.

COLOR?1 bits 0-15 are output on data bus lines 0-15, respectively. The
pixel data used from COLOR?1 is that which aligns to the destination lo-
cation, so 16-bit patterns can be implemented. The source and destination
registers must be in the same register file.

B File Registers

Register Name Format Description
B3 DPTCH Linear Destination pitch
B4 OFFSET Linear Screen origin (location 0,0)
B5 WSTART XY Window starting corner
B6 WEND XY Window ending corner
B9 COLOR1 Pixel Pixel color
I/O Registers
Address Name Description and Elements (Bits)

>C00000B0O | CONTROL | PP~ Pixel processing operations (22 options)
W - Window checking operation
T -—Transparency operation

>C0000140 | CONVDP XY-to-linear conversion (destination pitch)
>C0000150 | PSIZE Pixel size (1,2,4,8,16)
>C0000160 | PMASK Plane mask ~ pixel format

Set the PPOP field in the CONTROL register to select a pixel processing
operation. This operation will be applied to the pixel as it is moved to the
destination location. At reset, the default pixel processing operation is re-
place (S = D). For more information, see Section 7.7, Pixel Processing, on
page 7-15.

Select a window checking mode by setting the W bits in the CONTROL
register. If you select an active window checking mode (W = 1, 2, or 3),
the WSTART and WEND registers will define the XY starting and ending
corners of a rectangular window. The X and Y values in both WSTART and
WEND must be positive.

12-55

DRAV Draw and Advance DRAV

When the TMS34010 attempts to write a pixel inside or outside a defined
value, the foliowing actions may occur:

W=0 No window operation. The pixel is drawn and the WVP and V bits
are unaffected.

W=1 Window hit. No pixels are drawn. The V bit is set to O if the pixel lies
within the window; otherwise, it is set to 1.

W=2 Window miss. If the pixel lies outside the window, the WVP and V
bits are set to 1 and the instruction is aborted (no pixels are drawn).
Otherwise, the pixel is drawn and the V bit is set to 0.

W=3 Window clip. If the pixel lies outside the window, the V bit is set to
1 and the instruction is aborted (no pixels are drawn). Otherwise, the
pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0-valued (transparent)
pixels resulting from the combination of the source and destination pixels,
according to the selected pixel processing operation. At reset, the default
case for transparency is off.

Plane Mask The plane mask is enabled for this instruction.

Shift Register

Transfers When this instruction is executed and the SRT bit is set, normal memory
read and write operations become SRT reads and writes. Refer to Section
9.9.2, Video Memory Bulk initialization, on page 9-27 for more information.

Words 1

Machine
States The states consumed depend on the operation selected, as indicated below.
. . . Window
Pixel Processing Operation Violation

PSIZE | Replace | Boolean| ADD ADDS suB SUBS [MIN/MAX|W=1|W=2|W=3
5
5

1,2,4,814+(3),10]6+(3),12]| 7+(3).13[7+(3),13| 7+(3),13{8+(3),14| 7+(3).13 | 5.8 | 36 | 58
16 4+(1),8 |6+(1),10|6+(1),10}7+(1) 11| 7+(1),11]|8+(1) 12| 7+(1),11 8| 36| 58
Status Bits N Unaffected
C Unaffected
Z Unaffected
V 7 if a window violation occurs, 0 otherwise; unaffected if window

clipping is not used.

12-56

DRAV

Draw and Advance

DRAV

Examples

DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV
DRAV

Al,A0
Al,A0
Al,A0
Al,A0
Al,A0
Al,A0
Al,A0
Al,AQ
Al,A0

These DRAV examples use the following implied operand setup.

Register File B:

DPTCH (B3)
OFFSET (B4)

WSTART (B5)

WEND (B6)
COLOR1 (BY)

| I

>200
>0001 0000
>0010 0000
>003C 0040
>FFFF FFFF

I/0 Registers:
CONVDP

= >0016

Assume that memory contains the following values before instruction exe-

cution:
Address

>0C01 8040

Before

A0
>0040 0040
>0040 0020
>0040 0010
>0040 0008
>0040 0004
>0040 0004
>0040 0004
>0040 0004
>0040 0004

Data
>3888

A1
>0010 0010
>0010 0010
>0010 0010
>0010 0010
>0010 0010
>0000 FFFF
>FFFF 0000
>0001 0001
>0040 0004

PSIZE
>0001
>0002
>0004
>0008
>0010
>0010
>0010
>0010
>0010

PP
00000
00000
00000
00000
00000
01010
10011
00000
00000

After

PMASK A0

>0000
>0000
>0000
>0000
>0000
>0000
>0000
>0000
>00FF

>0050 0050
>0050 0030
>0050 0020
>0050 0018
>0050 0014
>0040 0003
>003F 0004
>0041 0005
>0080 0008

@>18040
>8889
>888B
>888F
>88FF
>FFFF
>0000
>0000
>0000
>FFO0

12-57

DSJ Decrement Register and Skip Jump DSJ
Syntax DSJ <Rd>,<Address>
Execution (Rd) -1 - Rd
If (Rd) # O, then (Displacementx16) + (PC’) - PC
If (Rd) = 0, then go to next instruction
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o 0 o 0o 1 1 0 1 1 0 o0|R| Rd
Displacement
Operands Rd contains the operand to be decremented.

Description

Words

Machine
States

Status Bits

Examples

12-58

Address is a 32-bit address (within 32K words).

DSJ decrements the contents of the destination register by 1. If this result
is nonzero, then a jump is made relative to the current PC. The current
PC points to the instruction word that immediately follows the second word
of the DSJ instruction. The signed word displacement is converted to a
bit displacement by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement (Displacement x 16)
to the address of the next instruction.

If the result of the destination register decrement is O, then no jump is per-
formed and the program continues execution at the next sequential in-
struction.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction is useful for large loops involving a counter. For shorter
loops, the assembler will translate this into a DSJS instruction.

2

3,9 (Jump)
2,8 (No jump)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

A5 A5 Jump taken?
DSJ A5,LOOP >0000 0009 >0000 0008 Yes
DSJ A5,LOOP >0000 0001 >0000 0000 No
DSJ A5,LOOP >0000 0000 >FFFF FFFF Yes

Conditionally Decrement Register

DSJEQ and Skip Jump DSJEQ
Syntax DSJEQ <Rd>,<Address>
Execution If (Z) =1 then (Rd) -1 — Rd
If (Rd) # O then PC’ + (Displacementx16) — PC
If (Rd) = O then go to next instruction
If (Z) = 0 then go to next instruction
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o o o 1 1 0 1 1 0 1]R| Rd
Displacement
Operands Rd contains the operand to be conditionally decremented.

Description

Words

Machine
States

Status Bits

Address is a 32-bit address (within 32K words).

The DSJEQ instruction performs a conditional jump, based on an evalu-
ation of the status Z bit.

® If Z = 1, the contents of the destination register are decremented by
1.

- If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

- If the result is 0, then the jump is skipped and the program
continues execution at the next sequential instruction.

] If Z = 0, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC’)/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit or implicit compare to 0. Ad-
ditional information on these types of compares can be obtained in the
CMP and CMPI!, and MOVE-to-register instructions, respectively.

2

3,9 (Jump)

2,8 (No jump)
N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-59

Conditionally Decrement Register

DSJEQ and Skip Jump DSJEQ
Examples Code Before After
A5 NCzV Ab Jump taken?

DSJEQ A5,LOOP >0000 0009 xx1x >0000 0008 Yes
DSJEQ A5,LOOP >0000 0001 xx1x >0000 0000 No
DSJEQ A5,LOOP >0000 0000 xx1x >FFFF FFFF Yes
DSJEQ A5,LOOP >0000 00089 xxO0x >0000 0009 No
DSJEQ A5,LOOP >0000 0001 xx0x >0000 0001 No
DSJEQ A5,LOOP >0000 0000 xx0Ox >0000 0000 No

12-60

Conditionally Decrement Register

DSJNE and Skip Jump DSJNE
Syntax DSJNE <Rd>,<Address>
Execution if (Z) = 0 then (Rd) -1 - Rd
If (Rd) # O then PC’ + (Displacementx16) - PC
If (Rd) = 0 then go to next instruction
If (Z) = 1 then to to next instruction
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0o 0 0 0 1 1 0 1 1 1 OfR]| Rd
Displacement
Operands Rd contains the operand to be conditionally decremented.

Description

Words

Machine
States

Status Bits

Address is a 32-bit address (within 32K words).

The DSJNE instruction performs a conditional jump, based on an evalu-
ation of the Z bit.

® If Z = 0, the contents of the destination register are decremented by
1.

- If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

- If the result is O, then the jump is skipped and the program
continues execution at the next sequential instruction.

® If Z =1, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit compare or an implicit compare
to 0. Additional information on these types of compares can be obtained
in th