
SPVU001

TMS34010
User's Guide

Graphics Products

TEXAS
INSTRUMENTS

This page intentionally left blank.

TMS34010

User's Guide

4
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the
device specifications identified in this publication without notice. TI advises
its customers to obtain the latest version of device specifications to verify,
before placing orders, that the information being relied upon by the customer
is current.

In the absence of written agreement to the contrary, TI assumes no liability for
TI applications assistance, customer's product design, or infringement of pat-
ents or copyrights of third parties by or arising from use of semiconductor
devices described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, or other
intellectual property right of TI covering or relating to any combination, ma-
chine, or process in which such semiconductor devices might be or are used.

Copyright © 1986, Texas Instruments Incorporated

Contents

Section

Page

1 	Introduction
1.1 TMS34010 Overview
1.2 	Key Features
1.3 	Typical Applications
1.4 Architectural Overview
1.4.1 	Other Special Processing Hardware
1.4.2 	TMS34010 Block Diagram
1.5 	Manual Organization
1.6 References and Suggested Reading

2 	Pin Functions
2.1 	Pinout and Pin Descriptions
2.2 	Host Interface Bus Signals
2.3 	Local Memory Interface Signals
2.4 Video Timing Signals
2.5 	Hold and Emulator Interface Signals
2.6 	Power, Ground, and Reset Signals

3 	Memory Organization
3.1 	Memory Addressing
3.2 Memory Map
3.3 Stacks
3.3.1 	System Stack
3.3.2 	Auxiliary Stacks

4 	Hardware-Supported Data Structures
4.1 	Fields
4.2 	Pixels
4.2.1 	Pixels in Memory
4.2.2 	Pixels on the Screen
4.2.3 	Display Pitch
4:3 XY Addressing
4.3.1 	XY-to-Linear Conversion
4.4 	Pixel Arrays

5 	CPU Registers and Instruction Cache
5.1 	General-Purpose Registers
5.1.1 	Register File A
5.1.2 • 	Register File 8
5.1.3 	Stack Pointer
5.1.4 	Implied Graphics Operands
5.2 	Status Register
5.3 Program Counter
5.4 	Instruction Cache
5.4.1 	Cache Hardware
5.4.2 	Cache Replacement Algorithm
5.4.3 	Cache Operation

1-1
1 - 2
1-3
1-4
1-5
1-5
1-6
1-8
1 - 10

2-1
2-2
2-5
2-7
2-9
2-10
2-11

3-1
3-2
3-4
3-6
3-6
3-10

4-1
4-2
4-6
4-6
4-7
4-10
4-11
4-11
4-14

5-1
5-2
5-2
5-3
5-4
5-5
5-20
5-22
5-23
5-23
5-24
5-25

5.4.4 	Self-Modifying Code 5-26
5.4.5 	Flushing the Cache 	5-26
5.4.6 	Cache Disable 5-26
5.4.7 	Performance with Cache Enabled versus Cache Disabled 5-27
5.5 	Internal Parallelism 	 5-28

6 	I/O Registers 	 6-1
6.1 	I/O Register Addressing 	 6-2
6.2 	Latency of Writes to I/O Registers 	 6-3
6.3 	I/O Registers Summary 	 6-4
6.3.1 	Host Interface Registers 	 6-6
6.3.2 	Local Memory Interface Registers 	 6-7
6.3.3 	Interrupt Interface Registers 	 6-7
6.3.4 	Video Timing and Screen Refresh Registers 	 6-8
6.4 	Alphabetical Listing of I/O Registers 	 6-8

7 	Graphics Operations 	 7-1
7.1 	Graphics Operations Overview 7-2
7.2 	Pixel Block Transfers 	 7-4
7.2.1 	Color-Expand Operation 	 7-5
7.2.2 	Starting Corner Selection 	 7-7
7.2.3 	Interrupting PixBlts and Fills 	 7-9
7.3 	Pixel Transfers 	 7 -10
7.4 	Incremental Algorithm Support 	 7-10
7.5 	Transparency 	 7-11
7.6 	Plane Masking 7-12
7.7 	Pixel Processing 	 7-15
7.8 	Boolean Processing Examples 	 7-17
7.8.1 	Replace Destination with Source 	7-18
7.8.2 	Logical OR of Source with Destination 	 7-18
7.8.3 	Logical AND of NOT Source with Destination 7-18
7.8.4 	Exclusive OR of Source with Destination 	 7-18
7.9 	Multiple-Bit Pixel Operations 	 7-19
7.9.1 	Examples of Boolean Operations 7-19
7.9.2 	Operations On Pixel Intensity • 	7-22
7.10 Window Checking 7-25
7.10.1 	W=1 Mode - Window Hit Detection 	 7-26
7.10.2 W=2 Mode - Window Miss Detection 	 7-27
7.10.3 	W=3 Mode- Window Clipping 	 7-27
7.10.4 	Specifying Window Limits 7-28
7.10.5 	Window Violation Interrupt 	 7-29
7.10.6 	Line Clipping 	 7-29

8 	Interrupts, Traps, and Reset 	 8 - 1
8.1 	interrupt Interface Registers 	 8-3
8.2 	External Interrupts 	8-3
8.3 	Internal Interrupts 	8-4
8.4 	Interrupt Processing 	 8-5
8.4.1 	Interrupt Latency 	8-6
8.5 Traps 	 8-8
8.6 	Illegal Opcode Interrupts 	8-8
8.7 	Reset 8-9
8.7.1 	Asserting Reset 	 8-9
8.7.2 	Suspension of DRAM-Refresh Cycles During Reset 8-10

iv

	

8.7.3 	Initial State Following Reset

	

8.7.4 	Activity Following Reset
8-10
8-11

9 	Screen Refresh and Video Timing 	 9-1
9.1 	Video Timing Signals 	 9-2
9.2 Screen Sizes 	 9-3
9.3 Video Timing Registers 	 9-4
9.4 	Horizontal Video Timing 	9-6
9.5 	Vertical Video Timing 	 9-8
9.5.1 	Noninterlaced Video Timing 	 9-9
9.6 	Display Interrupt 	 9-14
9.7 	Dot Rate 	 9-15
9.8 	External Sync Mode 9-16
9.8.1 	A Two-GSP System 9-16
9.8.2 	External Interlaced Video 	9-18
9.9 Video RAM Control 	 9-19
9.9.1 	Screen Refresh 	9-19
9,9.2 	Video Memory Bulk Initialization 	 9-27

10-1
10-2
10-2
10-4
10-5
10-8
10-11
10-19
10-21
10-22
10-23

10 	Host Interface Bus
10.1 Host Interface Bus Pins
10.2 Host Interface Registers
10.3 Host Register Reads and Writes
10.3.1 	Functional Timing Examples
10.3.2 	Ready Signal to Host
10.3.3 	Indirect Accesses of Local Memory
10.3.4 	Halt Latency
10.3.5 	Accommodating Host Byte-Addressing Conventions
10.4 Bandwidth
10.5 Worst-Case Delay

11 	Local Memory Interface
11.1 Local Memory Interface Pins
11.2 Local Memory Interface Registers
11.3 Memory Bus Request Priorities
11.4 Local Memory Interface Timing
11.4.1 	Local Memory Write Cycle Timing
11.4.2 	Local Memory Read Cycle Timing
11.4.3 	Local Shift-Register-to-Memory Cycle Timing
11.4.4 	Local Memory-to-Shift-Register Cycle Timing
11.4.5 	Local Memory RAS-Only DRAM Refresh Cycle Timing
11.4.6 	Local Memory CAS-before-RAS DRAM Refresh Cycle Timing
11.4.7 	Local Memory Internal Cycles
11.4.8 	I/O Register Access Cycles
11.4.9 	Read-Modify-Write Operations
11.4.10 Local Memory Wait States
11.4.11 	Hold Interface Timing
11.4.12 Local Bus Timing Following Reset
11.5 Addressing Mechanisms
11.5.1 	Display Memory Hardware Requirements
11.5.2 	Memory Organization and Bank Selecting
11.5.3. Dynamic RAM Refresh Addresses
11.5.4 	An Example - Memory Organization and Decoding

11-1
11-2
11-3
11-4
11-5
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-18
11-22
11-23
11-24
11-25
11-25
11-27

12-1
12-2
12-3
12-3
12-3
12-4
12-4
12-5
12-6
12-6
12-7
12-8
12-8
12-8
12-8
12-9
12-9
12-10
12-14
12-14

12 The TMS34010 Instruction Set
12.1 Symbols and Abbreviations
12.2 Addressing Modes
12.2.1 	Immediate Addressing
12.2.2 	Indirect XY
12.2.3 	Absolute Addressing
12.2.4 	Register Direct
12.2.5 	Register Indirect
12.2.6 	Register Indirect with Displacement
12.2.7 	Register Indirect with Predecrement
12.2.8 	Register Indirect with Postincrement
12.3 Move Instructions Summary
12.3.1 	Register-to-Register Moves
12.3.2 	Constant-to-Register Moves
12.3.3 	X and Y Register Moves 	
12.3.4 	Multiple Register Moves
12.3.5 	Byte Moves
12.3.6 	Field Moves
12.4 PIXBLT Instructions Summary
12.5 PIXT Instructions Summary 	

13 	Instruction Timings
13.1 General Instructions
13.1.1 	Best Case Timing - Considering Hidden States
13.1.2 	Other Effects on Instruction Timing
13.2 MOVE and MOVB Instructions
13.2.1 	Moves Between Registers and Memory
13.2.2 	Memory-to-Memory Moves 	
13.2.3 	MOVE Timing Example
13.3 FILL Instructions
13.3.1 	FILL Setup Time
13.3.2 	FILL Transfer Timing
13.3.3 	FILL Timing Examples
13.3.4 	Interrupt Effects on FILL Timing
13.4 PIXBLT Instructions
13.4.1 	PIXBLT Setup Time
13.4.2 	PIXBLT Transfer Timing
13.4.3 	PIXBLT Timing Examples
13.4.4 	The Effect of Interrupts on PIXBLT Instructions
13.5 PIXBLT Expand Instructions
13.5.1 	PIXBLT Setup Time
13.5.2 	PIXBLT Transfer Timing
13.5.3 	PIXBLT Timing Examples
13.5.4 	The Effect of Interrupts
13.6 The LINE Instruction
13.6.1 	LINE Setup Time
13.6.2 	LINE Transfer Timing
13.6.3 	LINE Timing Example
13.6.4 	Effects of Interrupts on LINE Timing

13-1
13-2
13-2
13-3
13-4
13-5
13-6
13-8
13-9
13-9
13-10
13-13
13-15
13-16
13-16
13-18
13-23
13-25
13-26
13-26
13-27
13-31
13-33
13-34
13-34
13-34
13-35
13-36

A 	TMS34010 Data Sheet 	 A-1
B 	Emulation Guidelines for Prototyping 	 B-1
C 	Software Compatibility with Future GSPs 	 C-1
E 	Glossary 	 E-1

vi

Illustrations

Figure Page

1-1. System Block Diagram 	1-5
1-2, Internal Architecture Block Diagram 	1-6
2-1. TMS34010 Pinout (Top View) 	2-2
2-2. TMS34010 Major Interfaces 	2-3
3-1. Logical Memory Address Space 	3-2
3-2. Physical Memory Addressing 	3-2
3-3. TMS34010 Memory Map 	3-4
3-4. System Stack 	3-7
3-5. Stack Operations 	3-8
3-6. Auxiliary Stack Grows toward Lower Addresses 	3-10
3-7. Auxiliary Stack Grows toward Higher Addresses 	3-11
4-1. Field Storage in External Memory 	4-2
4-2. Field Alignment in Memory 	4-3
4-3. Field Insertion 	4-5
4-4. Pixel Storage in External Memory 	4-7
4-5. Mapping of Pixels to Monitor Screen 	4-7
4-6. Configurable Screen Origin 	4-8
4-7. Display Memory Dimensions 	4-9
4-8. Display Memory Coordinates 	4-9
4-9. Pixel Addressing in Terms of XY Coordinates 	4-11
4-10. Concatenation of XY Coordinates in Address 	4-12
4-11. Conversion from XY Coordinates to Memory Address 	4-13
4-12. Pixel Array 	4-14
5-1. Register File A 	5-2
5-2. Register File B 	5-3
5-3. Stack Pointer Register 	5-4
5-4. Status Register 	5-20
5-5. Program Counter 	5-22
5-6. TMS34010 Instruction Cache 	5-23
5-7. Segment Start Address 	5-24
5-8. Internal Data Paths 	5-28
5-9. Parallel Operation of Cache, Execution Unit, and Memory Interface 	5-29
6-1. I/O Register Memory Map 	6-2
7-1. Color-Expand Operation 	7-6
7-2. Starting Corner Selection 	7-7
7-3. Transparency 	7-11
7-4. Read Cycle With Plane Masking 	7-13
7-5. Write Cycle With Transparency and Plane Masking 	7-14
7-6. Graphics Operations Interaction 	7-16
7-7. Examples of Operations on Single-Bit Pixels 	7-17
7-8. Examples of Boolean Operations 	7-19
7-9. Examples of Operations on Pixel Intensity 	7-22
7-10. Specifying Window Limits 	7-28
7-11. Outcodes for Line Endpoints 	7-30
7-12. Midpoint Subdivision Method 	7-31
8-1. Vector Address Map 	8-2
9-1. Horizontal and Vertical Timing Relationship 	9-5
9-2. Horizontal Timing 	9-6
9-3. Horizontal Timing Logic - Equivalent Circuit 	9-7

vii

9-4. 	Example of Horizontal Signal Generation 9-7
9-5. 	Vertical Timing for Noninterlaced Display 9-8
9-6. 	Vertical Timing Logic - Equivalent Circuit 9-9
9-7. 	Electron Beam Pattern for Noninterlaced Video 9-9
9-8. Noninterlaced Video Timing Waveform Example 9-10
9-9. Electron Beam Pattern for Interlaced Video 9-11
9-10. Interlaced Video Timing Waveform Example 9-13
9-11. External Sync Timing - Two GSP Chips 9-17
9-12. Screen-Refresh Address Registers 9-20
9-13. Logical Pixel Address 9-22
9-14. Screen-Refresh Address Generation 9-23
10-1. Equivalent Circuit of Host Interface Control Signals 10-4
10-2. Host 8-Bit Write with HCS Used as Strobe 10-5
10-3. Host 8-Bit Read with HCS Used as Strobe 10-6
10-4. Host 16-Bit Read with HREAD Used as Strobe 10-6
10-5. Host 16-Bit Write with HWRITE Used as Strobe 10-7
10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes 10-7
10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes 10-8
10-8. Host Interface Timing - Write Cycle With Wait 10-10
10-9. Host Interface Timing - Read Cycle With Wait 10-10
10-10. Host Indirect Read from Local Memory (INCR=1) 10-13
10-11. Host Indirect Write to Local Memory (INCW=1) 10-15
10-12. Indirect Write Followed by Two Indirect Reads (INCW=1, INCR=0) 10-16
10-13. Calculation of Worst-Case Host Interface Delay 10-23
11-1. Triple Multiplexing of Addresses and Data 11-5
11-2. Row and Column Address Phases of Memory Cycle 11-6
11-3. Local Bus Write Cycle Timing 11-7
11-4. Local Bus Read Cycle Timing 11-8
11-5. Local Bus Shift Register to Memory Cycle Timing 11-9
11-6. Local Bus Memory to Shift Register Cycle Timing 11-10
11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing 11-11
11-8. Local Bus CAS-Before-RAS DRAM-Refresh Cycle Timing 11-12
11-9. Local Bus Internal Cycles Back to Back 11-13
11-10.1/0 Register Read Cycle Timing 11-14
11-11.1/0 Register Write Cycle Timing 11-15
11-12. Local Bus Read Cycle with One Wait State 11-16
11-13. Local Bus Write Cycle with One Wait State 11-17
11-14. Local Bus Shift-Register-to-Memory Cycle with One Wait State 11-18
11-15. TMS34010 Releases Control of Local Bus 11-19
11-16. TMS34010 Resumes Control of Local Bus 11-20
11-17. Local Bus Timing Following Reset 11-22
11-18. External Address Format 11-23
11-19. Row Address for DRAM-Refresh Cycle 11-26
11-20. Address Decode for Example System 11-27
11-21. Display Memory Dimensions for the Example 11-28
12-1. Immediate Addressing Mode 12-3
12-2. Absolute Addressing Mode 12-4
12-3. Register Direct Addressing Mode 12-5
12-4. Register Indirect Addressing Mode 12-5
12-5. Register Indirect with Displacement Addressing Mode 12-6
12-6. Register Indirect with Predecrement Addressing Mode 12-7
12-7. Register Indirect with Postincrement Addressing Mode 12-7
12-8. Register-to-Memory Moves 12-11
12-9. Memory-to-Register Moves 12-12
12-10. Memory-to-Memory Moves 12-13
12-11. LINE Examples 12-93

viii

13-1. 	Field Alignments in Memory 	13-4
13-2. 	MOVE Timing Example 	13 - 8
13-3. 	Pixel Block Alignment in X 	13-10
13-4. 	Pixel Block Alignments 	13-11
13-5. 	FILL XY Timing Example 	13-14
13-6. 	Pixel Block Alignment in X 	13-19
13-7. 	Pixel Block Alignments 	13-20
13-8. 	Source to Destination Alignments 	13-21
13-9. 	PIXBLT XY,L Timing Example 	13-24
13-10. Pixel Block Alignment in X 	13-28
13-11. Pixel Block Row Alignments 	13-28
13-12. PIXBLT B,XY Timing Example 	13-32
13-13. LINE Timing Example 	13-35
B-1. 	Grounding the XDS Target Cable Assembly 	B-4

Tables

Table Page

1-1. Typical Applications of the TMS34010 	1-4
2-1. Pin Descriptions 	2-4
2-2. Host Interface Signals 	2-5
2-3. Local Bus Interface Signals 	2-7
2-4. Video Timing Signals 	2-9
2-5. Hold and Emulator Interface Signals 	2-10
2-6. Power, Ground, and Reset Signals 	2-11
5-1. B-File Registers Summary 	5-5
5-2. Definition of Bits in Status Register 	5-20
5-3. Decoding of Field-Size Bits in Status Register 	5-21
5-4. Instruction Effects on the PC 	5-22
6-1. I/O Registers Summary 	6 - 4
7-1. Boolean Pixel Processing Options 	7-15
7-2. Arithmetic (or Color) Pixel Processing Options 	7-15
8-1. Interrupt Priorities 	8-2
8-2. External Interrupt Vectors 	8-3
8-3. Interrupts Associated with Internal Events 	8-4
8-4. Six Sources of Interrupt Delay 	8-7
8-5. Sample Instruction Completion Times 	8-7
8-6. Illegal Opcodes Ranges 	8-8
8-7. State of Pins During a Reset 	8 - 10
9-1. Programming GSP #2 For External Sync Mode 	9-17
9-2. Screen-Refresh Latency 	9-26
10-1. Host Interface Register Selection 	10-3
10-2. Five Sources of Halt Delay 	10-20
10-3. Sample Instruction Completion Times 	10-20
10-4. Host Interface Estimated Bandwidth 	10-22
11-1. Priorities for Memory Cycle Requests 	11-4
12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions 	12-2
12-2. Summary of Move Instructions 	12-8
12-3. MOVB Addressing Modes 	12-9
12-4. Field Move Addressing Modes 	12-10
12-5. PIXBLT Instruction Summary 	12-14
12-6. PIXT Addressing Modes 	12-14

ix

12-7. 	TMS34010 Instruction Set Summary 	12-15
13-1. 	MOVE and MOVB Memory-to-Register Timings 	13-5
13-2. 	MOVE and MOVB Register-to-Memory Timings 	13 -6
13-3. 	Alignment Indices for Memory-to-Memory Moves 	13-6
13-4. 	MOVE Memory-to-Memory Timings 	13-7
13-5. 	FILL Setup Time 	13 - 9
13 - 6. 	FILL Transfer Timingt 	13 - 10
13-7. 	Timing Values per Word for Graphics Operations (G) 	13-12
13-8. 	PIXBLT Setup Time 	13-16
13-9. 	PIXBLT Transfer Timingt 	13-18
13-10. Timing Values per Word for Graphics Operations (G) 	13-22
13-11. PIXBLT Expand Setup Time 	13-26
13-12. PIXBLT Expand Transfer Timingt 	13-27
13-13. Timing Values per Word for Graphics Operations (G) 	13-30
13-14. LINE Transfer Timing 	13-34
13-15. Per-Word Timing Values for Pixel Processing (P) 	13 - 35

1. Introduction

The TMS34010 Graphics System Processor (GSP) is an advanced 32-bit
microprocessor optimized for graphics systems. The GSP is a member of the
TMS340 family of computer graphics products from Texas Instruments.

A single TMS34010 provides a cost-effective solution in applications that re-
quire efficient data manipulation. The GSP can be configured to serve in ei-
ther a host-based or a stand-alone environment. Systems based on multiple
TMS34010 devices are implemented using special features of the GSP's local
and host interfaces.

The TMS34010 is well supported by a full set of hardware and software de-
velopment tools, including a full-speed emulator, a software simulator, an
IBM-PC development board, and a C compiler.

Topics covered in this introductory section include:

Section 	 Page
1.1 TMS34010 Overview 	 1-2
1.2 Key Features 	 1-3
1.3 Typical Applications 	 1-4
1.4 Architectural Overview 	 1-5
1.4 Manual Organization 	 1-8
1.6 References and Suggested Reading 	 1-10

Introduction - T MS3401 0 Overview

1.1 TMS34010 Overview

The TMS34010 combines the best features of general-purpose processors and
graphics controllers to create a powerful and flexible Graphics System Pro-
cessor. Key features of the GSP are its speed, high degree of programmability,
and efficient manipulation of hardware-supported data types such as pixels
and two-dimensional arrays of pixels.

The GSP's unique memory interface reduces the time needed to perform tasks
such as bit alignment and masking. The 32-bit architecture supplies the large
blocks of continuously-addressable memory necessary in graphics applica-
tions. The use of video RAMs facilitates the design of high-bandwidth frame
buffers, circumventing the bottleneck often encountered with conventional
DRAMs.

The GSP instruction set includes a full complement of general-purpose in-
structions as well as graphics functions from which a programmer can con-
struct efficient high-level functions. The instructions support arithmetic and
Boolean operators, data moves, conditional jumps, and subroutine calls and
returns.

The GSP architecture supports a variety of pixel sizes, frame buffer sizes, and
screen sizes. On-chip functions have been carefully selected so that no
functions tie the GSP to a particular display resolution. This enhances the
portability of graphics software, and allows the GSP to adapt to graphics
standards such as CGI/CGM, GKS, NAPLPS, PHIGS, and evolving display
and terminal management standards.

1 - 2

Introduction - Key Features

1.2 Key Features

• Fully programmable 32-bit general-purpose processor

• 128-megabyte address range

• 160-ns instruction cycle time

• On-chip peripheral functions include:

Programmable CRT control (horizontal sync, vertical sync, and
blanking)
Direct interfacing to conventional DRAMs and multiport video
RAMs
Automatic CRT display refresh
Direct communications with an external (host) processor

• Instruction set includes special graphics functions such as pixel
processing, XY addressing, and window clip/hit

• Programmable 1, 2, 4, 8, or 16-bit pixel size with 16 Boolean and
6 arithmetic pixel-processing options

• 30 general-purpose 32-bit registers

• 256-byte LRU on-chip instruction cache

• Dedicated 8/16-bit host-processor interface and HOLD/HLDA interface

• 32-bit and 64-bit integer arithmetic

• High-level language support

• Full line of hardware and software development tools including:

C compiler
Macro assembler
Linker
Archiver
Software libraries
XDS (Extended Development Support) in-circuit emulator
Software Development Board (SDB)
ROM utility
Simulator

• 68-pin PLCC package

• 5-V CMOS technology

1-3

Introduction - Typical Applications

1.3 Typical Applications

The TMS34010's 32-bit processing power and its ability to handle complex
data structures make it well suited for a variety of applications. These include
display systems, imaging systems, mass storage, communications, high-speed
controllers, and peripheral processing. The GSP's efficient bit manipulation
facilitates demanding tasks such as high-quality, proportionally-spaced text.
This capability makes it especially useful in applications such as desktop
publishing. In graphics display systems, the GSP provides cost-effective per-
formance for color or black-and-white bit-mapped displays. Table 1-1 lists
typical end uses of the GSP.

Table 1-1. Typical Applications of the TMS34010

Computers

Terminals and CRTs
- Electronic publishing
- Laser printers
- Personal computers

Printers and plotters
Engineering workstations

- Copiers
Document readers
FAX
Imaging

- Data processing

Industrial Control

- Robotics
Process control
Instrumentation

- Motor control
- Navigation

Telecommunications

- Video phones
- PBX

Consumer Electronics

- Automotive displays
- Information terminals
- Cable TV
- Home control
- Video games

1 -4

Graphics System Processor Chip Boundary

GraPi11.08W110rY LIN

Program and
Data St•age

Graphics
Processor

Host-Graphics
Interface

Screen-
Refresh
Control

CRT
Timing
Control

DRAM-
Refresh
Control

To
'7.11T

Monitor

To
Host 	•:.:.::Hoiii

Prooessor

Introduction - Architectural Overview

1.4 Architectural Overview

Figure 1-1 illustrates the TMS34010's major internal functions and its inter-
faces to external devices. The on-chip processor executes both graphics in-
structions and general-purpose instructions. The GSP is a true 32-bit
processor, with 32-bit internal data paths, a 32-bit ALU, and a large address
space. Thirty 32-bit general-purpose registers, a 32-bit stack pointer, and a
256-byte instruction cache increase performance. Nonprocessor functions
included on the chip include CRT timing, screen refresh, and DRAM refresh.
Separate physical interfaces are provided for communicating with a host pro-
cessor, for providing the video timing signals necessary to control a CRT
monitor, and for connecting directly to dynamic RAMs and video RAMs.

Figure 1 - 1. System Block Diagram

1.4.1 Other Special Processing Hardware

The TMS34010 CPU functions include the following special processing
hardware:

• Hardware for detecting whether a pixel lies within a specified display
window.

• Hardware for detecting the leftmost one in a 32-bit register.

• Hardware for expanding a black-and-white pattern to a variable pixel-
depth pattern.

1 -5

Internal Clock
Circuitry

L 	

Introduction - Architectural Overview

1.4.2 TMS34010 Block Diagram

Figure 1-2 illustrates the internal architecture of the TMS34010. The list that
follows describes the individual blocks shown in Figure 1-2.

External
Interrupt 	r

Requests

Reset

Host
Interface < 	,)
Bus

yie and <4...,:v1

Host
Interface
Registers

Video Timing
Registers

Local Memory
Control

Registers

Instruction
Cache

Prop am
Counter

Status Register

ALU

Register File B

Stack Pointer

Execution Unit
Clock
Outputi

Clock
Inputs

I/O Registers

Local Memory
Control Logic

and Buffers

Instruction
Decode

14- 	

•	

Microcontrol
ROM

Interrupt
Registers

Local Memory
Interface Bus

Figure 1 - 2. Internal Architecture Block Diagram

• CPU Internal Functions

The main internal functions of the TMS34010 are shown in the center of Fig-
ure 1-2. Section 5 discusses the CPU registers in detail.

- The 32-bit program counter (PC) points to the next instruction word
to be fetched. The PC's four LSBs are always 0.

- The 32-bit status register (ST) specifies the status of the TMS34010
processor. It contains the sign, carry, zero, overflow, interrupt enable,
and PixBlt execution status bits. It also specifies the lengths and field
extension modes of Fields 0 and 1.

- Register files A and B each contain 15 general-purpose registers,
AO-A14 and BO-B14, respectively. The B-file registers are also used as
implied operands for the graphics instructions.

1 -6

Introduction - Architectural Overview

The general-purpose register files are dual ported to support parallel data
movement. Two separate internal buses route data from the registers to
the ALU, and a third bus routes results back to the registers.

The stack pointer, or SP, is available to instructions that operate on
either register file.

The 32-bit barrel shifter shifts or rotates 32-bit operands from 1 to 32
bit positions in a single machine state.

The 32-bit ALU is connected to the other CPU components by 32-bit
data paths. This allows most register-to-register operations to be per-
formed in a single machine state. (Accessing external memory requires
a minimum of two states.) The following actions occur in parallel during
a single state:

1) Two operands are transferred from the selected general-purpose
register file to the ALU.

2) The ALU performs the specified operation on the operands.
3) The result is routed back to the general-purpose register file.

• Instruction Cache

The TMS34010 contains a 256-byte instruction cache. The cache can contain
up to 128 instruction words (an instruction word may be an entire single-word
instruction or 16 bits of a multiple-word instruction). Section 5.3 describes
instruction cache operation.

• I/O Registers

The TMS34010 has 28 16-bit I/O registers on chip which are dedicated to
peripheral control functions. Section 6 provides individual descriptions of
each I/O register. The I/O registers can be divided into four categories:

Seven local memory interface registers are dedicated to memory
interface control and configure the memory controller.

Fourteen video timing and screen refresh registers generate the
sync and blanking signals used to drive a CRT, and schedule screen-
refresh cycles.

Five host interface registers are accessible to external host process-
ors as well as to the TMS34010. Status information can be communi-
cated directly through these registers. Large blocks of data in GSP
memory can be accessed indirectly through pointer registers.

Two interrupt control registers provide status information about in-
terrupt requests.

• Microcontrol ROM

The TMS34010 transfers decoded instructions to the microcontrol ROM for
interpretation. The microcontrol ROM has 166 control outputs and 808 mic-
rostates.

• Clock Timing Logic

The clock timing logic converts the clock input signals to internal timing sig-
nals and generates the clock output signals, LCLK1 and LCL.K2, used by ex-
ternal devices.

1- 7

Introduction - Manual Organization

1.5 Manual Organization

The TMS34010 User's Guide describes GSP operation, focusing on the GSP's
role in applications that involve CRT-based, bit-mapped, graphics systems.
The User's Guide is divided into four major sections:

1) General information (Section 1)
2) Architecture (Sections 2-8)
3) Timing (Sections 9-11)
4) Instruction set (Sections 7, 12, and 13)

An extensive index and two reference cards are also provided.

Section 1 	Introduction

Provides an overview of the TMS34010, including key features and typical
applications. Provides a general overview of the TMS34010 architecture; in-
cludes a block diagram and a detailed list describing the elements in the dia-
gram. Discusses manual organization and lists suggested reading.

Section 2 Pin Functions

Illustrates the TMS34010 pinout and contains general pin descriptions. Also
describes specific pin functions regarding the host interface, the local bus in-
terface, video timing signals, hold and emulator interface pins, and power,
ground, and reset pins.

Section 3 Memory Organization

Discusses 32-bit addressing schemes, the TMS34010 memory map, and the
stack.

Section 4 Hardware - Supported Data Structures

Discusses hardware-supported data structures such as fields and pixels. XY
addressing is also discussed in this section.

Section 5 CPU Registers and Instruction Cache

Describes general-purpose register files A and B, the status register, the pro-
gram counter, and the instruction cache.

Section 6 I/O Registers

Provides a detailed discussion of host interface registers, memory-interface
control registers, video timing and screen refresh registers, interrupt interface
registers, and I/O register addressing. Full-page descriptions of each I/O re-
gister are presented alphabetically.

Section 7 Graphics Operations

Discusses graphics instructions such as PixBlts, PIXTs, and related topics such
as two-dimensional arrays of pixels, window checking, XY-to-linear conver-
sion, and plane masking.

Section 8 Interrupts, Traps, and Reset

Describes external and internal interrupts, interrupt processing, and reset.

1-8

introduction - Manual Organization

Section 9 Screen Refresh and Video Timing

Describes the horizontal sync, vertical sync, and blanking signals, horizontal
and vertical timing, and video RAM control.

Section 10 Host Interface Bus

Discusses host interface pins, registers, and timing.

Section 11 Local Memory Interface Bus

Discusses local memory interface timing, addressing mechanisms, and data
manipulation at the local memory interface.

Section 12 Assembly Language Instruction Set

Discusses addressing modes, summarizes move, PIXBLT, and PIXT instruction
variations, and presents the entire TMS34010 assembly language instruction
set in alphabetical order.

Section 13 Instruction Timings

Contains an overview of timing for general instructions, and specific timing
information for move and graphics instructions.

Appendix A TMS34010 Data Sheet

Appendix B Emulation Guidelines for Prototyping

Appendix C Software Compatibility with Future GSPs

Appendix D Glossary

1 -9

Introduction - References and Suggested Reading

1.6 References and Suggested Reading

The following books and articles provide further background in graphics and
system concepts associated with graphics.

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood
Cliffs, New Jersey: Prentice-Hall, 1984.

Bresenham, J.E. "Algorithm for Computer Control of a Digital Plotter." IBM
Systems Journal 4 No.1 (1965): 25-30.

Bresenham, J.E. "A Linear Algorithm for Incremental Display of Digital Arcs."
Communications of the ACM 20 (Feb. 1977): 100-106.

Cody, William J. Jr., and William Waite. Software Manual for the Elementary
Functions. Englewood Cliffs, New Jersey: Prentice-Hall, 1980.

Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachussetts: Addison-Wesley, 1982.

Gupta, Satish. "Architectures and Algorithms for Parallel Updates of Raster
Scan Displays." Tech. Report CM U-CS-82-111, Computer Science Dept.,
Carnegie Mellon University, 1981.

Ingalls, D.H. "The Smalltalk Graphics Kernel." Special issue on Smalltalk,
Byte, August 1981, pp. 168-194.

Kernighan, B., and D. Ritchie The "C" Programming Language. Englewood
Cliffs, New Jersey: Prentice-Hall, 1978.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, 1983.

Newman, W.M., and R.F. Sproull. Principles of Interactive Computer
Graphics. 2nd ed. New York: McGraw-Hill, 1979.

Pike, Rob. "Graphics in Overlapping Bitmap Layers." ACM Transactions On
Graphics 2 (April 1983): 135-160.

Pitteway, M.L.V. "Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Plotter." Computer Journal 10 (Nov. 1967): 24-35.

Porter, T. and T. Duff. "Composing Digital Images." Computer Graphics, July
1984, pp. 253-259.

Sproull, R.F. and I.E. Sutherland. "A Clipping Divider." Fall Joint Computer
Conference Washington, DC: Thompson Books, 1968.

Van Aken, Jerry R. "An Efficient Ellipse-Drawing Algorithm." IEEE Computer
Graphics & Applications 4 (Sept. 1984): 24-35.

1-10

2. Pin Functions

This section discusses the TMS34010 pin functions. Section 2.1 contains a
TMS34010 pinout, summarizes the pin functions, and associates the pins with
various categories. Section 2.2 through Section 2.6 present details concern-
ing the individual categories. 	Contents of this section include:

Section Page
2.1 Pinout and Pin Descriptions 	 2-2
2.2 Host Interface Bus Signals 	 2-5
2.3 Local Memory Interface Signals 	 2-7
2.4 Video Timing Signals 	 2-9
2.5 Hold and Emulator Interface Signals 	 2-10
2.6 Power, Ground, and Reset Signals 	 2-11

2-1

Pin Functions - Pinout and Pin Descriptions

2.1 Pinout and Pin Descriptions

The TMS34010 is packaged as a 68-pin plastic leaded chip carrier (PLCC).
Figure 2-1 shows a pinout of the TMS34010 processor. Mechanical infor-
mation is contained in Appendix A.

17; 5 0 CU 	h Z 	0 -I hi- t 	W mw u 03 03
G 	 u_ 0

2 :1:1- 3> MCC>XX X

>-
0 cr t 11

• o o 3 	x c.) x 	>

LADO

LAD1
LAD2
LAD3

LAD4
LAD5
LAD8

LAD7

ass
LAD8
LADE

LAD10
LAD11
LAD12
LAD13
LAD14

LAD15

9 8 7 6 5 4 3 2 1 8887088684838281

1 10 80 I
111 59 I
I 12 58
1 13 57 I
I 14 68

15 55 I
18 54I

1 17 53 I
I 	18 52 1

19 511
1 20 50 I
1 21 49 1
1 22 48 1
1 23 47 I
124 48 I
1 26 45
128 44 1

27 28 29 5,01 32 34 35 38 37 38 39 40 41 42

10P1"5161?C1C
.2 lig

> 2 > 0 0 te 0 "••• Cr
to —1 ILI 	0 	 = > 	0

0
-J

0 •-•
C.) _1
> 0 0

J

HDO

HD1

HD2

HD3
HD4

HD5

HD8

HD7

V88

HD8

HD9

HD10
HD11

HD12

HD13

HD14

HD16

Figure 2-1. TMS34010 Pinout (Top View)

2-2

Host Interface

Video Timing

Power, Ground
and Reset

HDO-HD15 LADO-LAD15 (18 >

HF60-HF61

I • 	 DEN 	 ►
-111-4L, 	DDOUT
-IWRITt 	 rAr 	.
r:1! nd 	 PAZ. 	 0

. .. ■- - d 	 ►
• .• .• 	 W 	 ►

• I h . 	 TR/0E 	►
LRDY 	4 	

{ 1---►
1, .4.___
0.

4

LINT1-LINT2

LCLK1
LCLK2
INCLK

I Hold and
RUNIPAID 4 	 Emulator

ACtriaiii07 -* Interfaces

	•

Local Memory
Interface

18 	>
2

4 	
4 	

V CC

V66

MET

Pin Functions - Pinout and Pin Descriptions

The TMS34010's 68 pins are divided among several interfaces:

Host interface
Local memory interface
Video timing interface
Hold and emulator interfaces
Power and reset

25 pins
29 pins

4 pins
3 pins
7 pins

Total: 68 pins

Figure 2-2 associates the pins with the TMS34010's major interfaces. Table
2-1 summarizes the pin functions at each interface.

Figure 2-2. TMS34010 Major Interfaces

2-3

Pin Functions - Pinout and Pin Descriptions

Table 2-1. Pin Descriptions

Name 	 Pin 	I 	I/O 	 Description

Host Interface Bus Pins

F-Ta. 66 I Host chip select

HDO—HD15 44-51,53-60 I/O Host bidirectional data bus

HFSO,HFS1 67,68 I Host function select

111'1 42 0 Host interrupt request

HLDS 63 I Host lower data select

HUDS 62 I Host upper data select

HRPY 43 0 Host ready

flit- .\D 64 I Host read strobe

F- ..'..1, 1 	E 65 I Host write strobe

Local Interface Bus Pins

RAS 38 0 Local row-address strobe

rAT 39 0 Local column-address strobe

DDOUT 36 0 Local data direction out

I..E'•. 37 0 Local data enable

LADO—LAD15 10-17,19-26 I/O Local address/data bus

LAL 34 0 Local address latched

LCLK1,LCLK2 28,29 0 Local output clocks

LI NT1,1=1-2 6,7 I Local interrupt request pins

LRDY 9 I Local ready

TR/QE 41 0 Local shift-register transfer or output enable

W 40 0 Local write strobe

I NCLK 5 I Input clock

Hold and Emulation

HOLD 8 I Hold request

RUN, EMIJ 2 I Run/Emulate

HLDA, : V. JA 33 0 Hold acknowledge or emulate acknowledge

Video Timing Signals

BLANK 32 0 Blanking

HSYNC 30 I/O Horizontal sync

VCLK 4 I Video clock

VSO 31 I/O Vertical sync

Miscellaneous

17 7 --r 3 I Device reset

VCC 27,61 I Nominal 5-volt power supply

VSS 1,18,35,52 I Ground

2-4

Pin Functions - Host Interface Bus Signals

2.2 Host Interface Bus Signals

The host interface pins are used for communication between the TMS34010
and a host processor. Signals output on these pins are assumed to be asyn-
chronous with respect to local clocks LCLK1 and LCLK2. To software running
on a host processor, the TMS34010's host interface appears as a peripheral
device containing a block of four 16-bit registers. Table 2-2 describes the
host interface pins. TMS34010 host interface operation is discussed in Sec-
tion 10. Host interface registers are discussed in Section 6.

Table 2-2. Host Interface Signals

Signal I/O Description

HCS I Host Chip Select. 	HCS is driven active low to enable access to the 16-bit host
interface register that is selected by HFSO 	a •i HFS1. 	During the low-to-high
transition 	of 	RESET, the 	level 	on 	the 	1 i• ' 	input determines whether the
TMS34010 is halted (if HCS is high), or begins immediately executing its reset
service routine (if HCS is low).

H FSO-H FS1 I Host Function Select. The two function select pins determine which of the four
16-bit host interface registers is selected during a read or write cycle that is in-
itiated by the host processor.

HFS1 HFSO 	Register 	Description
0 	0 	HSTADRL 	LSBs of pointer address
0 	1 	HSTADRH 	MSBs of pointer address
1 	0 	HSTDATA 	Data buffer register
1 	1 	HSTCTL 	Control register

D I Host Read Strobe. 	:•;'. •.D is driven active low during a read cycle that is ini-
tiated by the host processor. 	This enables the 	• I •ants of the selected host in-
terface register to be c 	.. •.. on H DO-H D15. 	I 	i•: •\D should not be active low
at the same time thatl•::- 	:I is active low.

HWRITE I Host Write Strobe. 	HWRITE is driven active low during a write cycle that is
initiated by the host processor. This enables the contents of HDO-HD15 to be
written to the selected • • 	interface register. 	HWRITE should not be active low
at the same time that I I" ■ D is active low.

HLDS I Host Lower Data Select. 	HLDS is driven active low during a read or write cycle
that is initiated by the host. 	This enables the lower byte (bits 0-7) of the se-
lected host interface register to be accessed.

HUDS I Host Upper Data Select. HUDS is driven active low during a read or write cycle
that is initiated by the host processor. This enables the upper byte (bits 8-15)
of the selected host interface register to be accessed.

HRDY 0 Host Ready. HRDY indicates when the TMS34010 is ready to complete a read
or write cycle that is initiated by the host. 	Except during an access of a host
interface register, HRDY is always high. 	HRDY will be driven low if the host
processor attempts to initiate an access of a host interface register before the
TMS34010 has had sufficient time to complete all processing resulting from an
access initiated previously by the host. 	HRDY always goes low briefly at the
start of a HSTCTL register access. 	When HRDY is driven low, the host must
wait to complete the access until HRDY is again driven high. 	While HCS is
high, HRDY is driven high.

2-5

Pin Functions - Host Interface Bus Signals

Table 2-2. Host Interface Signals (Concluded)

Signal I/O Description

HINT 0 Host Interrupt Request. The 717 pin follows the INTOUT bit in the HSTCTL
register. 	HINT 	is 	typically 	used 	to 	transmit 	interrupt 	requests 	from 	the
TMS34010 to the host processor. When INTOUT is set to 1 by the TMS34010,
HINT is driven active low. 	HINT remains active low until the host writes a 0 to
INTOUT, at which time HINT becomes inactive high.

HDO—HD15 I/O Host Bidirectional Data Bus. 	The host data pins, HDO—HD15, form a bidirec-
tional 16-bit bus. 	This bus is used to transfer data between the selected 16-bit
host interface register and the host processor. 	HDO is the LSB and HD15 is the
MSB.

2-6

Pin Functions - Local Memory Interface Signals

2.3 Local Memory Interface Signals

The TMS34010 uses the local bus interface pins to communicate with external
memory and with external memory-mapped I/O devices. The signals at this
interface are used directly to control DRAMs (dynamic RAMs) and VRAMs
(video RAMs). Local memory interface operation is discussed in Section 11.

Table 2-3. Local Bus Interface Signals

' 	Signal I/O Description

C' '. 0 Local Data Enable. 	LE'. is an active-low output. 	It is used to drive the ac-
tive-low output-enable inputs on the bidirectional transceivers (such as the
74ALS245), 	which 	are 	used 	to 	buffer 	data 	input 	and 	output 	on 	the
LADO—LAD15 pins. External buffering may be required on the LADO —LAD15
pins when the TMS34010 is interfaced to a large number of local memory
devices.

DDOUT 0 Local Data Direction Out. 	DDOUT drives the direction control inputs on the
bidirectional transceivers (such as the 74ALS245), which are used to buffer
data input and output on the LADO—LAD15 pins. 	External buffering may be
required on the LADO— LAD15 pins when the TMS34010 is interfaced to a
large number of local memory devices. 	During write cycles, DDOUT is .:• .•:n
high to enable data to be output from the LADO—LAD15 pins while 17' 	is
driven active low. 	During read cycles, DDOUT goes low to enable data to be
input to the LADO—LAD15 pins while DEN is driven active low. 	At all other
times, DDOUT remains driven to the default high level.

LAL 0 Local Address Latched. 	An external latch can use the high-to-low transition
of LAL to capture the column address from the LADO—LAD15 pins. 	When a
transparent latch such as a 74ALS373 is used, the address remains latched as
long as LAL remains active low.

RAS 0 Local Row Address Strobe. The RAS output is used to drive the RAS inputs
of DRAMs and VRAMs.

CAS 0 Local Column Address Strobe. The CAS output is used to drive the CAS in-
puts of DRAMs and VRAMs.

W 0 Local Write Strobe. 	The active-low W output is used to drive the W inputs
of DRAMs and VRAMs. 	W can also be used as the active-low write enable
to static memories and other devices connected to the TMS34010 local inter-
face. 	During a local memory read cycle, W remains inactive high while 70tTg
is strobed active low. 	During a local memory write cycle, W is strobed active
low while CAS is low. 	During shift-register-transfer cycles, the state of W
indicates whether the transfer is from shift register to memory (W is low) or
memory to shift register (W is high). At all other times, W is driven to the
default high level.

TR/QE 0 Local Shift Register Transfer or Output Enable. 	This pin connects directly to
the TR/QE (or DT/OE) pin of a VRAM. 	During local memory read cycles,
TR/QE functions as an active-low output enable to gate data from memory to
the LADO—LAD15 pins. 	During VRAM shift-register-transfer cycles, TR/QE
is driven active low during the high-to-low transition of RAS.

INCLK I Input Clock. INCLK is the input clock used to generate the LCLK1 and LCLK2
outputs, to which all processor functions in the TMS34010 are synchronous.
A separate input clock, VCLK, controls the video timing registers.

2-7

Pin Functions - Local Memory Interface Signals

Table 2-3. Local Bus Interface Signals (Concluded)

Signal I/O Description

LCLK1,1,.CLK2 0 Local Output Clocks. 	These two output clocks, 90 degrees out of phase with
each other, provide convenient synchronous control of external circuitry to the
TMS34010's internal timing. All signals output from the TMS34010, with the
exception of the CRT timing signals, are synchronous to these clocks.

LRDY I Local Ready. 	LRDY is driven low by external circuitry to inhibit the TMS34010
from completing a local memory cycle it has initiated. While LRDY remains low,
the TMS34010 continues to wait. When LRDY is again driven high, the
TMS34010 completes the cycle. While LRDY is low, the TMS34010 generates
internal wait states in increments of one full LCLK1 cycle in duration. LRDY

can 	be driven 	low to 	extend 	local 	memory read 	and 	write 	cycles, 	shift-

register-transfer cycles, and DRAM refresh cycles. 	During internal cycles, the

TMS34010 ignores LRDY.

LINT1,LINT2 I Local Interrupt Request Pins. 	Interrupt requests from external devices are tran-
smitted to the TMS34010 on the LINT1 and LINT2 pins. Each pin activates the
request for one of two external interrupt request levels. An external device
generates an interrupt request by driving the appropriate interrupt request pin
to its active-low state. The pin should remain active low until the TMS34010
has recognized the request.

Transitions on the two interrupt request pins are assumed to be asynchronous
with respect to local clocks LCLK1 and LCLK2; the signals on these pins are
synchronized internally before being used internally.

The local interrupt pins are reconfigured during emulation and testing to per-
form special functions that are described in a separate emulation and testing
document.

LADO—LAD15 I/O Local Address/Data Bus. 	LADO—LAD15 form the local multiplexed address/-
data bus. At the start of a memory cycle, two addresses (row and column) are
output on LADO—LAD15. 	During a read cycle, data are input on LADO— LAD15

during the latter part of the cycle. 	During a write cycle, data are output on
LADO—LAD15 during the latter part of the cycle. 	LADO is the LSB, and LAD15
is the MSB. During the time the row address is output on LADO—LAD14, status
bit RF is output on LAD15. 	RF is active low at the start of a DRAM-refresh
cycle (either RAS-only or CAS-before-RAS). 	During the time that the column
address is output on LADO—LAD13, status bits TR and IAQ are output on
LAD15 and LAD14, respectively. 	IAQ is active high during a read cycle in
which the TMS34010 fetches an instruction word from the local memory.
During all other cycles, IAQ is inactive low. 	TR is active low during shift-

register-transfer cycles. 	(The level output on LAD14 during the high-to-low
transition of CAS is always the same as the level output on TR/QE during the
high-to-low transition of RAS.)

Note: The system designer must ensure that LRDY is not held low for so long that the TMS34010 is
prevented from performing the necessary number of DRAM refresh cycles or is prevented from re-
freshing the display by performing a VRAM memory-to-shift-register cycle during horizontal re-
trace.

2-8

Pin Functions - Video Timing Signals

2.4 Video Timing Signals

The video timing signals (BLANK, HSYNC, and VSYNC) are used to control the
horizontal and vertical sweep rates of the video monitor. They are also used
to synchronize the display on the monitor to video data output from the
VRAMs. Section 9 discusses video timing and screen refresh operations.

Table 2-4. Video Timing Signals

Signal I/O Description

'NC I/O Horizontal Sync. 	HSYNC is the horizontal sync signal used to control external
video circuitry. 	It is programmed as either an input or an output by means of
two control bits in the DPYCTL register. 	When configured as an output, the
active-low horizontal sync signal is generated by the TMS34010's on-chip vi-
deo timers. When configured as an input, the TMS34010 synchronizes its video
timers to 	•• 	rnally-generated horizontal sync pulses. 	Immediately following
reset, HS'• '.• 	is configured as an input.

VSYNC I/O Vertical Sync. 	VSYNC is the vertical sync signal used to control external video
circuitry. 	It is programmed as either an input or an output by means of a control
bit in the DPYCTL register. 	When configured as an output, the active-low ver-
tical sync signal is generated by the TMS34010's on-chip video timers. 	When
configured as an input, the TMS34010 synchronizes its video timers to exter-
nally-generated vertical sync pulses. 	Immediately following reset, VSYNC is
configured as an input.

f_.•: 0 Blanking. 	BLANK is a composite blanking signal used to turn off the electron
beam of a CRT during both horizontal and vertical retrace intervals. This signal
may also be used to control the starting and stopping of the VRAM shift regis-
ters.

VCLK I Video Clock. 	VCLK is derived from the dot clock of the external video system
and is used internally to d. . 	he TMS34010's video timing logic. 	The signals
output at the BLANK, H; l':C, and VSYNC pins are synchronous to VCLK.
VCLK is not required to have any timing relationship with respect to INCLK; that
is, VCLK and INCLK can be asynchronous. 	In order to read HCOUNT and
VCOUNT registers reliably, VCLK should be held high during the read. 	In sys-
tems which do not use the video timing registers or require automatic screen
refreshing, VCLK can be strapped high.

Note: During actory esting, the HSYNC and VSYNC pins are configured to scan data in and out of the
two internal shift register scan paths.

2-9

Pin Functions - Hold and Emulator Interface Signals

2.5 Hold and Emulator Interface Signals

The TMS34010 hold interface permits other devices to request and be granted
control of the local interface bus.

The emulator interface is used to control the TMS34010 when it is used for
emulation. The RUN/EMU pin may remain unconnected in nonemulation ap-
plications.

Table 2-5. Hold and Emulator Interface Signals

Signal I/O Description

HOLD I Hold Request. 	The HOLD pin is driven active low by an external device to
signal a request that the TMS34010 release ownership of the local memory bus.
Once the TMS34010 has acknowledged the hold request via a hold acknowl-
edge signal, the external device assumes ownership of the bus. The device must
continue to assert its hold request until it has released the bus.

HLDA, I.:.'I.A 0 Hold Acknowledge and Emulate Acknowledge. The HLDA, I .'I •A pin is mul-
tiplexed between two functions — acknowledgment of hole requests and ac-
knowledgment of emulation requests. 	The hold acknowledge signal (HLDA)
is output during r..._ . Q3 and Q4 of the local clock cycle. 	The emulate ac-
knowledge signal 	1 '.! 	A) is output during phases 01 and Q2. HLDA is driven
active low in response to a hold request from an external device, but not until
the TMS34010 has released the bus to the requesting device. The device must
delay taking possession of the bus until it has received an active HLDA signal.
Once an active-low hold acknowledge signal has been transmitted during
Q3-04, it will continue to be transmitted during Q3—Q4 of each local clock
period until the external device ceases to assert its hold request.

EMUA is driven active low to indicate to external circuitry that the 1'.' 	•4010
has tu. 	I in response to an EMU command input on the RUNr '.'.; . pin.
HLDA 1--.• IA is also driven low when an EMU opcode is executed by the
TMS34W u, but only during phases 01 and Q2 of a single LCLK1 cycle. 	Exe-

• ! of an EMU opcode causes an active-low signal to be output at the HLDA
I '.'l A pin during phases 01 and 02, so external devices that generate hold

requests should avoid interpreting these signals as hold acknowledgment.

RUN/EMU • I Run/Emulate. This pin is defined as a no-connect during normal system oper-
ation. The RUN/EMU pin should not be pulled low except i•.: ng factor testing
or chip emulation. An internal pull-up load permits RUN . '. 1. 1 to remain un-
connected during normal use.

2-10

Pin Functions - Power, Ground, and Reset Signals

2.6 Power, Ground, and Reset Signals

Six TMS34010 pins are dedicated to ground and power supply. Section 8
provides more details about RESET.

Table 2-6. Power, Ground, and Reset Signals

Signal I/O Description

VCC I VCC (2 pins). Two +5-volt power supply inputs.

Vsc I VSS (4 pins). 	Four electrical ground inputs.

11. 7 I Reset. 	F. - 7r 	is pulled low to reset the device during normal operation.
While RESET is asserted low, the internal registers of the TMS34010 are set
to an initial known state, and all output and bidirectional pins are driven ei-
ther to inactive levels or to high impedance. The behavior of the TMS34010
chip following reset depe• 	: 	the level of the HCS input just prior to the _on
low-to-high transition of vi 	.ET. 	If TiCS is low, the GSP begins executing
the instructions pointer to by the reset vector. 	If HCS is high, the GSP is
halted until a host processor writes a 0 to the HLT bit in the HSTCTL register.

Transitions on the RESET pin are assumed to be asynchronous with respect
to local clocks LCLK1 and LCLK2; the signal input on this pin is synchro-
nized internally before it is used internally.

During factory testing or chip emulation, RESET is used in conjunction with
RUN/EMU, HOLD, LINT1, and LINT2 to configure 	•I• TMS34010 into the
required test or emulation mode. 	As long as RUNi7.•:.1 is not pulled low,
however, the RESET, HOLD, LINT1, and LINT2 pins are configured for nor-
mal system operation.

2-11

This page intentionally left blank.

3. Memory Organization

This section presents details of physical and logical addresses, illustrates the
TMS34010 memory map, and describes stack operation.

Section 	 Page
3.1 Memory Addressing 	 3-2
3.2 Memory Map 	 3-4
3.3 Stacks 	 3-6

3-1

Memory Organization - Memory Addressing

3.1 Memory Addressing

The TMS34010 is a bit-addressable machine with a 32-bit internal memory
address. Each 32-bit address points to an individual bit within memory. Fig-
ure 3-1 shows the logical memory structure. Memory is accessed as a con-
tinuously addressable string of bits. Groups of adjacent bits form data
structures called fields (see Section 4). The GSP supports field lengths from
1 to 32 bits. The total memory capacity is four gigabits (or 512 megabytes);
the TMS34010 supports external addressing of 128 megabytes. Bit addresses
range from >0000 0000 to >FFFF FFFF.

32-Bit
Logical Address

N 4 	

Memory

Bit
232 -1

Bit Bit Blt
N+1 N N-1

Bit Bit
1 0

Figure 3-1. Logical Memory Address Space

Figure 3-2 shows the physical memory organization. The GSP communicates
with memory over a 16-bit data bus, and always reads or writes a complete
16-bit word from or to memory. The word accessed during a memory cycle
always begins on an even 16-bit boundary. That is, the four LSBs of the
32-bit starting address of the word are Os. Bits within a word are numbered
from 0 to 15; bit 15 is the MSB and bit 0 is the LSB. A word is identified by
the address of its LSB. In this document, the LSB of a memory word will be
depicted as the rightmost bit in the word.

32-Bit Logical Address 	
4

26-Bit LSBa
►Physical Address

N 	 4 3 0

Not Used
Externally

Select Bit Boundary
Within Word

2 0,
MSBs

31 30 1429

Memory A 	Word N+1 Word N 	I 	Word N-1

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
11[11111111111111

MSB 	 LSB

Figure 3 - 2. Physical Memory Addressing

3-2

Memory Organization - Memory Addressing

The four LSBs of the 32-bit logical address in Figure 3-2 do not appear on the
local memory bus. When the GSP extracts data that does not begin and end
on even word boundaries these four LSBs are used internally to indicate a bit
boundary within an accessed word. Control logic at the local memory inter-
face automatically performs the bit alignment and masking necessary to extract
the data structure from physical memory. This is completely transparent to
software. If the data structure being extracted straddles the boundary between
two or more words, multiple read cycles are required. Similarly, inserting a
data structure into memory may require a series of read and write cycles, ac-
companied again by the internal masking and shifting of data to properly align
the data structure within memory.

The two MSBs of the 32-bit logical address are not output. The TMS34010
supports an external address range of 128 megabytes of physical memory.

3-3

Memory Organization - Memory Map

3.2 Memory Map

Figure 3-3 shows the TMS34010 memory map. The memory is divided into
three regions:

• Trap vectors

• I/O registers (on chip)

• General use

Memory is logically organized as four gigabits, but is physically accessed 16
bits at a time. Locations are shown as 16-bit words, identified by 32-bit ad-
dresses whose four LSBs are Os. Word addresses range from >0000 0000 to
>FFFF FFFO. Bit address >0000 0000 is the rightmost bit in the word at the
bottom of the map; bit address >FFFF FFFF is the leftmost bit in the word at
the top of the map.

Reading or writing to an address in the range >C000 0000 to >C000 01 F0
accesses an internal I/O register. Reading or writing to any address outside
this range accesses off-chip memory (or a memory-mapped device) external
to the TMS34010.

Address
>FFFF FFFO

>FFFF FC00
>FFFF FBFO

>FFFF E000
>FFFF DFFO

>C000 2000
>C000 1F=0

>C000 0200
>C000 01F0

>c000 . .:J
>BFFF FFFO

> 0000 0000

Bit 2 32 -1
(Last bit In memory)

t
84 Words

512 Words

228-1024 Words

512 Words

32 Words

3x226 Words

1

Interrupt
Veotors

Reserved

General
Use

Reserved

Internal I/O
Registers

General
Use

16 --11
Bit 0
(First bit In memory)

Figure 3-3. TMS34010 Memory Map

3-4

Memory Organization - Memory Map

Addresses >FFFF FC00 through >FFFF FFEO are reserved for 32 interrupt,
reset, and trap vectors. A vector is a 32-bit address that points to the starting
location in memory of the appropriate interrupt, reset, or trap service routine.
Each address is stored in physical memory as two consecutive 16-bit words,
with the 16 LSBs at the lower address.

The 480 words from >C000 0200 to >C000 1 FF0 are reserved for future ex-
pansion of the I/O registers. The 448 words from >FFFF E000 to
>FFFF FBFO are reserved for future expansion of the interrupt vectors.

3-5

Memory Organization - Stacks

3.3 Stacks

The TMS34010's system stack is implemented in local memory via a dedicated
stack pointer (SP) register. The system stack is managed in hardware, and is
used to store return addresses and processor status information during inter-
rupts, traps, and subroutine calls. The contents of selected registers in the A
and B files can be pushed onto the stack and popped off the stack. The sys-
tem stack area can also be used for dynamically allocated data storage. The
SP is a dedicated 32-bit internal register that points to the top of the system
stack. The SP can be accessed by instructions that manipulate registers in
either register file.

In addition to the system stack, one or more auxiliary stacks can be managed
in software. The system stack always grows toward lower memory addresses,
while the auxiliary stack can be defined to grow toward either lower or higher
addresses. The MOVE and MOVB instructions, combined with the automatic
predecrement and postincrement addressing modes, facilitate pushing and
popping auxiliary stack data. One or more registers in the A or B files can be
used by software as auxiliary stack pointers and frame pointers. The indexed
addressing modes can be used in conjunction with a frame pointer to access
variables embedded within the stack.

3.3.1 System Stack

Figure 3-4 shows the structure of the system stack, which grows in the di-
rection of lower memory addresses. The SP points to the top of the stack.
That is, it contains the 32-bit address of the LSB (bit 0) of the value on top
of the stack. The SP may contain any 32-bit value; however, stack operations
execute more efficiently when the four LSBs of the SP are Os. This aligns the
SP to word boundaries in memory, reducing the number of memory cycles
necessary to push values onto the stack or pop values off the stack.

During an interrupt, the PC (program counter) and ST (status register) are
pushed onto the stack. Instructions that push values onto the system stack
include:

• MMTM SP,<register list>

• CALL RS

• CALLA <absolute address>

• CALLR <relative address>

• TRAP <number>

• PUSHST

• MOVE RS,-*SP

3-6

Memory Organization - Stacks

Instructions that pop values off the system stack include:

• MMFM SP,<register list>

• RETI

• RETS
• POPST

• MOVE "SP+,RD

Memory

14-16 -1.1

Stack Bottom

System
Stack
Area

14-3241
SP 1• 	I 	

Lowest Address

Figure 3 -4. System Stack

From one to 16 registers in the A or B file can be moved to or from the stack
in a single instruction. The MMTM instruction may be used to push multiple
registers onto the stack, and the MMFM instruction may be used to pop mul-
tiple registers from the stack. The second word of either instruction is a 16-bit
mask, generated from a register list, that specifies which registers in the A or
• file are being moved.

The SP can be specified as the source or destination operand in any in-
struction that operates on the general-purpose registers. Instructions that
manipulate registers in the A file or B file can also be used to manipulate the
SP.

Highest Address

3-7

Memory

(a)

SP

Lowest Address

(b)

Stack Bottom

32

Lowest Address

NEM

Stack Bottom

14— 32 —41
SP

Memory

16

Stack

:,AFF2

Stack

>OFE2

0

(c)

Stack Bottom

14— 32 -41
SPI N 	

Memory

4-- 18 --4

I 	Stack

6.7 70TO=.1 N

N
N-18
N-32

0

IOnsMI -Pippo*,
(MMTM SP,A .C.)

(MMFM SP,A"D

Memory Organization - Stacks

The contents of 32-bit registers pushed onto the stack are stored in two con-
secutive words, with the 16 MSBs at the higher memory address, and the 16
LSBs at the lower address. This is shown in Figure 3-5, which demonstrates
the effects of the following instruction sequence:

MMTM SP,AO 	Push register AO onto stack
MMFM SP,Al 	Pop stack into register Al

The original state of the stack and registers is shown in Figure 3-5 a. Figure
3-5 b illustrates the state after AO has been pushed onto the stack, and Figure
3-5 c shows the results of popping the top of the stack into A1.

Lowest Address 	10

Figure 3-5. Stack Operations

3-8

Memory Organization - Stacks

The GSP pushes the contents of a 32-bit register onto the top of the stack
according to the following sequence of events:

1) The SP is decremented by 32.
2) The register is pushed onto the stack.

The GSP pops the top of stack into a 32-bit register according to the follow-
ing sequence of events:

1) The 32 bits at the top of the stack are popped into the register.
2) The SP is incremented by 32.

During an interrupt, the PC and ST are pushed onto the stack to permit the
interrupted routine to resume execution when the interrupt processing is
completed. The following actions occur during an interrupt routine:

1) The SP is decremented by 32.
2) The PC is pushed onto the stack.
3) The SP is again decremented by 32.
4) The ST is pushed onto the stack.

During a return from an interrupt:

1) The 32 bits at the top of the stack are popped into the ST.
2) The SP is incremented by 32.
3) The 32 bits at the top of the stack are popped into the register.
4) The SP is again incremented by 32.

A subroutine call saves the state of the calling routine on the stack to allow
the routine to resume execution when subroutine execution is completed.
During a subroutine call, the following actions are taken:

1) The SP is decremented by 32.
2) The PC is pushed onto the stack.

During a return from a subroutine,

1) The 32 bits at the top of the stack are popped into the PC.
2) The SP is incremented by 32.

3-9

Memory Organization - Stacks

3.3.2 Auxiliary Stacks

Auxiliary stacks may be managed in software. Any A- or B-file register, except
the SP, may be used as the auxiliary stack pointer. Auxiliary stacks are typi-
cally used to contain dynamically allocated data storage.

In the following discussion, the symbol STK denotes the auxiliary stack poin-
ter. The STK may contain any 32-bit value; however, stack operations execute
more efficiently when the four LSBs of the STK are Os. This aligns the STK
to word boundaries in memory, reducing the number of memory cycles nec-
essary to push values onto the stack or pop values off the stack.

As shown in Figure 3-6 and Figure 3-7, the auxiliary stack can be configured
to grow in either direction in memory. The memory is shown in these figures
as a large set of continuously addressable bits (ignoring for the moment the
fact that memory is physically organized as 16-bit words).

The stack shown in Figure 3-6 grows toward lower memory addresses. The
original stack is shown in Figure 3-6 a. In b, a field of arbitrary size is pushed
onto the stack via a MOVE RS , * - STK instruction (where RS and STK represent
general-purpose registers). The field is popped off the stack by a MOVE
*STK+,RD instruction in c. Between instructions, the STK always points to
the lowest bit address in the stack - this corresponds to the very top of the
stack.

The MMTM STK, <register list> instruction can be used to save multiple
registers on the stack in Figure 3-6. Later, the registers can be restored to their
former values by means of an MMFM STK, <register list> instruction.

Stack

(a)

S

4— . ••
Address

STK

Stack

Lower

Address

(b) Field

T1
STK

S

Stack

(C)

STK

Figure 3-6. Auxiliary Stack Grows toward Lower Addresses

3 - 10

Memory Organization - Stacks

The stack shown in Figure 3-7 grows toward higher memory addresses. The
original stack is shown in Figure 3-7 a. In b, a field of arbitrary size is pushed
onto the stack via a MOVE RS, *STK+ instruction, and in c the field is popped
off the stack by a MOVE * - STK , RD instruction. Between instructions, the STK
always points to one plus the highest bit address in the stack - this location
is one bit beyond the very top of the stack.

Stack

4— Hluh 	 LOW
Aadr063,00 	 Addresses

STK

Stack
	 A 	

	■J■1••■•=t,. 	. .

Stack

(a)

• • • •• • • •"..Z •e n"•••• n '.:.

STK

Figure 3-7. Auxiliary Stack Grows toward Higher Addresses

(a)

(b)

Field

STK

3-1 1

This page intentionally left blank.

4. Hardware-Supported Data Structures

The TMS34010 supports several data structures at the machine level:

• Fields are configurable data structures whose length can be defined
within the range 1 to 32 bits. Two field sizes can be defined simul-
taneously. A field can begin and end at arbitrary bit addresses.

• Bytes are a special case of field in which the field length is fixed at eight
bits and is sign extended. Bytes can begin on any bit boundary within
a word.

• Pixels are configurable data structures; pixel length can be programmed
to be 1, 2, 4, 8, or 16 bits (always a power of two). Pixels are aligned
so that they do not cross word boundaries in memory.

• Two-dimensional pixel arrays are rectangular groups of pixels that
are manipulated using the PIXBLT (pixel block transfer) and FILL (pixel
block fill) instructions. A pixel array can be moved from one area of
memory to another in a single PixBlt operation. It can be combined with
another array of the same size by performing Boolean or arithmetic op-
erations on the corresponding pixels of the two arrays.

The number of bits in a pixel, field, or array is programmable, but byte length
is fixed. Two field sizes and one pixel size can be specified simultaneously.
The size and starting addresses of the pixel arrays that are manipulated during
a PixBIt operation are specified by the values loaded into dedicated hardware
registers.

Topics in this section include:

Section Page
4.1 Fields 	 4-2
4.2 Pixels 	 4-6
4.3 XY Addressing 	 4-11
4.4 Pixel Arrays 	 4-14

4 -1

Hardware-Supported Data Structures - Fields

4.1 Fields

The TMS34010 supports two software-configurable field types, Field 0 and
Field 1. A field in memory is defined by two parameters:

• Starting address

• Field size (1 to 32 bits)

A field's starting address is the address of the field's LSB. A field can begin
at an arbitrary bit address in memory. When a field is moved from memory to
a general-purpose register, the field is right justified within the register; that
is, the field's LSB coincides with the register's rightmost bit (bit 0). The reg-
ister bits to the left of the field are all 1s or all Os, depending on the values of
both the appropriate FE (field extension) bit in the status register, and the sign
bit (MSB) of the field. If FE=1, the field is sign extended; if FE=O, the field
is zero extended.

Field size can range from 1 to 32 bits. The lengths of fields 0 and 1 are defined
by two 5-bit fields in the status register, FS0 and FS1.

Figure 4-1 illustrates a field in memory. In this example, the field straddles the
boundary between words N and N+1 in memory. Field extraction and in-
sertion is performed by on-chip hardware:

• To move the field to a general-purpose register, the TMS34010 extracts
the field from memory by reading word N and word N+1 in separate
cycles.

• To move the field from a general-purpose register, the TMS34010 inserts
the field into memory by reading and writing word N, and reading and
writing word N+1.

The memory operations necessary to insert or extract a field are performed
automatically by special hardware, and are transparent to software.

32 Bit Logical Address 	

2
MSBs

28-Bit 4
LSBs 4 Physical Address

31 	30 29 4 3 	0

1
77

► 4 	Word N-41

Field 	01
Size

Memory

14---Word N+1

Figure 4 - 1. Field Storage in External Memory

4-2

Word N+1 I 	Word N
Field 	 ►

Hardware-Supported Data Structures - Fields

In Figure 4-1, word N is pointed to by a 26-bit physical address output by the
GSP to memory. This 26-bit address corresponds to bits 4-29 of the field's
32-bit logical address. The four LSBs of the logical address point to the be-
ginning of the field within word N.

The number of memory cycles required to extract or insert a field depends on
how the field is aligned in memory. Field manipulation is more rapid when
fields are stored in memory so that they do not cross word boundaries. Figure
4-2 illustrates various cases of alignment and nonalignment of fields to word
boundaries in memory. Given a field starting address and field length, the
memory controller will recognize the specified field alignment as one of the
seven cases in Figure 4-2. Field extraction and field insertion are performed
in a manner that requires the minimum number of memory cycles.

Case A 14- Word N
16-Bit Field

Case

Case C

Case D 14 Word Nil I 	Word N
	Field --114

Case E I Word N+1 I 	Word N
14- Field 	

Case F I Word N+1 	I 	Word N 	I
Field ---14

Case G I Wo.d N+2 I Word N+1 I 	Word N
4 	 Field 	 ► 1

Figure 4-2. Field Alignment in Memory

Case A A 16-bit field is aligned on word boundaries. Field extraction requires a single
read cycle, and field insertion requires a single write cycle.

Cases
B1 -B3 The field length is less than 16 bits.

• In Case B1, the field starting address is not aligned to a word boundary,
although the end of the field coincides with the end of the word.

• In Case B2, the field starting address is aligned to a word boundary, but
the end of the field does not coincide with the end of the word.

• In Case B3, the field length is 14 bits or less, and neither the start nor the
end of the field is aligned to a word boundary.

4-3

Hardware-Supported Data Structures - Fields

For Cases B1-B3, a field extraction requires a single read cycle. A field in-
sertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N

Case C A 32-bit field is aligned on word boundaries. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+ 1

A field insertion requires the following sequence of memory cycles:

1) Write word N
2) Write word N+ 1

Case D The field size is greater than 16 bits. The field starting address is not aligned
to a word boundary, but the end of the field coincides with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word N
2) Read word N+ 1

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Write word N+ 1

Case E The field size is greater than 16 bits. The field starting address is aligned to a
word boundary, but the end of the field does not coincide with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word N
2) Read word N+ 1

A field insertion requires the following sequence of memory cycles:

1) Write word N
2) Read word N+ 1
3) Write word N+1

Case F The field straddles the boundary between two words. Neither the start nor the
end of the field is aligned to a word boundary. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+ 1

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Read word N+1
4) Write word N+ 1

Case G The field size ranges from 18 to 32 bits, and the field straddles two word
boundaries. Neither the start nor the end of the field is aligned to a word
boundary. A field extraction requires the following sequence of memory cy-
cles:

1) Read word N
2) Read word N+1
3) Read word N+2

4-4

Hardware-Supported Data Structures - Fields

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Write word N+1
4) Read word N+2
5) Write word N±2

A field insertion modifies only the portion of a word that lies within a field.
The GSP memory controller must perform a read-modify-write operation when
a field that does not begin and end on even 16-bit word boundaries is to be
written to memory. This occurs when the four LSBs of the address are not 0,
or when the specified field size is a value other than 16 or 32. The memory
controller uses these two parameters (address LSBs and field size) to produce
a mask that identifies the bits in the word corresponding to the field. Hard-
ware uses the mask to perform the read-modify-write cycle. The GSP's local
memory control logic automatically generates the the mask and executes the
read-modify-write operation; this is transparent to software.

Figure 4-3 shows an example of inserting a 5-bit field stored in a register to
logical address >0000 0008.

• In Figure 4-3 a, the field to be inserted is shown right-justified in the
16 LSBs of the designated general-purpose register.

• In b, memory controller hardware has rotated the field to align it with the
destination in memory.

• In c, the GSP reads the original word from the destination in memory.

• In d, the mask is generated to designate the bits to be modified.

• In e, the field is inserted into the word from memory, and the result is
written back to the destination address in memory.

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

(a) Field to be Inserted

(b) Rotate to align to bit 8

(c) Initial destination data

(d) Mask generated

(e) Final destination data

IX X X X X X X X X X XFFFFFI

IX X 	 FFFFFXXXXXXXXJ I

IAA A A A A A A A A AA A A A Al

jogg11 111ogoogg ool

IAA A F F F F F A A A A A A A AI

Figure 4-3. Field Insertion

In the more complex case in which a field straddles one or two word bound-
aries in memory, the portion of the field lying within each word is inserted into
that word using the methods described above.

4-5

Hardware-Supported Data Structures - Pixels

4.2 Pixels

The term pixel has two meanings in the context of a TMS34010-based
graphics system. Outside the GSP, a pixel is a picture element on a display
surface. Inside the GSP, a logical pixel is a software-configurable data struc-
ture supported by the GSP instruction set. The logical pixel data structure in
GSP memory contains the information needed to specify the attributes of a
picture element visible on a screen. The information for a horizontal line of
pixels on the screen is usually stored in consecutive words in memory.

4.2.1 Pixels in Memory

Within GSP memory, the pixel data structure is defined by two parameters:

• Starting address

• Pixel size

A pixel's starting address is the address of the LSB of the pixel.

Pixel size (the number of bits per pixel) is defined in the PSIZE register. A
pixel can be 1, 2, 4, 8, or 16 bits long. The GSP treats pixels as a special case
of a field in which the field size is constrained to be a power of two. However,
pixels do not cross word boundaries within memory; they are aligned within
memory so that an integral number of pixels is contained within the bounda-
ries of a memory word. For example, a 2-bit pixel should begin at an even bit
address whose LSB is 0, a 4-bit pixel should begin at a bit address whose two
LSBs are Os, and so forth.

When a pixel is moved from memory to a general-purpose register, the pixel
is right justified within the register. That is, the LSB of the pixel coincides
with the rightmost bit (bit 0) of the register. Register bits to the left of the
pixel are loaded with Os.

Figure 4-4 illustrates pixel storage in memory. The pixel is located within the
word pointed to by the 26-bit physical address corresponding to bits 4-29 of
the 32-bit logical address of the pixel. The four LSBs of the logical address
specify the displacement of the pixel within the word. When the pixel length
is less than 16, each word contains two or more pixels.

Pixel extraction and insertion is performed by on-chip hardware in a manner
that requires the minimum number of memory cycles. (The operations are
transparent to the programmer.) In the worst case, two memory cycles (a read
followed by a write) are required to insert a pixel of less than 16 bits. Inserting
a 16-bit pixel requires a single write cycle, and extracting a pixel (1 to 16 bits)
requires a single read cycle.

4-6

Hardware-Supported Data Structures - Pixels

4 	
2

M4 88^ 	

31 30 29

32 Ed Logical Address

26-Bit
Physical Address

4
LSBe

4--s

N 	 4 3

..."ll•r£417.- •
•••••••••,,,........ ••••, • 	 ,, 	 ,, 	 ,

Pixel Size

	Word -it-

Figure 4-4. Pixel Storage in External Memory

4.2.2 Pixels on the Screen

Figure 4-5 illustrates the mapping of pixels from memory to a display screen.
The screen refresh function outputs pixels in the sequence of ascending pixel
addresses. However, the electron beam sweeps from the left edge of the
screen to the right edge during each horizontal scan interval, so pixels appear
on the screen in the opposite order of their representation in memory. That is,
the least significant pixel (in terms of bit address) appears on the left, and the
most significant pixel appears on the right.

Video Monitor Screen

Word Word Word
N-1 	N N+1

■.•••, 	ta 	

Memory

Pixel Pixel Pixel Pixel
4N+3 4N+2 4N+1 4N

14----Word N+1

Word N 	"la 	Word N

Figure 4-5. Mapping of Pixels to Monitor Screen

The GSP allows a pixel to be identified either in terms of its XY coordinates
on the screen, or in terms of the address of the logical pixel in memory. These
two methods are called XY addressing and linear addressing, respectively.

Memory it
_."1•"Fi•

4-7

Hardware-Supported Data Structures - Pixels

When XY addressing is used, the origin can be selected to lie in either the
upper left or lower left corner of the screen. The position of the origin is
controlled by the ORG bit in the DPYCTL register. Figure 4-6 a illustrates the
default coordinate system (ORG =0), in which the origin of the two coordinate
axes is located in the upper left corner of the screen. Figure 4-6 b shows the
alternate coordinate system (ORG=1) in which the origin is located in the
lower left corner of the screen.

■ X

(a)

Default
Screen
Origin

Y

(b) Monitor
Screen

Alternate
Screen

V
 Origin

	■ X

Figure 4-6. Configurable Screen Origin

Using the default screen origin, Figure 4-7 illustrates the mapping of pixels
from memory to the screen. In Figure 4-7, horizontal movement represents
travel in the X direction on the screen. Vertical movement represents travel in
the Y direction. The depth of the buffer represents the pixel size. The "on-
screen memory" contains the pixels that appear on the screen.

The display memory shown in Figure 4-7 is shown in terms of a "screen for-
mat" rather than the "memory format" used in the memory map shown in
Figure 3-3 on page 3-4. The screen format places the lowest pixel address
at the upper left corner of the memory map. This is the same relative orien-
tation in which pixels appear on the screen. Compare this to the memory
format shown in Figure 3-3, which places the lowest bit address at the lower
right corner of the memory map. This convention is frequently used in in-
dustry to represent the relative location of addresses in memory. In this doc-
ument, assume the standard memory format is used unless the screen format
is indicated.

Figure 4-8 illustrates the mapping of XY coordinates to the on-screen memory.
For simplicity, assume that the screen origin coincides with the upper left
corner of the display memory. P represents the X extent of the display memory
and N represents the Y extent. Each box represents a pixel within the memory.
The number within the box represents the pixel's memory location, relative to
the beginning of the on-screen memory. The number in the box is multiplied
by the number of bits per pixel to produce the address offset of the pixel from

Monitor
Screen

4-8

Hardware-Supported Data Structures - Pixels

the start of the display memory. Since the pixel size is constrained to be a
power of two, the multiply can be replaced by a simple shift operation.

	■ X

On-Screen
Memory

Off-Screen
Memory

Extent

Display Memory

	/.j
	PeK_ Pixel Size

(bits/pixel)

X Extent

V
Increasing

Y=0

Y=1

Y=2

Y4I-2

Y*I-1

Figure 4 - 7. Display Memory Dimensions

	► Increasing
X

X=0 	X=1 	X=2 X=3
	

X=P-2 X=P-1

0
	

1
	

2
	

3

P
	

P+1
	

P+2 P+3

2P
	

2P+1 2P+2 2P+3

P-2

P-1

2P-2

2P-1

3P-2

3P-1

)

(N-1)P
-2

 NP-2

(N-1)P
-1

NP-1

Display Memory
P = X Extent
N = Y Extent

Each box contains a pixel.
The number inside the box
Is the pixel's XY address.

Display Pitch= (X extent) x (pixel size)
= Differences in 32-bit memory addresses

of two vertically adjacent pixels

Figure 4-8. Display Memory Coordinates

4-9

Hardware-Supported Data Structures - Pixels

4.2.3 Display Pitch

The term display pitch refers to the difference in memory addresses between
two pixels that appear in vertically adjacent positions (one directly above the
other) on the screen. In Figure 4-8, the pitch is calculated as P times the pixel
size, where P is the X extent of the display memory.

The display pitch must be a power of two in order to support XY addressing
of pixels on the screen. Linear addressing of pixels on the screen imposes
fewer restrictions. In particular, the display pitch for linear addressing may be
any value that is a multiple of 16; that is, the four LSBs of the address must
be Os. Of course, features such as automatic window checking are not avail-
able with linear addressing.

The pitch of a pixel array is the difference in memory addresses of two verti-
cally adjacent pixels in the array. If the array occupies a rectangular area of the
screen, the array pitch is the same as the display pitch.

During a pixel operation such as a PixBlt, the source and destination array
pitches are specified in separate dedicated hardware registers. This facilitates
the transfer of pixel arrays between on-screen and off-screen memory, which
may have different pitches.

A sample display pitch calculation is shown below. In this example, the pixel
size is four bits and the X extent of the pixel display is 640 pixels. However,
since XY addressing and windowing are to be used, the physical memory is
organized so that there are 1024 pixels between successive scan lines. Thus,
the X extent of physical display memory is 1024, and the display pitch is:

Display Pitch = (1024 pixels/line) x (4 bits/pixel)

= 4096 (which is 2 12)

4-10

Hardware-Supported Data Structures - XY Addressing

4.3 XY Addressing

The TMS34010 allows pixel addresses to be specified in terms of two-di-
mensional XY coordinates that correspond to locations on the screen. This is
referred to as XY addressing. XY addressing has several benefits:

• TMS34010 software can be easily ported from one display configuration
to another. System-dependent details such as the number of bits per
pixel and the X extent of the display memory are transparent to the
software, but are used by the machine to automatically convert the XY
coordinates to the address of a pixel in memory.

• XY addressing allows you to think in terms of the high-level concept of
XY coordinates rather than in terms of the machine-level mapping of
pixels into memory.

• XY addressing facilitates such functions as window clipping.

Figure 4-9 illustrates XY addressing format. The XY address is stored in a
32-bit general-purpose register. The X and Y components are each treated
as 16-bit signed integers. The X component resides in the 16 LSBs of the
register, and is right justified to bit 0 of the register. The Y component occu-
pies the 16 MSBs of the register, and is right justified to bit 16 of the register.
XY coordinates in the range (-32768,-32768) to (+32767,+32767) can be
represented. The clipping window, which identifies the pixels that can be al-
tered during drawing operations, is restricted to positive X and Y coordinate
values, (0,0) to (+32767,+32767). Thus, pixels identified by negative X or
Y coordinates must always lie outside the window.

Figure 4-9. Pixel Addressing in Terms of XY Coordinates

4.3.1 XY-to-Linear Conversion

The TMS34010 automatically converts a pixel's XY address to a 32-bit logical
address (linear address) for all instructions that use XY addressing. Three
parameters are used to perform XY-to-linear conversion:

• The logical pixel size (stored in the PSIZE register)

• A pitch conversion factor (stored in the CONVSP or CONVDP registers)

• An offset defining the XY origin (stored in the OFFSET register)

4-11

Hardware-Supported Data Structures - XY Addressing

The GSP uses the following formula to calculate the physical address associ-
ated with the XY address:

Address = [(Y x display pitch) OR (X x pixel size)] + offset

Since the display pitch and pixel size are both powers of two, the calculation
is performed using only shift, OR, and add operations. Window clipping may
be used to detect out-of-bounds (negative) X or Y values before this calcu-
lation is performed.

Linear addresses are formed from XY addresses by simply concatenating the
binary numbers that represent the X and Y coordinate values, as shown in
Figure 4-10. The number of Os to the right of the X component of the address
depends on the number of bits per pixel, and equals log2(pixel size). The
displacement of the Y component within the 32-bit logical address in Figure
4-10 is equal to log2(display pitch). Finally, a 32-bit offset is added to the
address in Figure 4-10 to calculate the address in memory of the pixel at co-
ordinates (X,Y). The offset corresponds to the linear address in memory of the
pixel at (0,0).

0 0 	. 0
	

0 0 ... 0

X
MSBs are Os 	Component

	
Component 	LSBs are Os

Note: The shift value for the Y component is contained in
CONVSP or CONVDP register, depending on the instruction being exe-

cuted.

Figure 4-10. Concatenation of XY Coordinates in Address

The GSP uses the pitch conversion factors CONVSP and CONVDP to com-
pute the displacement of the Y component within the address, as shown in
Figure 4-10. The Y component is displaced from bit 0 of the address by an
amount equal to log2(pitch), which the hardware obtains by inverting the five
LSBs of the appropriate CONVSP or CONVDP register. These values must
be loaded through software before executing an instruction that uses XY ad-
dressing. CONVSP (source address pitch) is used if the XY address points to
a source pixel or pixel array; CONVDP (destination address pitch) is used if
the XY address points to a destination pixel or pixel array. The pixel size stored
in the PSIZE register is used similarly to determine the displacement of the X
component, as shown in Figure 4-10.

The OFFSET register contains the linear memory address of the pixel located
at coordinates (0,0) on the monitor screen. The OFFSET register is used in
translating XY coordinates into linear addresses, but does not control which
region of the display memory is output to refresh the video screen. It is a vir-
tual screen origin. It allows the coordinate axes of the XY address to be
translated to an arbitrary position in memory. The OFFSET register supports
the use of "window relative" addressing in which the X and Y coordinates are
specified relative to coordinate offsets in the display memory. The position
and size of a window can be specified arbitrarily. A new offset specified in
terms of XY coordinates can be converted to a linear address using the CVXYL
instruction. CVXYL converts an XY address to a linear address for the purpose
of absolute memory addressing, or to use special features available to in-
structions that use linear addressing. Figure 4-11 illustrates the XY-to-linear
conversion process.

4-12

Hardware-Supported Data Structures - XY Addressing

31
	

16 15
	

0

(a) Original XY address

(b) Extract 18 LSBs and
extend with Os

(c) Rotate X left by
log2 (pixel slze)

(d) Extract 18 MSBe from
original XY adaress

(e) Rotate Y left by
18+log2 (vertical pitch)

(0 Bltwise logical-OR together
shifted X and Y components

(g) Add offset from B4 to
displacement above to
get final memory address

10000001 	X

l000000000000000000000l

00000000000000000000l 	x 	101

l00000000000 00000l

Y 	10000000000001

1000 01
	

I 	X 	1001

Memory Address

Figure 4-11. Conversion from XY Coordinates to Memory Address

• Step a shows the original XY address.
• The X component is extracted in step b.
• In step c, the X component is shifted left by log2(pixel size). The result

of step c represents the product of the X component and the pixel size.
• The Y component is extracted in step d.
• In step e, the Y component is rotated left by 16+log2(display pitch).

The result of step e is Y multiplied by the display pitch.
• In step f, the results of steps c and e are bitwise-ORed to form the dis-

placement in memory of the pixel at (X,Y) from the pixel at the origin.
• In step g, the offset is added to produce the final memory address.

The example of Figure 4-11 corresponds to a pixel size of four bits and a pitch
of 4,096. The six MSBs of the X half of the XY address (bits 10-15) in Figure
4-11 must be Os to produce a valid memory address. For this example, the
clipping window should be set to disable writes to pixels having X coordinate
values outside the range 0 to +1023.

Generally, given a display with a pitch of 2n, a valid memory address is pro-
duced by the XY translation process shown in Figure 4-11 when only the n
LSBs of the X half of the XY address are nonzero (that is, when the 15-n
MSBs are 0). X values may be in the range -32768 to +32767 before clip-
ping. However, after clipping, the X value should be a positive number in the
range 0 to (X extent -1), where X extent = pitch/pixel size. The GSP's auto-
matic window clipping can be configured to clip pixels lying outside the
window; hence, no software overhead is incurred in clipping. Y values lying
outside the window are clipped in a similar fashion.

4-13

Default
Starting
Address

2-Dimensional
Pixel Array

Ii 	 AX

T
AY

Graphics Operations - Pixel Arrays

4.4 Pixel Arrays

A rectangular area of the screen that is DX pixels wide and DY pixels high is
an example of a data structure called a two-dimensional pixel array. The array
contains DX x DY pixels, but can be manipulated by the TMS3401 0 as one
structure. The TMS34010's instruction set includes a powerful set of raster
operations, called PixBlts, that manipulate pixel arrays on the screen and
elsewhere in memory.

Figure 4-12 shows a pixel array occupying a rectangular region in display
memory. The DX pixels in each row of the array are packed together into ad-
jacent cells in the display memory. Rows do not generally occupy adjacent
areas of memory, but are separated from each other by a constant displace-
ment called the array pitch. The array pitch is the difference in memory ad-
dresses between the start of one row and the start of the row directly beneath
it. In the Figure 4-12 example, the array pitch is equal to the display pitch.
The product of the array width DX and the pixel size must be less than or equal
to the pitch.

Display Memory

AX = Pixels per row of array
AY = Pixels per oolumn of array

Figure 4 - 12. Pixel Array

A pixel array is specified in terms of its width, height, pitch, and starting ad-
dress. The starting address is the address of the first pixel to be moved during
a PixBlt. The default starting address is simply the base address of the array;
that is, the address of the pixel that has the lowest address in the array.

If as shown in Figure 4-12, the XY origin is located in its default position at
the upper left corner of the screen. The default starting address is the address
of the pixel located in the upper left corner of the array. When a PixBlt oper-
ation moves the pixels from a source pixel array to a destination array, the
pixels in each row are moved in sequence from left to right, and the rows are
moved in sequence from top to bottom.

4-14

Graphics Operations - Pixel Arrays

Certain PixBIt operations allow the starting pixel to be specified as one of the
pixels in the other three corners of the array. This feature is provided so that
when the source and destination arrays overlap, the appropriate starting corner
can be selected to ensure that no data is lost by being overwritten during
PixBIt execution. The order in which pixels in the array are moved can be al-
tered to be from right to left or from bottom to top as appropriate to accom-
modate the change in starting corner.

The starting address of a pixel array can be specified either in terms of the XY
coordinates of the starting pixel (XY address), or the memory address of the
starting pixel (linear address):

• An array whose starting location is specified as an XY address is referred
to as an XY array. In this format, the starting location of the array is
identified by the XY coordinates of the first pixel in the array.

• A pixel array whose starting location is specified as a memory address
is referred to as a linear array. In this format, the location of the array is
identified by the memory address of the first pixel (the pixel that has the
lowest bit address) in the array.

The XY array format has two advantages. First, the starting location of the
array is specified in system-independent Cartesian coordinates rather than as
a system-dependent memory address. Second, the GSP's window checking
(which allows it to automatically detect an attempt to write a pixel inside or
outside a specified window) can only be used in conjunction with XY ad-
dressing.

The linear format's main advantage is that the array pitch does not have to be
a power of two. This supports a wider variety of memory organizations. Using
XY format, the array pitch is constrained to be a power of two.

The general rules governing array pitch are as follows. When an array is spe-
cified in XY format, the pitch must be a power of two. The pitch for an array
specified in linear format may be any multiple of 16; that is, the four LSBs of
the pitch must be Os. There are a few important exceptions to the second rule
which are discussed below.

For the special case of a PIXBLT B,XY or PIXBLT B,L instruction, the source
pitch may be any value. This feature supports efficient use of memory by al-
lowing adjacent rows of the source array to be packed together with no in-
tervening gaps. The destination pitch must still be a multiple of 16.

Under certain conditions the linear source array specified for a PIXBLT L,XY
or PIXBLT B,XY must have a pitch that is a power of two. This is necessary
when the linear start address for the array has to be adjusted in the Y direction
due to one of the following conditions:

• The source array is automatically preclipped to lie within a rectangular
window.

• One of the lower two corners of the source array (refer to Figure 4-1 2)
is selected to be the start address.

In either case, the start addresses specified for both the source and destination
arrays are automatically adjusted, and for this purpose the conversion factors
specified in the CONVSP and CONVDP registers must be valid.

4-15

Graphics Operations - Pixel Arrays

While PixBlts are useful for moving arrays from one area of the screen to an-
other, they can also be used to move arrays to the screen from other parts of
memory, and vice versa. The pitch for the off-screen pixel array can be spec-
ified independently of the pitch for the on-screen array. This permits off-
screen data to make efficient use of storage, regardless of the display pitch.
On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. The PIXBLT instructions support
the transfer of a linear array to an XY array, and vice versa. PIXBLT in-
structions can also be used to rapidly move blocks of non-pixel data (ASCII
characters, for example) from one location in memory to another.

4-16

5. CPU Registers and Instruction Cache

The TMS34010's on-chip CPU includes two general-purpose register files, file
A and file B. Each register file contains 15 32-bit registers. The two files share
a 32-bit hardware stack pointer (SP) that automatically manages the system
stack during interrupts and subroutine calls. The CPU also contains two
dedicated 32-bit registers - a program counter and a status register. An on-
chip cache memory holds up to 128 instruction words, and is transparent to
software. The CPU registers and instruction cache are discussed in the fol-
lowing sections:

Section Page
5.1 General-Purpose Registers 	 5-2
5.2 Status Register 	 5-20
5.3 Program Counter 	 5-22
5.4 Instruction Cache 	 5-23
5.5 Internal Parallelism 	 5-28

In addition to the CPU registers, the TMS34010 contains 28 memory-mapped
registers that are dedicated to I/O functions. These are described in Section
6.

5-1

CPU Registers and Instruction Cache - General-Purpose Registers

5.1 General-Purpose Registers

The TMS34010 has 30 32-bit general-purpose registers, divided into register
files A and B. In addition, a single stack pointer (SP) is common to both re-
gister files.

The multiple internal data paths linking the ALU and general-purpose registers
provide single machine state execution of most register-to-register in-
structions. Single-state instructions include add, subtract, Boolean oper-
ations, and shifts (1 to 32 bits). During a single-state instruction, the
following actions occur:

1) Two 32-bit operands are read in parallel from the general-purpose reg-
isters.

2) The specified operation is performed by the ALU.

3) The 32-bit result is stored in the specified general-purpose register.

The general-purpose registers are dual-ported to permit operands to be read
from two independent registers at the same time.

5.1.1 Register File A

Fifteen of the 30 general-purpose registers, AO-A14, form register file A.
These registers can be used for data storage and manipulation. No hard-
ware-dedicated functions are associated with these general-purpose registers.

All register-to-register instructions (except MOVE RS,RD) require both regis-
ters to be in the same file. Instructions used to manipulate registers AO-A14
can also be used to manipulate the stack pointer. The SP can be specified in
place of an A-file register in any of these instructions. Figure 5-1 illustrates
register file A.

31(MSB) 	 O(LSB)

AO

Al

A2

AS

A5

A8

A7

A8

A9

A10

All

Al2

A13

A14

SP Stack Pointer

Figure 5-1. Register File A

5 -2

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.2 Register File B

Register file B consists of 15 general-purpose registers, BO-B14. All regis-
ter-to-register instructions (except MOVE RS,RD) require both registers to be
in the same file. Instructions used to manipulate registers BO-B14 can also
be used to manipulate the stack pointer. The SP can be specified in place of
a B-file register in any of these instructions.

Registers BO-B14 can be used for general-purpose functions such as data
storage and manipulation. During PixBIt and other pixel operations, however,
these registers are assigned hardware-dedicated functions.

31(MSB)
	

o(LE0)

BO

82

B3

B4

85

B8

B7

B8

89

B10

B11

B12

1313

B14

SP

SADDR
I

SPTCH
I

DADDR
I

DPTCH
I

OFFSET
I

WSTART
I

WEND
I

DYDX
I

COLORO
I

COLOR1
I

COUNT
I

INC1
I

INC2
I

PATTRN
I

TEMP
I

Stack Pointer

Destination Pitch

Offset

Window Start

Window End

Delta Y / Delta X
COLORO
(Pl•BLT Bs)
COLOR1
(PIXBLT Bs, FILLS AND DRAY)

These are used as temporary
storage for PIAB-T and
FILL instructions.

S ource Address
(PABLTs)

Source Pitch
• :pition Address

fa and FILLS)

Figure 5-2. Register File B

As Figure 5-2 shows, registers BO-B9 are used as special-purpose registers
during pixel operations. These registers must be loaded with specific param-
eters before execution of pixel operations. Registers B10-B14 are used as
special-purpose registers for the LINE instruction. During pixel operations,
registers B10-B14 are used for temporary storage; their previous contents are
destroyed. Register functions may vary for individual instructions.

The B - file registers are described in detail in Section 5.1.4.

5-3

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.3 Stack Pointer

The stack pointer (SP), shown in Figure 5-3, is a 32-bit register that contains
the bit address of the top of the system stack. Section 3.3 describes stack
operation in detail. The SP appears as a member of both the A and B files,
and can be specified as the operand in any instruction that manipulates the
general-purpose registers. The machine contains only a single SP, but this
SP can be addressed as a member of either register file, A or B.

31 	4 3 	0
Word Addrwo, 	Bit Addr

14 	28 bits 	► 14 4 lolts—■1

Figure 5-3. Stack Pointer Register

The system stack grows in the direction of smaller addresses. During an in-
terrupt, the PC and ST are pushed onto the stack to permit the interrupted
routine to resume execution when interrupt processing is completed. A sub-
routine call saves the PC on the stack to allow the calling routine to resume
execution when subroutine execution is completed.

The stack pointer always points to the value at the top of the stack. Specif-
ically, the SP contains the 32-bit address of the LSB of that value. While the
four LSBs of the SP may be set to an arbitrary value, stack operations execute
more efficiently when the four LSBs are Os. Setting these bits to Os aligns the
stack pointer to 16-bit word boundaries in memory, reducing to two the
number of memory cycles necessary to push or pop the contents of a 32-bit
register.

The SP can be specified as the source or destination operand in any instruc-
tion that operates on the general-purpose registers. The SP can be accessed
as register 15 in file A or B. Refer to the descriptions of the specific in-
structions for details.

5-4

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.4 Implied Graphics Operands

Table 5-1 summarizes the B-file register functions during pixel operations.
These registers are referred to as implied graphics operands. Several I/O reg-
isters, described in Section 6, are also implied graphics operands. Individual
descriptions of the B-file registers follow Table 5-1.

Table 5-1. B-File Registers Summary

Reg. Function Description

BO SADDR Source Address. 	Address of the upper left corner of the source pixel array
(lowest pixel address in the array). 	SADDR is a linear or XY address, depend-
ing on the instruction which uses it.

B1 SPTCH Source Pitch. 	Difference in linear start addresses between adjacent rows of a
source pixel array.

B2 DADDR Destination Address. 	Address of the upper left corner of the destination pixel
array (lowest pixel address in the array). 	DADDR is a linear or XY address,
depending on the instruction which uses it.

B3 DPTCH Destination Pitch. 	Difference in linear start addresses between adjacent rows
of a destination pixel array.

B4 OFFSET Offset. 	Linear bit address corresponding to XY-coordinate origin (X.--- 0, Y=0).

B5 WSTART Window Start Address. 	XY address of the upper left corner of the window
(smallest X and Y coordinate values in the array).

31 	 16 	15 	 01

Starting Y 	 Starting X 	 I
B6 WEND Window End Address. 	XY address of the lower right corner of the window

(largest X and Y coordinate values in the array).

16 	15 	 0

1
31

Ending Y 	 Ending X

67 DYDX Delta Y IDefta X. The 16 LSBs of this register specify the width (X dimension)
of the source array in terms of either pixels or bits, depending on the instruc-
tion. The 16 MSBs specify the height (Y dimension) of the source array. If
either DY = 0 or DX = 0 then nothing is moved.

	

31 	 16 	15 	 0

Delta Y 	 1 	 Delta X 	 I

5-5

CPU Registers and Instruction Cache - General-Purpose Registers

Table 5-1. B-File Registers Summary (Concluded)

Reg. Function Description

B8 Color 0 Pixel value corresponding to "color 0". 	COLORO contains the source back-
ground color to be used during a bit-expand operation (PIXBLT B,XY or
PIXBLT B,L). 	The pixel value should be replicated throughout the '16 LSBs
of register B8 (see note below). 	Non replicated patterns may be entered for
dithering effects. The 16 MSBs are ignored during the expand operation. 	For
example, at four bits per pixel, COLORO contains four identical pixel values,
as shown below.

31 	2827 	24 23 	20 19 	16 	15 	12 	11 	8 7 	4 3 	0

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	 I 	 I 	I 	I

Each of the 16 LSBs of COLORO is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLORO bit 0 is associated with
bit 0 of the data bus (the bit transferred on LADO), COLORO bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLORO are
output over a portion of the data bus, including a bit n of the bus, as an ex-
ample, bus bit n contains the value from bit n of COLORO.

B9 Color 1 Pixel value corresponding to "color 1". 	COLOR1 contains the source fore-
ground color to be used during a bit-expand, fill, or draw-and-advance oper-
ation. 	The pixel value should be replicated throughout the 16 LSBs of register
B9 (see note below). 	Nonreplicated patterns may be entered for dithering ef-
fects. The 16 MSBs are ignored during the expand operation. For example,
at four bits per pixel, COLOR1 contains four identical pixel values, as shown
below.

31 	28 27 	24 23 	20 19 	16 	15 	12 	11 	8 7 	43 	0

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	I 	 I

Each of the 16 LSBs of COLOR1 is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLOR1 bit 0 is associated with
bit 0 of the data bus (the bit transferred on LADO), COLOR1 bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLOR1 are
output over a portion of the data bus, including bit n of the bus, bus bit n
contains the value from bit n of COLOR1.

B1 0-B1 4 PixBlt temporary registers. 	PixBlt instructions use these registers for storing
temporary values and context information necessary to resume execution of a
partially-completed PixBlt operation in the event of an interrupt.

SP SP Stack pointer. 	SP contains the bit address of the top of the stack.

Notes: To provide upward compatibility with future versions of the GSP, replicate the pixel value
throughout all 32 bits of COLORO or COLOR1, as shown.

5-6

BO

Syntax

Format

SADDR - Source Address Register BO

BO

31 16 15 0

X

or

31
	

0

Linear Bit Address

Description 	SADDR contains the source array address pointer for PIXBLTs. Generally,
SADDR points to the pixel with the lowest address in the source array.
When a corner adjust is necessary, the GSP automatically adjusts SADDR
to point to the selected starting corner of the source array. (For PIXBLT
L,L, however, you must manually adjust SADDR to point to the starting
corner. This feature allows you to use PIXBLT L,L for manipulating pixel
arrays with pitches that are not powers of two.)

SADDR is in either XY or linear format. If the first operand of a PIXBLT
instruction is an L (such as PIXBLT L,XY), then SADDR is in linear format.
If the first operand of a PIXBLT instruction is an XV (such as PIXBLT XY,L),
then SADDR is in XY format.

During PIXBLT operations, SADDR is used in linear format. When the
PIXBLT is completed, SADDR points to the starting location of the row that
follows the last row in the array. If a PIXBLT is interrupted, SADDR points
to the next word of pixels to be read.

During LINE operation, SADDR contains the current decision variable va-
lue.

The following instructions use SADDR as an implied operand:

Instruction 	SADDR Format and Function
LINE 	 Contains d=2b-a, used for the line draw.
PIXBLT B,L 	Linear address; points to the beginning of a binary source

array.
PIXBLT B,XY 	Linear address; points to the beginning of a binary source

array.
PIXBLT L,L 	Linear address with special requirements when PBH = 1

or PBV = 1. Refer to the PIXBLT L,L for a description of
its unique requirements.

PIXBLT L,XY 	Linear address; points to the beginning of a source array.
PIXBLT XY,L 	XY address; points to the beginning of a source array.
PIXBLT XY,XY XY address; points to the beginning of a source array.

Example SADDR .set BO
*

MOVE >00080015,SADDR 	;Move XY value >15,>8 into
;BO

MOVE >00010AFC,SADDR ;Move linear value >10AFC
;into BO

5-7

Bi

Format

SPTCH - Source Pitch Register B1

31

0

Linear Bit Address

Description 	SPTCH specifies the linear difference in the start addresses of adjacent lines
of the source array for PIXBLT and FILL instructions. The GSP uses the
value in SPTCH to move from row to row through the source array. SPTCH
must be an integer multiple of 16 (except for the special cases of PIXBLT
B,L and PIXBLT B,XY). SPTCH is constrained in some cases to be a power
of two; this allows XY addressing and automatic corner adjust operations.

Some PIXBLTs store an adjusted value of SPTCH during instruction exe-
cution. This mechanism is transparent unless the PIXBLT is interrupted.
However, the original contents of SPTCH are restored if the instruction is
allowed to complete normally.

The following instructions use SPTCH as an implied operand.

Instruction 	SPTCH Format and Function
PIXBLT B,L 	Linear; unconstrained otherwise.
PIXBLT B,XY 	Linear; power of two for windowing; unconstrained oth-

erwise.
PIXBLT L,L 	Unconstrained except as previously noted. SPTCH is not

related to CONVSP for this instruction; therefore, it is not
constrained to be a power of two.

PIXBLT L,XY 	Linear; power of two for windowing and PBV = 1; un-
constrained otherwise except as previously noted.

PIXBLT XY,L 	Power of two.
PIXBLT XY,XY Power of two.

Example 	SPTCH .set Bl

MOVE >00001000,SPTCH 	;Power of two for
;PIXBLT XY,L

MOVE >00010AFC,SPTCH 	;Unconstrained value for
;PIXBLT B,L

5-8

B2
	

DADDR - Destination Address Register
	

B2

Format
	

31
	

16 15
	

0

Y
	

X

or

31
	

0

Linear Bit Address

Description 	DADDR specifies the address of the least significant pixel in the destination
array for PIXBLTs. Generally, DADDR points to the pixel with the lowest
address in the destination array. When a corner adjust is necessary, the
GSP automatically adjusts DADDR to point to the selected starting corner
of the destination array. (For PIXBLT L,L, however, you must manually
adjust DADDR to point to the starting corner. This feature allows you to
use PIXBLT L,L for manipulating pixel arrays with pitches that are not
powers of two.)

DADDR is also used in conjunction with DYDX to perform a common rec-
tangle function for some instructions (FILL XY, PIXBLT B<XY, PIXBLT
L,XY, and PIXBLT XY,XY, with window option 1). In these cases, DADDR
is set to the starting XY address of the common pixel block described by the
intersection of the original destination array and the pixel block indicated
by WSTART and WEND. No drawing is performed. If there is no common
array, the V bit is not set and the value of DAD DR is indeterminate.

DADDR is in either XY or linear format. If the second operand of the
PIXBLT instruction is an L (such as PIXBLT XY,L), then DADDR is in linear
format. If the second operand of the PIXBLT instruction is an XY (such as
PIXBLT XY,XY), then DAD DR is in XY format.

During PIXBLT operation, DADDR is maintained in linear format. When the
PIXBLT completes, DADDR points to the linear starting address of the row
following the last row in the array. If a PIXBLT is interrupted, DADDR
points to the next word of pixels to be read.

For the LINE instruction, DADDR contains the XY address of the next DDA
drawing point.

The following instructions use DADDR as an implied operand.

Instruction
FILL L
FILL XY
LINE
PIXBLT B,L
PIXBLT B,XY
PIXBLT L,L

PIXBLT L,XY
PIXBLT XY,L
PIXBLT XY,XY

DADDR Format and Function
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.
XY; points to the current pixel.
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.
Linear with special requirements when PBH=1 or PBV=1.
Refer to the PIXBLT L,L for a description of its unique re-
quirements.
XY; points to the beginning of the destination array.
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.

5 -9

B2 	DADDR - Destination Address Register 	B2

Example 	DADDR .set B2
*

MOVE >00080015,DADDR ;Move XY value >l5,>8 into
;B2

MOVE >00010AFC,DADDR ;Move linear value >10AFC
;into 02

5-10

DPTCH - Destination Pitch Register
	

B3

31
	

0

Linear Bit Address

DPTCH specifies the linear difference in the start addresses of adjacent lines
of the destination array for PIXBLT and FILL instructions. The TMS34010
uses the value in DPTCH to move from row to row through the destination
array. DPTCH must be an integer multiple of 16 (except for FILL L when
DX=1). DPTCH is also constrained in some cases to be a power of two to
allow XY addressing and automatic corner adjust.

Some PIXBLTs store an adjusted value in DPTCH during instruction exe-
cution. This mechanism is transparent, unless the PIXBLT is interrupted.
The original contents of DPTCH are restored if the instruction is allowed to
complete normally.

The following instructions use DPTCH as an implied operand.

B3

Format

Description

Example

Instruction
L L

FILL XY
PIXBLT B,L
PIXBLT B,XY

PIXBLT L,L

PIXBLT L,XY
PIXBLT XY,L

PIXBLT XY,XY

DPTCH .set
*

MOVE

MOVE

DPTCH Format and Function
Linear; unconstrained for DX=1.
Linear; power of two.
Linear; unconstrained except as previously noted.
Linear; power of two for windowing; unconstrained oth-
erwise except as noted above.
Linear; unconstrained except as previously noted. DPTCH
is not related to CONVDP for this instruction; therefore, it
is not constrained to be a power of two.
Linear; power of two.
Linear; power of two for PBV = 1; unconstrained other-
wise except as previously noted.
Linear; power of two.

B3

>00001000,DPTCH

>00010AFC,DPTCH

;Power of two for
;PIXBLT XY,L
;Unconstrained value for
;PIXBLT L,L

5-11

B4 	OFFSET - XY Addressing Offset Register 	E14

Format 	31
	

0

Linear Bit Address

Description 	OFFSET contains the linear address of the first pixel in the XY coordinate
space for instructions using XY addressing. This corresponds to the linear
address of the XY origin (X=0,Y=0). This value is used as the memory base
for performing XY to linear address conversions.

OFFSET is always in linear format. It may be placed at any position in the
TMS34010 linear address space and should contain a pixel-aligned value
for proper XY address conversions, transparency, pixel processing, and
plane masking. OFFSET is not modified by instruction execution.

The following instructions use OFFSET as an implied operand.

OFFSET Format and Function Instruction
CVXYL 	RD
DRAV RS,RD
FILL XY
LINE
PIXBLT B,XY
PIXBLT L,XY
PIXBLT XY,L
PIXBLT XY,XY
PIXT RS,RD.XY
PIXT RS.XY,RD
PIXT RS.XY,RD.XY

Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address

of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin

Example
	

OFFSET.set B4

MOVE >00042000,OFFSET ;Linear value on pixel
* 	 ;boundary

5-12

31
	

16 15
	

0

Window start Y Window start X

B5

Format

Description

WSTART - Window Start Address Register 	B5

WSTART specifies the XY address of the least significant pixel contained
in the rectangular destination clipping window. WSTART is valid for in-
structions that use an XY destination address and a window option. The
least significant pixel is the pixel with the lowest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the upper left corner of the pixel array.

WSTART may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WSTART is included in the window. The value in
WSTART is used with WEND, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WSTART is not modified by instruction execution.

The following instructions use WSTART as an implied operand.

Instruction 	WSTART Format and Function
RD 	XY value of least significant window corner

DRAV RS,RD 	XY value of least significant window corner
FILL XY 	 XY value of least significant window corner
LINE 	 XY value of least significant window corner
PIXBLT B,XY 	XY value of least significant window corner
PIXBLT L,XY 	XY value of least significant window corner
PIXBLT XY,XY 	XY value of least significant window corner
PIXT RS,RD.XY 	XY value of least significant window corner
PIXT RS.XY,RD.XY XY value of least significant window corner

Example 	WSTART . set 05

MOVE >00400100,WSTART ;XY value (256,64) stored
;in WSTART

5-13

B6 	WEND - Window End Address Register
	

B6

Format 	31
	

16 15
	

0

Window end Y Window end X

Description 	WEND specifies the XY address of the most significant pixel contained in
the rectangular destination clipping window. WEND is valid for in-
structions that use an XY destination address and a window option. The
most significant pixel is the pixel with the highest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the lower right corner of the pixel array.

WEND may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WEND is included in the window. The value in
WEND is used with WSTART, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WEND is not modified by instruction execution.

The following instructions use WEND as an implied operand.

Instruction 	WEND Format and Function
(PA RS,RD 	XY value of most significant window corner
DRAV RS,RD 	XY value of most significant window corner
FILL XY 	 XY value of most significant window corner
LINE 	 XY value of most significant window corner
PIXBLT B,XY 	XY value of most significant window corner
PIXBLT L,XY 	XY value of most significant window corner
PIXBLT XY,XY 	XY value of most significant window corner
PIXT RS,RD.XY 	XY value of most significant window corner
PIXT RS.XY,RD.XY XY value of most significant window corner

Example 	WEND .set B6

MOVE >00400100,WEND 	;XY value (256,64) stored
;in WEND

5-14

B7

Format

Description

DYDX - Delta Y/Delta X Register
	

B7

31
	

16 15
	

0

Delta Y Delta X

DYDX specifies the X and Y dimensions of the rectangular destination array
for PIXBLT and FILL instructions. Both the X and Y dimensions are in
pixels; that is, the DX value is number of pixels in width of the array, and
DY is the number of lines of pixels in the destination array.

When the window clipping option is selected, the pixel block dimensions
for the transfer are determined by the relationships between WSTART,
WEND, DADDR, and DYDX. If either the X or Y dimension is 0, then the
block is interpreted as having a dimension of 0; no transfer is performed.

The values for DY and DX may range up to the coordinate extent of the
display (up to 65,535, depending on the display pitch and pixel size se-
lected). For window operations, the relationship between DYDX,
WSTART, and WEND is such that DY = WEND, - WSTARTy + 1 and DX
= WEND x - WSTARTx + 1. The value in DYIOX is used with WSTART,
DADDR, and DYDX to preclip pixels, lines, and pixel arrays.

Most instructions do not modify the contents of DYDX. For FILL XY,
PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY,XY, with window option 1,
however, DYDX is used with DADDR to perform a common rectangle
function. In this case, DYDX is set to the dimensions of the common pixel
block described by the intersection of the original destination array and the
window identified by WSTART and WEND. No drawing is performed. If
there is no common rectangle, the V bit is not set and the value of DYDX
is indeterminate. See these instructions for further information.

The following instructions use DYDX as an implied operand.

DYDX Format and Function
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
W=1 is selected, as previously noted.
Dimensions of the rectangle described by the line to be
drawn.
Array dimensions in XY format
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.

Instruction
FILL L
FILL XY

LINE

PIXBLT B,L
PIXBLT B,XY

PIXBLT L,L
PIXBLT L,XY

PIXBLT XY,L
PIXBLT XY,XY

5-15

B7 	 DYDX - Delta Y/Delta X Register 	 B7

Example 	This example illustrates the relationship of DYDX to WSTART and WEND.

WSTART.set B5
WEND 	.set B6
DYDX 	.set B7

MOVE WEND,DYDX
SUBXY WSTART,DYDX
ADDI >10001,DYDX

;Put WEND into DYDX
;Generate (WEND - WSTART)
;Increment by 1 in each
;dimension

5-16

B8

Format

Description

COLORO - Background Color Register
	

B8

31 28 27 24 23 20 19 16 15 12 11
	

8 7
	

4 3
	

0

Pixel
	

Pixel
	

Pixel
	

Pixel
	

Pixel
	

Pixel I Pixel
	

Pixel

COLORO specifies the replacement color for 0 bits in the source array for
PIXBLT B,L and PIXBLT B,XY instructions. These two instructions trans-
form binary pixel array information to multiple bits per pixel arrays using the
color information in COLOR1 and COLORO. The lower 16 bits of COLORO
are used for the 0 or background color. There is a direct correspondence
between the alignment of pixels within the COLORO register and pixels
within memory words to be altered. That is, individual pixels within
COLORO are used as they align with destination pixels in the destination
word.

COLORO is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLORO as an implied operand.

Instruction 	COLORO Contents
B,L 	Background pixel color for expanded array

PIXBLT B,XY 	Background pixel color for expanded array

Example 	COLORO .set B8

MOVI >00005555,COLORO ;store uniform pixel value
;in COLORO

5-17

B9

Format

Description

COLOR1 - Foreground Color Register
	

B9

31 	28 27 24 23 20 19 16 15 12 11
	

8 7
	

4 3
	

0

Pixel I Pixel
	

Pixel
	

Pixel I Pixel I Pixel I Pixel I Pixel

COLOR1 specifies the replacement color for pixels to be altered at the des-
tination pixel or pixel block for FILL, DRAV and LINE instructions.

For PIXBLT B,L and PIXBLT B,XY instructions, COLOR1 specifies the re-
placement color for 1 bits in the source array. These two instructions
transform binary pixel array information to multiple-plane pixel arrays using
color information in COLOR1 and COLORO. There is a direct correspond-
ence between the alignment of pixels within the COLOR1 register and pix-
els within memory words to be altered. That is, individual pixels within
COLOR1 are used as they align with destination pixels in the destination
word.

COLOR1 is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLOR1 as an implied operand.

Example

Instruction
DRAV RS,RD
FILL L
FILL XY
LINE
PIXBLT B,L
PIXBLT B,XY

COLORl.set

CO LORI Contents
Pixel color for pixel draw
Pixel color for filled array
Pixel color for filled array
Pixel color for line draw
Foreground pixel color for expanded array
Foreground pixel color for expanded array

B9

MOVI >00003333,COLOR1 ;Store uniform pixel value
;in COLOR1

5-18

B10 - B14

Format

Description

- Reserved Registers
	

B10 - B14

31
	

0

Various Formats

B10 — B14 are used as implied operands for the LINE instruction and as
temporary registers for PIXBLTs and FILLs. B13 (PATTRN register) is re-
served for future LINE draw enhancement. It should be set to >FFFFFFFF
before executing the LINE instruction to ensure software compatibility.

5-19

F
E
0

F61 F80

3130 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F
E
1

Reserved V C N z
P
B
X E

CPU Registers and Instruction Cache - Status Register

5.2 Status Register

The status register (ST) is a special-purpose, 32-bit register that specifies the
processor status. The ST also contains several parameters that specify the
characteristics of two programmable data types, fields 0 and 1. The ST is ini-
tialized to >00000010 at reset.

Figure 5-4 illustrates the status register. Table 5-2 lists the functions associ-
ated with the status bits. Table 5-3 describes the encoding of the field size
bits in FSO and FS1.

Note: The status register bits marked reserved (bits 12-20, 22-24 and 26-27)
are currently unused. When read, a reserved bit returns the last value
written to it. At reset, all reserved bits are forced to Os.

Figure 5-4. Status Register

Table 5-2. Definition of Bits in Status Register

Bit
No.

Field
Name F Function

0-4 FS0 Field Size 0. 	Length in bits of first memory data field (see Table 5-3 for values).

5 FE0 Field Extend 0. 	Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.

FEO = 0 — Zero extension
FEO = 1 — Sign extension

6-10 FS1 Field Size 1. 	Length in bits of second memory data field (see Table 5-3 for values).

11 FE1 Field Extend 1. 	Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.

FE1 = 0 — Zero extension
FE1 = 1 — Sign extension

12-20 — Reserved

21 IE Interrupt Enable. 	Master interrupt enable/disable bit.

IE = 0 — All maskable interrupts disabled
IE = 1 — All maskable interrupts enabled

22-24 — Reserved

5 - 20

CPU Registers and Instruction Cache - Status Register

Table 5-2. Definition of Bits in Status F 	(Concluded)

Bit
No.

Field
Name Function

2I PBX PixBit Executing. 	Indicates upon return from an interrupt that the interrupt occurred
between instructions or in the middle of a PIXBLT or FILL instruction.

0 = Indicates interrupt occurred at PIXBLT or FILL instruction boundary
1 = Indicates interrupt occurred in the middle of a PIXBLT or FILL instruction

26-27 — Reserved

28 V Overflow. 	Set according to instruction execution.

29 Z Zero. 	Set according to instruction execution.

30 C Carry. 	Set according to instruction execution.

31 N Negative. 	Set according to instruction execution.

Table 5-3. Decoding of Field-Size Bits in Status Register

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

00001 01001 10001 11001

L
.0

 (
0

 N
 co

 c
) o

 ,-
N

N

 tN
 C

N
 (N

 C
V

 C
n

 cn
 el

00010 01010 10010 11010
00011 01011 10011 11011
00100 01100 10100 11100
00101

1
0

 01101

C') 10101

,-.
C

V
 11101

00110 01110 10110 11110
00111 01111 10111 11111
01000 10000 11000 00000

t In bits

5-21

CPU Registers and Instruction Cache - Program Counter

5.3 Program Counter

The program counter (PC) is a dedicated 32-bit register that points to the next
instruction word to be executed. Instructions are always aligned on even
16-bit word boundaries, and as shown in Figure 5-5, the four LSBs of the PC
are always Os.

31
	

43
	

0
%aid sid•enn 	 l0 0 0 01

14 	

bite

►io 4 Weil

Figure 5-5. Program Counter

An instruction consists of one or more instruction words. The first word
contains the opcode for the instruction. Additional words may be required for
immediate data or absolute addresses. As each instruction word is fetched, the
PC is incremented by 16 to point to the next instruction word. The PC con-
tents are replaced during a branch instruction, subroutine call instruction, re-
turn instruction, or interrupt. Instructions may be categorized according to
their effect on the PC, as indicated in Table 5-4.

Table 5-4. Instruction Effects on the PC

Category Description

Non-branch The PC is incremented by 16 at the end of the instruction,
allowing execution to proceed sequentially to the next in-
struction.

Absolute Branch
(TRAP, CALL, JAcc)

The PC is loaded with an absolute address; the four LSBs
of the address are set to Os.

Relative Branch
(JRcc, DSJxx)

The signed displacement (8 or 16 bits) is added to the
current contents of the PC. 	The signed displacement is
treated as a word displacement; that is, it is shifted left four
bit positions before it is added to the PC.

Indirect Branch
(JUMP, CALL,

EXCPC)

The PC is loaded with the register contents.The four LSBs
are set to Os.

5-22

Subsegment 0

2
3

6
7

Subsegment 0

2
3
4
5
6
7

Segment 0

lo

LRU
Stack

Segment Start Address

• , •...j.ster 0
23 --so

•ips 	 1 	I

I 	SSA Register 2 I

SSA Registe• 3 I

Subsegment 2
of segment 1

Nino
Re..r

I..f..1

Least
RecentI/

Ubea

} Segment 2

} Segment 3

Data Registers

64

2
3
4
5
6
7

Subsepment 0

Subsegment 0

2
3
4
5
6
7

P
Flags

T

5

til

1

-.
4
 M

 M
 •

CPU Registers and Instruction Cache - Instruction Cache

5.4 Instruction Cache

Most program execution time is spent on repeated execution of a few main
procedures or loops. Program execution can be speeded up by placing these
often used code segments in a fast memory. The TMS34010 uses a 256-byte
instruction cache for this purpose.

Only memory words that are pointed to by the PC can be accessed from the
cache. This includes opcodes, immediate operands, and absolute addresses.
Instructions and data may reside in the same area of memory; therefore, data
could be copied into the instruction cache. However, the processor cannot
access data from the cache. All reads and writes of data in memory bypass the
cache.

5.4.1 Cache Hardware

The instruction cache contains 256 bytes of RAM, used to store up to 128
1 6-bit instruction words. Each instruction word in cache is aligned on an even
word boundary. Figure 5-6 illustrates cache organization.

Figure 5 - 6. TMS34010 Instruction Cache

5-23

CPU Registers and Instruction Cache - Instruction Cache

The cache is divided into four 32-word segments. Each cache segment may
contain up to 32 words of a 32-word segment in memory. This memory seg-
ment is a block of 32 contiguous words beginning at an even 32-word
boundary in memory.

Each cache segment is divided into eight subsegments; each subsegment
contains four words. Dividing each segment into subsegments reduces the
number of word fetches required from memory when fewer than 32 words of
a memory segment are used. Each of the four cache segments is associated
with a segment start address (SSA) register. Figure 5-7 shows how an in-
struction word is partitioned into the components used by the cache control
algorithm.

32 Bit Linear Address

	Pi

23 Bite 	 ► 3 Bits aft, 01010101

	The four L6Bs of an Instruction
word address are always 0.

..::uotion word address
vntl m subsegment

	Subsegment address

	 -r•rhpnent start address
(SSA register)

Figure 5-7. Segment Start Address

The 23 bits of the SSA register correspond to the 23 MSBs of the segment's
memory address. These 23 MSBs are common to all eight subsegments within
a segment. The next three bits (bits 6-8) identify one of the eight subseg-
ments. Bits 4 and 5 identify one of the four words contained in a subsegment.
The four LSBs are always Os because instructions are aligned on word boun-
daries.

5.4.2 Cache Replacement Algorithm

When the TMS34010 requests an instruction word from a segment that is not
in the cache, the contents of one of the four cache-resident segments must
be discarded to make room for the segment that contains the requested word.
A modified form of the least-recently-used (LRU) replacement algorithm is
used to select the segment to be discarded.

The LRU segment manager (an element of the cache control logic) maintains
an LRU stack to track use of the four segments. The LRU stack contains a
queue of segment numbers, 0 through 3. Each time a segment is accessed, its
segment number is placed on the top of the stack, pushing the other three
segment numbers down by one position. Thus, the number at the top of the
LRU stack identifies the most-recently-used segment and the number at the
bottom identifies the least-recently-used segment.

When a new segment must be loaded into cache, the least-recently-used
segment is discarded. The eight P flags (described in Section 5.4.3) of the
selected segment are set to Os, and the segment's SSA register is loaded with
the new segment address. After the requested subsegment has been loaded
from memory, its P flag is set to 1, and the requested instruction fetch is al-
lowed to complete.

Following a reset, all P flags in the cache are set to 0 and the four segment
numbers in the LRU stack are stored in numerical order (0-3).

5-24

CPU Registers and Instruction Cache - Instruction Cache

5.4.3 Cache Operation

When the TMS34010 requests an instruction word, it checks to see if the word
is contained in cache. First, it compares the 23 MSBs of the instruction ad-
dress to the four SSA registers. If a match is found, the processor searches for
the appropriate subsegment. A present (P) flag, associated with each sub-
segment, indicates the presence of a particular subsegment within a cache
segment. P=1 indicates that the requested word is in cache; this is called a
cache hit. If there is no match, or if there is a match and P=O, the word is not
in cache; this is called a cache miss.

• Cache Hit

The cache contains the requested instruction word. The processor performs
the following actions:

1) A short access cycle reads the instruction word from cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

• Cache M iss

The cache does not contain the instruction word. There are two types of cache
miss - subsegment miss and segment miss.

Subsegment Miss. The 23 MSBs of the instruction word address match one
of the four SSA registers' 23 MSBs; that is, the appropriate segment is in the
cache. However, the P flag for the requested subsegment is not set. The
processor performs the following actions:

1) The four-word subsegment containing the requested instruction word is
read from local memory into the cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

3) The subsegment's P flag is set.

4) The instruction word is read from the cache.

Segment Miss. The instruction word address does not match any of the SSA
registers. The processor performs the following actions:

1) The least-recently-used segment is selected for replacement; the P flags
of all eight subsegments are cleared.

2) The SSA register for the selected segment is loaded with the 23 MSBs
of the address of the requested instruction word.

3) The four-word subsegment in memory that contains the requested in-
struction word is read into the cache. It is placed in the appropriate
subsegment of the least-recently-used segment. The subsegment's P
flag is set to 1.

4) The LRU stack is adjusted by moving the number of the new segment
from the bottom (indicating that it is least recently used) to the top (in-
dicating that it is most recently used). This pushes the other three seg-
ment numbers in the stack down one position.

5) The instruction word is read from the cache.

5-25

CPU Registers and Instruction Cache - Instruction Cache

5.4.4 Self-Modifying Code

Avoid using self-modifying code; it can cause unpredictable results. When a
program modifies its own instructions, only the copy of the instruction that
resides in external memory is affected. Copies of the instructions that reside
in cache are not modified, and the internal control logic does not attempt to
detect this situation.

5.4.5 Flushing the Cache

Flushing the cache sets it to an initial state which is identical to the state of
the cache following reset. The cache is empty and all 32 P flags are set to 0.

The cache is flushed by setting the CF (cache flush) bit in the HSTCTL register
to 1. The CF bit retains the last value loaded until a new value is loaded or
until the GSP is reset. The contents of the cache remain flushed as long as the
CF bit is set to 1. All instruction fetches bypass the cache and are accessed
directly from memory.

Unless the cache is disabled, normal cache operation will resume when the
CF bit is set to 0.

One use for flushing the cache is to facilitate downloading new code from a
host processor to GSP local memory. The host typically halts the GSP during
downloading by writing a 1 to the HLT bit in the HSTCTL register. Before
allowing the GSP to execute downloaded code, the host should flush the
cache as described in Section 5.4.5.

5.4.6 Cache Disable

Disabling the cache facilitates program debugging and emulation. The cache
is disabled by setting the CD (cache disable) bit in the CONTROL register to
1. While disabled, the cache is bypassed and all instructions are fetched from
external memory.

CD=1 has the same effect as CF=1 with one exception. While CD=1 and
CF=0, data already in the cache are protected from change. When the CD bit
is set back to 0, the state of the cache prior to setting the CD bit to 1 is re-
stored. The instructions in the cache are once again available for execution.
If the contents of the cache become invalid while CD=1, they can be flushed
by setting CF to 1.

The CD bit can be manipulated to preserve code in the cache for faster exe-
cution in some time-critical applications. For example, if an inner loop just
exceeds 256 bytes, most of the loop, but not all of it, can fit in the cache.
'During execution of the few instructions that are not in the cache, the CD bit
can be set to 1 to prevent the code in the cache from being replaced. In this
instance, the loop's execution speed is improved by eliminating the thrashing
of cache contents. Use this technique carefully; in some cases, it can nega-
tively affect execution speed.

5-26

CPU Registers and Instruction Cache - Instruction Cache

5.4.7 Performance with Cache Enabled versus Cache Disabled

When the instruction cache is disabled, instruction words are fetched from
external memory. Assuming no wait states are necessary, each instruction
fetch from external memory adds 3 machine cycles to the access time. This is
considerably slower than a program which uses the cache efficiently (when
each word in cache is used several times before it is replaced).

An inefficient use of cache occurs when words in cache are used only once
before replacement. This produces a cache miss every fourth word. With the
cache enabled, the time penalty due to cache misses in this case is 2.25 ma-
chine states per instruction, calculated as follows:

• Eight machine cycles are required to load four words into cache from
memory

• An additional machine state is required to process the instruction

• Dividing the total of nine machine states by four instructions yields an
average of 2.25 machine states per instruction

Performance using the cache is nearly always better than performance with the
cache disabled. The only exception occurs when the code contains so many
jumps that only a portion of each subsegment is executed before control is
transferred to another subsegment.

5-27

TM634010

1

General-
Purpose
Registers

Instruction
Cache

Instructions

NA, r. ,r;
.111eINI

External
Memory CPU

	Data

CPU Registers and Instruction Cache - Internal Parallelism

5.5 Internal Parallelism

Figure 5-8 illustrates the internal data paths associated with TMS34010 pro-
cessor functions. The TMS34010 has a single, logical memory space for sto-
rage of both data and instructions. However, internal parallelism provides the
GSP with the benefits found in architectures which contain separate data and
instruction storage. The ability to fetch instructions from cache in parallel with
data accesses from memory greatly enhances execution speed. Hardware
parallelism allows the following three storage areas to be accessed simultane-
ously:

• Instruction cache

• Dual-ported, general-purpose register files A and B

• External memory

Figure 5-8. Internal Data Paths

Each storage area can also be accessed independently of the other two. This
allows the GSP to perform the following actions in parallel during each pair
of machine states:

• One external memory cycle

• Two instruction fetches from cache

• Four reads and two writes to the general-purpose register files

The need to schedule conflicting internal operations can limit the GSP's ability
to perform these actions in parallel. For example, an instruction which requires
the memory controller to perform a read must complete before the next in-
struction can be executed.

5 - 28

CPU Registers and Instruction Cache - Internal Parallelism

Figure 5-9 illustrates an example of internal parallelism. Figure 5-9 a shows
three activities occurring in parallel:

• Instructions are fetched from cache.

• Instructions are executed through the general-purpose registers and the
ALU.

• The local memory interface controller performs memory accesses.

Figure 5-9 a represents execution of the code in Figure 5-9 b, which is the
inner loop of a graphics routine. The memory controller accesses pixels while
the ALU fetches instructions from cache. The memory controller completes a
write cycle while execution begins on the next instruction.

(a) I4 	

One iteration

state: —.14.- 1 —elf- 2 -01- 3 -.0-4--.14-5-04-6-40-7-14-8-04-9 -014-10 -Pk-1144-12 411—

MeAC 	 ADD FHYT 	 ADD 1_111. 	 MOVE
Instruction Fetch:
	 B 	C

	
ID 	E I

Execution: 	E 	A::A IA 	B l C i i • C • 	D 	EIE A

Memory Interface: 	 I A ! A l 	I C • C

Read Cycle Read 	Write
(b)

A
	

L1: 	MOVE 	*81+ B10,0 	Get DELTAX
B
	

ADD 	B1C.BI! 	 Adjust pixel pointer
C
	

FIXT 	*B1,:i38 	 Draw next pixel
D
	

ADD 	BO,B1 	 Add field size
E
	

D6J6 	B11,L1 	 Loop N Times

Figure 5 - 9. Parallel Operation of Cache, Execution Unit, and Memory Interface

5-29

This page intentionally left blank.

6. I/O Registers

The TMS34010 has 28 on-chip I/O registers that control and monitor the
following functions:

• Host interface communications

• Local memory interface control

• Interrupt control

• Video timing and screen refresh

This section describes these functions, I/O register addressing, and then pro-
vides an alphabetical presentation of the I/O registers:

Section 	 Page
6.1 I/O Register Addressing 	 6-2
6.2 Latency of Writes to I/O Registers 	 6-3
6.3 I/O Registers Summary 	 6-4
6.4 Alphabetical Listing of I/O Registers 	 6-8

6-1

I/O Registers - Addressing

6.1 I/O Register Addressing

TMS34010 I/O registers occupy addresses >C000 0000 to >C000 01FF.
These registers can be directly accessed by the GS P; they can also be indirectly
accessed by a host processor through the host interface registers. For exam-
ple, the host processor can indirectly read the contents of the PSIZE register
by loading the address >C000 0150 into the HSTADRL and HSTADRH reg-
isters, and reading the HSTDATA register. Figure 6-1 illustrates the I/O reg-
ister memory map.

>C000 0 1
•1E0

>•." 	01:"
Ir .'

>C000 0'13•7
>corm 01 A ri

• 0 •

' • 	0 ,
0' E.:•

OC.0 0 ' 50
>C 00C 0 1 4•
:•C•):;r C . 130

0 1 20
:<00/.. 0116

at./0

›C.000 6..)E0
>C000 0.X.0

.)
uor. ;ors:.
000 re .m.:.

"Wan, er;:in

.t. .)0C 00
vOt

'..C.000 0050
>C000 n04n
>ZOO.: C.O.)

>c,000 061.%
>C000 0000

DRAM Refresh Count
Display Address
Vertical Count
Horizontal Count
Display Tap Point

Plane Mask
Pixel Size
Conversion (Destination Pitch)
Conversion (Source Pitch)

Per.c.ng
int.i/u•t Enaz•e
Host ContrQ. (8 MbFl.4)
Host C (8 1%.0s1
Host At.v.?ss (18 M81-se)
Host Ada/ass (18 ,..6Bal
Host Data
Control
DIspav interrupt
Dap. 41%, Start
Dispay Control
Vertical Total
Vertical Start lildniN
Vertical End Bien•.
Vertical End Sync
Horizontal Total
Horizontal Start Blank
Horizonral End Blank
Horizontal End Sync

Figure 6 -1. I/O Register Memory Map

The two MSBs of an I/O register's 32-bit internal address are not output on
the TMS34010 pins; however, the address is fully decoded internally. Thus,
the two MSBs of a 32-bit address must both be 1s for an address to be re-
cognized as that of an I/O register. When an I/O register is accessed, the ac-
companying memory cycle (as seen at the TMS34010 pins) is altered so that
the row address strobe is output, but the column address strobe is inhibited.
This is true whether the access is initiated directly by the GSP or indirectly by
a host processor.

An access of any address in the range >C000 0000 to >C000 01 FF is de-
coded as an access of an on-chip register location, and the column address
strobe remains inactive high through the cycle. An access of any location
outside this range is treated as an access of an external memory location.

All I/O registers, with one exception, are cleared to 0 at reset. The exception
is the HLT (halt) bit in the HSTCTL register, which is set depending on the
value at the HCS input pin at the end of the reset pulse:

• If HCS is high at reset, the HLT bit is set to 1

• If HCS is low at reset, the HLT bit is set to 0

6-2

I/O Registers - Latency of Writes to I/O Registers

6.2 Latency of Writes to I/O Registers

When an instruction alters the contents of an I/O register, the memory write
cycle that modifies the register may not be completed before execution of the
next instruction begins. If the second instruction relies on the I/O register
value loaded by the first instruction, the second instruction may cause incor-
rect results. This situation is easily avoided by ensuring that the write to the
I/O register is allowed to complete before the I/O register value is used as an
implied operand by a subsequent instruction. For example, by immediately
following a write to an I/O register with a read of the register, the write is
certain to have been completed by the time subsequent instructions begin
execution.

Internal to the TMS34010, the memory controller operates semi-autono-
mously with respect to the execution unit that processes instructions. Paral-
lelism between the execution unit and memory controller may allow a write
initiated by an instruction to be completed only after one or more subsequent
instructions have been executed. An instruction that alters an I/O register (or
any other address in memory) transmits its request for a write cycle to the
memory controller. Once the request is accepted, the memory controller is
responsible for completing the write cycle; in the meantime, execution of the
next instruction can begin.

A field insertion request submitted to the memory controller can take as many
as five cycles to complete in the case in which a field of 18 or more bits
straddles two word boundaries. This case requires a read-modify-write oper-
ation to one word, a write to a second word, and a read-modify-write opera-
tion to a third word. Although this would be an unusual way of altering
locations in the I/O register file, it represents the theoretical worst case number
of memory cycles for a field insertion. Other potential sources of delay to a
pending field insertion request include:

• Screen-refresh cycle

• DRAM-refresh cycle

• Host-indirect read or write cycle

• Wait states required for slower memories

• Hold request from an external device

Any uncertainty as to whether a pending write to memory has been completed
can be eliminated by making use of the fact that only one field insertion re-
quest can be queued at the memory controller at a time. An instruction that
requests a second memory access before the earlier field insertion has been
completed will be forced to wait. Hence, by following an instruction that al-
ters an I/O register with an instruction that requests a second memory access
(any memory access), the I/O register is certain to have been updated before
the second instruction finishes executing.

6-3

I/O Registers - Summary

6.3 I/O Registers Summary

Table 6-1 summarizes the I/O registers. Descriptions of the four categories
of I/O registers follow the table.

Table 6-1. I/O Registers Summary

Host Interface Registers

Register Address Description

HSTADRH >C000 00E0 Host interface address, high word. 	Contains the 16 MSBs of a 32-bit
pointer 	address 	used 	by 	a 	host 	processor 	for 	indirect 	accesses 	of
TMS34010 local memory.

HSTADRL >C000 OODO Host interface address, low word. 	Contains the 16 LSBs of a 32-bit
pointer 	address 	used 	by 	a 	host 	processor 	for 	indirect 	accesses 	of
TMS34010 local memory.

HSTCTLH >C000 0100 Host interface control, high byte Contains seven programmable bits that
control host interface functions:

NMI (bit 8) 	— Nonmaskable interrupt
NMIM (bit 9) 	— NMI mode bit
INCW (bit 11) — Increment pointer address on write
INCR (bit 12) 	— Increment pointer address on read
LBL (bit 13) 	— Lower byte last
CF (bit 14) 	— Cache flush
HLT (bit 15) 	— Halt TMS34010 execution
Bits 0 through 7 and 10 are reserved

HSTCTLL >C000 00F0 Host interface control, low byte. 	Contains eight programmable bits that
control host interface functions:

MSGIN (bits 0-2) 	— Input message buffer
INTIN (bit 3) 	— 	Input interrupt bit
MSGOUT (bits 4-6) — Output message buffer
INTOUT (bit 7) 	— Output interrupt bit
Bits 8 through 15 are reserved

Local Memory Interface Registers

Register Address Description

CONTROLt >C000 00B0 Memory control. 	Contains several parameters that control local memory
interface operation:

RM (bit 2) 	— DRAM refresh mode
RR (bits 3-4) 	— DRAM refresh rate
T (bit 5) 	 — Transparency enable
W (bits 6-7) 	— Window violation detection mode
PBH (bit 8) 	— PixBlt horizontal direction
PBV (bit 9) 	— 	PixBlt vertical direction
PPOP (bits 10-14) 	— Pixel processing operation select
CD (bit 15) 	— Cache disable
Bits 0 and 1 are reserved

CONVDPt >C000 0140 Destination pitch conversion factor. 	Used during XY to linear conversion
of a destination memory address.

CONVSPt >C000 0130 Source pitch conversion factor. 	Used during XY to linear conversion of
a source memory address.

t Implied graphics operands

6-4

I/O Registers - Summary

Table 6-1. I/O Registers Summary (Continued)

Local Memory Interface Registers (Continued)

Register Address Description

PMASKt >C000 0160 Plane mask register. 	Selectively enables/disables the various planes in
the bit map of a display system in which each pixel is represented by
multiple bits.

PSIZEt >C000 0150 Pixel size register. 	Specifies the pixel size (in bits). Possible pixel sizes
include 1, 2, 4, 8, and 16 bits.

REFCNT >C000 01 FO Refresh count register. 	Generates the addresses output during DRAM
refresh cycles and counts the intervals between successive DRAM refresh
cycles:

RINTVL (bits 2-7) 	— Specifies the refresh interval
ROWADR (bits 8-15) — Row address
Bits 0 and 1 are reserved

Interrupt Control Registers

Register Address Description

INTENB >C000 0110 Interrupt 	enable. 	Contains 	the 	interrupt 	mask 	used 	to 	selectively
enable/disable the three internal and two external interrupts:

X1 E (bit 1) 	— 	External interrupt 1 enable
X2E (bit 2) 	— External interrupt 2 enable
HIE (bit 9) 	— 	Host interrupt enable
DIE (bit 10) 	— 	Display interrupt enable
VVVE (bit 11) 	— Window violation interrupt enable
Bits 0, 3 through 8, and 12 through 15 are reserved

INTPEND >C000 0120 Interrupt pending. 	Indicates 	which 	interrupt 	requests 	are 	currently
pending:

X1 P (bit 1) 	— 	External interrupt 1 pending
X2P (bit 2) 	— External interrupt 2 pending
HIP (bit 9) 	— Host interrupt pending
DIP (bit 10) 	— 	Display interrupt pending
WVP (bit 11) 	— Window violation interrupt pending
Bits 0, 3 through 8, and 12 through 15 are reserved

Video Timing and Screen Refresh Registers

Register Address Description

DPYADR >C000 01E0 Display address. 	Counts the number of scan lines output between suc-
cessive screen refresh cycles and contains the source of the row and co-
lumn addresses output during a screen refresh cycle:

LNCNT (bits 0-1) 	— Scan line counter
SRFADR (bits 2-15) —Screen refresh address

DPYCTL >C000 0080 Display control. 	Contains several parameters that control video timing
signals:

HSD (bit 0) 	— Horizontal sync direction
DUDATE (bits 2-9) — Display address update
ORG (bit 10) 	— Screen origin select
SRT (bit 11) 	— Shift register transfer enable
SRE (bit 12) 	— Screen refresh enable
DXV (bit 13) 	— Disable external video
NIL (bit 14) 	— Noninterlaced video enable
ENV (bit 15) 	— Enable video
Bit 1 	is reserved.

DPYINT >C000 00A0 Display interrupt. 	Specifies the next scan line that will cause a display
interrupt request.

t Implied graphics operands

6-5

1/0 Registers - Summary

Table 6-1. I/O Registers Summary (Concluded)

Video Timing and Screen Refresh Registers (Continued)

Register Address Description

DPYSTRT >C000 0090 Display start address. 	Provides control of the automatic memory-to-
shift-register cycles necessary to refresh a screen:

LCSTRT (bits 0-1) — Specifies the number of scan lines to
be displayed between screen refreshes

SRSTRT (bits 2-15)— Starting screen-refresh address

DPYTAP >C000 01 B0 Display tap point address. 	Contains a VRAM tap point address output
during shift register transfer cycles.

HCOUNT >C000 01C0 Horizontal count. 	Counts the number of VCLK periods per horizontal
scan line.

HEBLNK >C000 0010 Horizontal end blank. 	Designates the endpoint for horizontal blanking.

HESYNC >C000 0000 Horizontal end sync. 	Specifies the endpoint of the horizontal sync inter-
val.

HSBLNK >C000 0020 Horizontal start blank. 	Specifies the starting point of the horizontal
blanking interval.

HTOTAL >C000 0030 Horizontal total. 	Specifies the total number of VCLK periods per hori-
zontal scan line.

VCOUNT >C000 01 D0 Vertical count. 	Counts the horizontal scan lines in a video display.

VEBLNK >C000 0050 Vertidal end blank. 	Specifies the endpoint of the vertical blanking inter-
val.

VESYNC >C000 0040 Vertical end sync. 	Specifies the endpoint of the vertical sync pulse.

VSBLNK >C000 0060 Vertical start blank. 	Specifies the starting point of the vertical blanking
interval.

VTOTAL >C000 0070 Vertical total. 	Specifies the value of VCOUNT at which the vertical sync
pulse begins.

6.3.1 Host Interface Registers

Five I/O registers are dedicated to host interface communications, allowing the
TMS34010 to:

• Directly transfer status messages or command information

• Indirectly transfer large blocks of data through local memory

• Receive interrupt requests from a host processor

• Transfer interrupt requests to a host processor

The ability to indirectly transfer large blocks of data makes the host interface
extremely flexible. For example, a host can transfer blocks of commands to the
GSP, can halt the GSP temporarily to download a new program for the GSP
to execute, or can read blocks of graphics data generated by the GSP.

The host interface registers occupy five GSP register locations, and are typi-
cally mapped into four consecutive 16-bit locations in the memory or I/O ad-
dress space of the host processor. The host processor accesses the HSTCTLL
and HSTCTLH registers as the eight LSBs and eight MSBs, respectively, of a
single location (the HSTCTL register).

6 - 6

I/O Registers - Summary

The HSTCTL (host control) register controls functions such as the transfer of
interrupt requests and 3-bit status codes between a host processor and the
TMS34010. These requests are typically used by software to coordinate the
transfer of large blocks of data through GSP local memory. The HSTCTL re-
gister also allows the host to flush the instruction cache, halt GSP execution,
and transmit nonmaskable interrupt requests to the GSP.

The host processor uses the remaining three host interface registers to indi-
rectly access selected data blocks within GSP local memory. The HSTADRL
and HSTADRH registers contain a 32-bit address that points to the current
word location in memory. The HSTDATA register buffers data transferred to
and from the memory under control of the host processor. The host interface
can be programmed to automatically increment the address pointer following
each transfer, providing the host with rapid access to a block of sequential
locations.

6.3.2 Local Memory Interface Registers

Six of the I/O registers support local memory interface functions such as:

• Frequency of DRAM refresh cycles

• Type of DRAM refresh cycles

• Pixel size

• Color plane masking

• Various pixel access control parameters

6.3.3 Interrupt Interface Registers

Two I/O registers monitor and mask interrupt requests to the TMS34010.
These include two external and three internal interrupts. External interrupt re-
quests are transmitted to the GSP via input pins LINT1 and LINT2. The GSP
can be programmed to generate an internal interrupt request in response to any
of the following conditions:

• Window violation - an attempt is made to write a pixel to a location in-
side or outside a specified window, depending on the selected win-
dowing mode. 	-

• Host interrupt - the host processor sets the INTIN interrupt request bit
in the HSTCTL register.

• Display interrupt - the specified line number in a frame is displayed on
the monitor.

A nonmaskable interrupt occurs when the host processor sets the NMI bit in
the HSTCTL host interface register. Reset is controlled by a dedicated pin.

6-7

I/O Registers - Summary/Alphabetical Listing

6.3.4 Video Timing and Screen Refresh Registers

Fifteen I/O registers support video timing and screen refresh functions. The
TMS34010's on-chip CRT timing generator creates the sync and blanking
signals used to drive the CRT monitor in a bit-mapped display system. The
timing of these signals can be controlled through the appropriate I/O registers,
allowing the GSP to support various screen resolutions and interlaced or
noninterlaced video.

The GSP directly supports VRAMs by generating the memory-to-shift-register
cycles necessary to refresh the screen of a CRT monitor. Programmable fea-
tures include the locations in memory to be displayed on the monitor, as well
as the number of horizontal scan lines displayed between individual screen-
refresh cycles.

The GSP can optionally be programmed to synchronize to externally generated
sync signals. This permits GSP-created graphics images to be superimposed
upon externally-created images. This external sync mode can also be used to
synchronize the video timing of two or more GSP chips in a multiple-GSP
display system.

6.4 Alphabetical Listing of I/O Registers

The remainder of this section describes the I/O registers individually; they are
listed in alphabetical order. Fields within each register are identified and
functions associated with each register are discussed.

Bits within I/O registers that are identified as reserved are not used by the
TMS34010. When read, a reserved bit returns the last value written to it. No
control function, however, is affected by this value. All reserved bits are
loaded with Os at reset. A good software practice is to maintain Os in these
bits.

6-8

CONTROL 	Memory Control Register 	CONTROL

Address 	>C000 0080

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields

col
	

PPOP 	IPBV IPBH I W I T I RR IRM 1400.441

Bits Name Function

0-1 Reserved Not used

2 RM DRAM refresh mode

3-4 RR DRAM refresh rate

5 T Pixel transparency enable

6-7 W Window violation detection mode

8 PBH PixBlt horizontal direction

9 PBV PixBlt vertical direction

10-14 PPOP Pixel processing operation select

15 CD Instruction cache disable

Description 	The CONTROL register contains several control parameters used to config-
ure local memory interface operation.

• RM (DRAM refresh mode select)

The RM bit selects the type of DRAM refresh cycle to be performed. De-
pending on the value of this bit, the GSP will perform each DRAM-refresh
cycle as either a RAS-only cycle or as a CAS-before-RAS cycle. DRAMs and
VRAMs that rely on the GSP to generate an 8-bit row address during a re-
fresh cycle will typically use the RAS-only refresh cycle, while those that
generate their own 9-bit row address internally will use the CAS-before-RAS
refresh cycle.

R M Description

0 Selects RAS-only refresh cycle

1 Selects CAS-before-RAS refresh cycle

• RR (DRAM refresh rate)

The RR field controls the frequency of DRAM refresh cycles. The GSP au-
tomatically generates DRAM refresh cycles at regular intervals. The dura-
tion of the interval is specified by the value of RR. If required, DRAM
refreshing can be disabled by setting RR to the appropriate value.

The initial value of RR after reset is 00. No DRAM refresh cycles are per-
formed while the GSP RESET signal is active.

RR Description

00 Refresh every 32 local clock periods

01 Refresh every 64 local clock periods

10 Reserved code

11 No DRAM refreshing

6-9

CONTROL 	Memory Control Register 	CONTROL

• T (Pixel transparency enable)

The T bit enables or disables the pixel attribute of transparency. When
transparency is enabled, a value of 0 resulting from a pixel operation on
source and destination pixels is inhibited from overwriting the destination
pixel. In the case of a replace operation, a source pixel value of 0 is inhib-
ited from overwriting the destination pixel. Disabling transparency allows
a pixel value of 0 to be written to the destination.

T Effect

0 Disable transparency

1 Enable transparency

W (Window violation detection mode)

The W field selects the course of action to be taken when a pixel operation
will cause a pixel to be written to a location lying either inside or outside
the specified window limits. Window checking applies only to attempts to
write to pixel locations defined by XY addresses; writes to pixel locations
defined by linear memory addresses are not affected. Nonpixel data writes
are not affected.

W Description

00 No pixel writes are inhibited, and no in-
terrupt requests are generated

01 Generate interrupt request on attempt to
write to pixel lying inside window, and
inhibit all pixel writes

10 Generate interrupt request on attempt to
write to pixel lying outside window

11 Inhibit pixel writes outside window, but
do not request interrupt

A request for a window violation interrupt can occur when W=01 or W=10.
The WVP bit in the INTPEND register is set to 1 to indicate that a window
violation has occurred. This in turn causes the GSP to be interrupted if the
WVE bit in the INTENB register and the status IE bit are set to 1.

• PBH (PixBlt horizontal direction control)

The PBH bit determines the horizontal direction (increasing X or decreasing
X) of pixel processing for the following instructions:

- PIXBLT XY,XY
- PIXBLT L,XY
- PIXBLT XY,L
- PIXBLT L,L

PBH Effect

0 Increment X (move from left to right)

1 Decrement X (move from right to left)

6-10

CONTROL 	Memory Control Register 	CONTROL

• PBV (PixBIt vertical direction control)

The PBV bit determines the vertical direction (increasing Y or decreasing
Y) of pixel processing for the following instructions:

- PIXBLT XY,XY
- PIXBLT L,XY
- PIXBLT XY,L

PIXBLT L,L

PBV Effectt

0 Increment Y (move from top to bottom)

1 Decrement V (move from bottom to top)

t Default screen origin assumed

• PPOP (Pixel processing operation select)

The PPOP field selects the operation to be performed on the source and
destination pixels during a pixel operation. The following 16 PPOP codes
perform Boolean operations on pixels of 1, 2, 4, 8, and 16 bits.

PPOP Operation Description

00000 S " D Replace destination with source
00001 SANDD —'D AND source with destination
00010 S AND D " D AND source with NOT destination
00011 0 " D Replace destination with Os
00100 S OR D ' D OR source with NOT destination
00101 S XNOR D " D XNOR source with destination
00110 D —' D Negate destination
00111 S NOR D —' D NOR source with destination
01000 S OR D ' D OR source with destination
01001 D ' D No change in destinationt
01010 S XOR D ' D XOR source with destination
01011 S AND D " D AND NOT source with destination
01100 1 " D _ Replace destination with 1s
01101 S OR D " D OR NOT source with destination
01110 S NAND D " D NAND source with destination
01111 S " D Replace destination with NOT source

t Although the destination array is not changed by this operation,
memo y cycles still occur.

The following six PPOP codes perform arithmetic operations on 4-, 8-, and
16-bit pixels (but not 1 or 2 bits).

PPOP Operation Description

10000 D + S " D Add source to destination
10001 ADDS(D,S) " D Add S to D with saturation
10010 D - S " D Subtract source from destination
10011 SUBS(D,S) ' D Subtract S from D with saturation
10100 MAX(D,S) " D Maximum of source and destination
10101 MIN(D,S) " D Minimum of source and destination

PPOP codes 10110 through 11111 are reserved.

6-11

CONTROL 	Memory Control Register 	CONTROL

Standard addition and subtraction allow the result of the operation to ov-
erflow. However, add-with-saturation and subtract-with-saturation
(ADDS and SUBS) do not allow overflow or underflow. In cases in which
addition would allow an overflow, ADDS produces a result whose value is
all 1s. In cases in which subtraction would allow an underflow, SUBS
produces a result whose value is all Os.

0 CD (Cache disable)

The CD bit selective y enables or disables the instruction cache.

CD Effect

0 Enable instruction cache

1 Disable instruction cache

When the cache is disabled, cache contents (including data, P flags, SSA
registers, and so on) remain undisturbed. While the cache remains disa-
bled, all instructions are fetched from memory rather than cache. When the
cache is subsequently enabled, its previous state (before it was disabled)
is restored. The instructions retained within the cache are once again
available for execution.

6-12

CONVDP Destination Pitch Conversion Factor CONVDP

Address
	

>C000 0140

Bit
Assignments 15 14 13 12 11 10 9 8 7

	
6 5 4 3 2

	
1 0

CONVDP

Description CONVDP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVDP is used with:

• XY addressing

• Window clipping

• PIXBLTs or FILLS (except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVDP is calculated as the result of an LMO instruction whose input
operand is the destination pitch value in register B3 (DPTCH). The fol-
lowing GSP assembly code calculates the CONVDP value.

LMO B3 , BO 	 ; Convert DPTCH value
MOVE BO ,@CONVDP ,0 ; Place result in CONVDP register

In this example, BO is used as a scratch register. Constant CONVDP has
the value >C000 0140, and the size of Field 0 is 16 bits.

GSP internal hardware uses the CONVDP value during XY-to-linear con-
version of a destination address. CONVDP is also used for corner adjust
operations in the Y direction (when PBV=1). The value contained in the
five LSBs of CONVDP should be the 1's complement of log2(DPTCH).
When an XY address is specified for the destination, DPTCH must be a
power of two; thus, log2(DPTCH) is an integer. During XY-to-linear con-
version, the product of the Y value and the destination pitch is calculated
by shifting Y left by log2(DPTCH).

One instruction, the PIXBLT XY,L instruction, specifies the destination ad-
dress in linear format but also requires DPTCH to be a power of two. This
restriction is necessary when the PBV bit is set to 1.

6-13

CONVSP 	Source Pitch Conversion Factor 	CONVSP

Address 	>C000 0130

Bit
Assignments 15 14 13 12 11 10 9 8 7 6

	
5 4 3 2 1 0

CONVSP

Description 	CONVSP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVSP is used with:

• XY addressing

• Window clipping

• PIXBLTs or FILLS (except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVSP is calculated as the result of an LMO instruction whose input
operand is the source pitch value in register B1 (SPTCH). The following
GSP assembly code calculates the CONVSP value

LMO B1,B0 	 ; Convert SPTCH value
MOVE B0,@CONVSP 	; Place result in CONVSP register

In this example, BO is used as a scratch register. Constant CONVSP has the
value >C000 0130, and the size of Field 0 is 16 bits.

GSP internal hardware uses the CONVSP value during XY-to-linear con-
version of a source address. CONVSP is also used for corner ajust oper-
ations in the Y direction (when PBV=1). The value contained in the five
LSBs of CONVSP should be the l's complement of log2(SPTCH). When
an XY address is specified for the source, SPTCH must be a power of two;
thus, log2(SPTCH) is an integer. During XY-to-linear conversion, the pro-
duct of the Y value and the source pitch is calculated by shifting Y left by
log2(SPTCH).

Two instructions that specify the source address in linear format also require
SPTCH to be a power of two. This is necessary when window preclipping
is required during execution of either of the following instructions:

• PIXBLT B,XY

• PIXBLT L,XY

It is also necessary when either of these two instructions is executed and
the PBV bit in the CONTROL register is set to 1. If PBV=0 and window
clipping is disabled, or if window clipping is enabled but the specified array
does not require preclipping in the Y dimension, CONVSP is not used, and
SPTCH is not required to be a power of two.

6 - 14

DPYADR DPYADR 	Display Address Register

Address 	>C000 01 E0

Bit
Assignments 15 14 13 12 11 10 9 0 8 7 6 5 4 3 2 1

Fields

SRFADR LNCNT

Bits Name Function

0-1 LNCNT Scan line counter

2-15 SRFADR Screen refresh address

Description 	The 16-bit DPYADR register contains two separate counters that control
the generation of screen-refresh cycles. A screen-refresh cycle transfers the
video data for a new scan line to the shift registers of the VRAMs.

• LNCNT (Scan line counter)

LNCNT counts the number of scan lines output to the screen between
successive screen-refresh cycles. Providing explicit control over the line
count permits the implementation of systems that do not reload the VRAMs'
internal shift register on every horizontal scan line. The two-bit LNCNT
field is loaded from the two-bit LCSTRT field of the DPYSTRT register at
the end of each screen-refresh cycle. The value loaded determines whether
the next screen-refresh cycle occurs after 1, 2, 3 or 4 scan lines:

- When LCSTRT = 0, a screen refresh occurs after every line.

- When LCSTRT = 1, 2 or 3, a screen-refresh cycle occurs after every 2,
3 or 4 lines, respectively.

• SRFADR (Screen refresh address)

SRFADR is the source of the row and column addresses output during a
screen-refresh cycle. The 14 bits of SRFADR are output as logical address
bits 10-23 during screen-refresh cycles. During row address time,
DPYADR4-DPYADR15 are output on LAD12-LAD23, and Os are output
on the remaining LAD pins (except as modified by the contents of the
DPYTAP register). During column address time, DPYADR2-DPYADR6 are
output on LAD6-LAD10 and Os are output on the remaining LAD lines.
Following the completion of each screen-refresh cycle, the value in
SRFADR is decremented by the amount indicated in the DUDATE field of
the DPYCTL register.

The following diagrams illustrate the mapping of bits to LADO-LAD15 from

1) The logical address as seen by the programmer

and

2) The bits of the DPYADR register

6-15

XX 26 25 24 23 22 21 10 19 18 17 16 15 14 13 12

15 14 13 12 11 10 9 8 7 8 5 4

XX XX 29 28 27 14 13 12 11 10 9 8 7 6 5 4

7 8 5 4 3 2

1 Row
Address
Time

}

Column
Address
Time

Logical Row
Address Bits:

Co:40sponding
P -ADP Bits:

Logical Column
Address Bits:

Ccr•es•ording
DP ADR Hula:

DPYADR 	Display Address Register 	DPYADR

The bits of a 32-bit logical address are numbered 0 to 31, beginning with
the LSB. The 14 MSBs of DPYADR, shown in the diagram below, are
output as logical address bits 10-23 during a screen-refresh cycle.
DPYADR2 corresponds to logical address bit 10, DPYADR3 corresponds
to logical address bit 11, and so on.

DPYADR

Logi
recalss Add

15 14 13 12 11 10 Q 	8 7 6 5 4 3 2 	1 	0

I SRFADR 1LNCNT

I
I
1 23 22 21 20 19 18 17 	18 15 14 13 12 11

I
I

10 I

The next diagram shows the mapping of logical addresses to
LADO-LAD15 during the row and column address times of the cycle. The
symbol xx indicates status information output with the row and column
addresses.

LAD Pin No.: 	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A board designer must select eight consecutive address lines from
LADO-LAD11 to connect to the multiplexed address inputs of the VRAMs.
For example, by selecting the eight lines LAD2-LAD9, bits 14-21 of the
logical address become the row address bits output to the RAMs, and bits
6-13 of the logical address become the column address bits. This means
that during a screen-refresh cycle, bits 6-13 of DPYADR become the row
address bits output to the RAMs, and bits 4-5 of DPYADR become the two
MSBs of the tap point address.

6-16

DPYCTL 	 Display Control Register 	 DPYCTL

Address 	>C000 0080

Bit
Assignments 	15 14 13 12 11 10 9 8 7 	6 	5 	4 3 	2 1 	0

Fields

ENVI NIL IDXVISREISRTIORGI
	

DUDATE

Bits Name Function

0 HSD Horizontal sync direction

1 Reserved Not used

2-9 DUDATE Display address update

10 ORG Screen origin select

11 SRT Shift register transfer enable

12 SRE Screen refresh enable

13 DXV Disable external video

14 NIL Noninterlaced video enable

15 ENV Enable video

Description 	The DPYCTL register contains several parameters that control video timing
signals and shift-register transfer cycles using VRAMs.

• HSD (Horizontal sync direction)

The HSD bit controls the direction (input or output) of the HSYNC (hori-
zontal sync) pin when the GSP is in external video mode (DXV=0). If
HSD=O, HSYNC is configured as an input, the same as VSYNC. In this case,
the on-chip horizontal sync interval begins when either:

- The start of the external horizontal sync pulse input at the HSYNC pin
is detected,

or

- HCOUNT = HTOTAL,

whichever condition occurs first.

VSYNC and HSYNC are configured as inputs or outputs according to the
values of the HSD and DXV bits:

HSD DXV HSYNC 	VSYNC

0 0 Input 	Input

0 1 Output 	Output

1 0 Output 	Input

1 1 Undefined

6-17

DPYCTL 	 Display Control Register 	 DPYCTL

When VSYNC and HSYNC are both configured as inputs, the on - chip vertical
sync interval begins when any of the following conditions occur:

- The start of the external vertical sync pulse input at the VSYNC pin is
detected,

or

- VCOUNT=VTOTAL, and the start of the horizontal sync pulse input at
the HSYNC pin is detected,

or

- VCOUNT=VTOTAL and HCOUNT=HTOTAL.

When VSYNC is an input and HSYNC is an output, the vertical sync interval
begins when either the first or third of the listed conditions occurs.

• DUDATE (Display update amount)

The DUDATE field indicates the amount by which the SRFADR field in the
DPYADR register is incremented (if ORG=O) or decremented (ORG=1)
following completion of each memory-to-shift-register cycle used to refresh
the screen. DUDATE is loaded with a value containing seven Os and a
single 1. The 1 indicates the bit position at which DPYADR is to be incre-
mented (or decremented if ORG =1).

DUDATE
Increment

Size

00000000

O

N

'
C

I' C
O

 C
O

 N
 d

' C
O

C'') C

O
 N

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

The increment size is undefined when more than one bit in the DUDATE
field is a 1. When interlaced scan mode is enabled, SRFADR is
incremented/decremented by half the value indicated in DUDATE at the
start of a vertical blanking interval preceding the start of an odd field, just
after DPYADR2-DPYADR15 have been loaded from
D PYSTRT2-D PYSTRT1 5.

For noninterlaced scanning, DUDATE is programmed to increment the
screen address by one scan line. For interlaced scanning, DUDATE is pro-
grammed to increment the screen address by two scan lines. Larger incre-
ments are typically not used since screen-refresh cycles do not occur more
often than once per active scan line. In special applications, however, the
value of DUDATE can be adjusted to achieve video effects such as vertical
zoom in and zoom out. (Horizontal zoom must be implemented in the ex-
ternal shift register logic).

6-18

DPYCTL 	 Display Control Register 	 DPYCTL

• ORG (Screen origin select)

The ORG bit controls the origin of the screen coordinate system.

ORG Effect

0 XY coordinate origin located in upper
left corner of screen

1 XY coordinate origin located in lower
left corner of screen

If ORG-0 then DPYADR is updated by being incremented by the value in
the DUDATE field. If ORG=1 then DPYADR is updated by being decre-
mented by the value in the DUDATE field. Unless explicitly stated other-
wise, the discussion in this document assumes that the default origin
(ORG=0) is used.

• SRT (Shift-register-transfer enable)

The SRT bit enables conversion of an ordinary pixel access into a shift-
register-transfer cycle.

SRT Effect

0 Pixel access cycles occur normally

1 Pixel 	access cycles are converted 	into
VRAM shift-register-transfer cycles

The TMS34010 instruction set includes several instructions (DRAV, PIXT,
LINE, FILL, and PIXBLT) that operate specifically on pixels. By default,
SRT=O and memory accesses performed during accesses of pixel data are
the usual memory read and write cycles. When SRT=1, however, accesses
of pixel data are converted to shift-register-transfer cycles:

- A pixel read cycle is converted to a memory-to-shift-register cycle

- A pixel write cycle is converted to a shift-register-to-memory cycle

This shift-register-transfer cycle is performed under explicit program con-
trol, as opposed to the screen-refresh cycles enabled by the SRE bit, which
are automatically generated at regular intervals.

Uses of the SRT bit include bulk initialization of the entire VRAM array: the
entire screen can be cleared to a specified background color in only 256
memory cycles. (All VRAMs do not support this capability.) Only pixel
accesses are affected by the state of the SRT bit. Instruction fetches and
non-pixel data accesses are not altered in any way.

6-19

DPYCTL 	 Display Control Register 	 DPYCTL

• SRE (Screen-refresh enable)

The SRE bit enables automatic screen refreshing. Screen refreshes are
performed by means of the VRAM memory-to-shift-register cycles which
the GSP performs automatically during selected horizontal blanking inter-
vals. The frequency of screen-refresh cycles and the generation of the ad-
dresses output during these cycles are programmed by means of the
DPYSTRT and DPYCTL registers.

SRE Effect

0 Disable screen refresh

1 Enable screen refresh

• DXV (Disable external video)

The DXV bit selects between internally generated or externally generated
video timing.

DXV Effect

0 Selects external video source

1 Selects internally generated video timing

When DXV=O, the GSP video timing circuitry is programmed to lock onto
an external video source. The VSYNC pin is configured as an input and is
connected to an external vertical sync signal. If HSD=0, HSYNC is also
configured as an input and is connected to an external horizontal sync sig-
nal.

When DXV=1, the GSP generates its own video timing, according to the
values loaded into the video timing registers. The HSYNC and VSYNC pins
are configured as outputs, and provide the horizontal and vertical sync sig-
nals required to drive the video monitor.

• NIL (Noninterlaced video enable)

The NIL bit selects between an interlaced or a noninterlaced display. The
video timing signals output by the GSP are modified according to this se-
lection. The timing differences between interlaced and noninterlaced dis-
plays are described in Section 9.

NIL Effect

0 Selects interlaced video timing

1 Selects noninterlaced video timing

6-20

DPYCTL 	 Display Control Register 	 DPYCTL

• ENV (Enable video)

The ENV bit enables or disables the video display. The display remains
blanked when ENV=O. During this time, the signal output at the BLANK
pin is forced to remain at its active-low level throughout the frame, and
setting of the DIP (display interrupt) bit in the INTPEND register is inhib-
ited. (If DIP is already set at the time the ENV is changed from 1 to 0, DIP
remains set until explicitly cleared.) When ENV=1, the video display is
enabled. The BLANK output signal is controlled according to the parameters
contained in the video timing registers, and the DIP bit becomes set when
the condition VCOUNT = DPYINT occurs.

ENV Effect

0 Blank entire screen

1 Enable video

6-21

Description

Display Interrupt Register

>C000 00A0

15 14 13 12 11 10 9
	

8
	

7
	

6

DPYINT

The DPYINT register designates the next scan line at which a display in-
terrupt will be requested. This register facilitates the coordination of soft-
ware activity with the refreshing of selected horizontal lines on the screen
of a video monitor.

The contents of DPYINT are compared to the VCOUNT register. When
VCOUNT = DPYINT, a display interrupt is requested and the DIP bit in the
INTPEND register is set to 1. This coincides with the start of the horizontal
blanking interval that marks the end of the line designated by the value
contained in DPYINT.

For split-screen applications, a new value can be loaded into the DPYADR
register immediately following detection of the 0-to-1 transition of DIP.
The new DPYADR value will not affect the line that immediately follows the
end of the current horizontal blanking interval, but will affect the next line.
The details of this timing are as follows. A screen-refresh cycle may be
scheduled to occur at the start of the same horizontal blanking interval
during which DIP becomes set. At the end of the screen-refresh cycle, the
screen-refresh address in the DPYADR register will be automatically incre-
mented. Requests for screen-refresh cycles have a higher priority than re-
quests for cycles initiated by the on-chip processor. Hence, if the processor
loads a new value into DPYADR immediately following detection of DIP's
transition from 0 to 1, the value will become the address used for the next
screen-refresh cycle, which cannot occur before the next horizontal blank-
ing interval. Between the time that DIP becomes set to 1 and the com-
pletion of the next screen-refresh cycle at least one full scan line later, the
DPYADR register is guaranteed not to be incremented. Its contents will
change during this interval only if it is loaded with a new value under ex-
plicit program control. The display interrupt is disabled when the ENV bit
in the DPYCTL register is 0.

DPYINT

5 4 3 2 1 0

DPYINT

Address

Bit
Assignments

6-22

DPYSTRT 	Display Start Address Register 	DPYSTRT

Address 	>C000 0090

Bit
Assignments 15 14 13 12 11 10 9 8 7

	
6 5 4 3 2 1 0

Fields

SRSTRT LCSTRT

Bits Name Function

0-1 LCSTRT Starting line count

2-15 SRSTRT Starting screen-refresh address

Description 	The DPYSTRT register contains two parameters that control the automatic
memory-to-shift-register cycles necessary to refresh the screen.

• LCSTRT (Starting line count)

LCSTRT is a two-bit code designating the number of scan lines to be dis-
played between screen refreshes.

Scan Lines
LCSTRT Between
Value Refresh

Cycles

00 1
01 2
10 3
11 4

LCSTRT is loaded into the LNCNT field of the DPYADR register at the end
of each screen-refresh cycle. LCSTRT is also loaded into LNCNT at the
start of the last horizontal blanking interval preceding the first active scan
line of a new frame.

• SRSTRT (Starting screen-refresh address)

The 14-bit SRSTRT field contains the starting address loaded into the
DPYADR register at the start of each frame. Its value identifies the start of
the region of the graphics bit map to be displayed on the screen. SRSTRT
is loaded into the SRFADR field of the DPYADR register at the beginning
of each vertical blanking interval. (Loading occurs coincides with the start
of the horizontal blanking interval at the end of the last active scan line in
the frame.)

The sense of the SRSTRT value depends on the value of the ORG (origin
select) bit in the DPYCTL register. When ORG=0, SRSTRT is loaded with
the l's complement of the starting address. When ORG=1, SRSTRT is
loaded with the unmodified starting address. Regardless of the value of the
ORG bit, the starting address points to the location in memory of the first
pixel output to the screen during each frame. For a typical CRT display, the
first pixel of each frame is output to the top left corner of the screen. Refer
to the description of the DPYADR register for more information on the
generation of screen-refresh addresses.

6-23

DPYTAP 	Display Tap Point Address Register 	DPYTAP

Address 	>C000 0180

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIRMOti DPYTAP

Fields Bits Name Function

0-13 DPYTAP Display tap point address

1 4-1 5 Reserved Not used

Description 	The DPYTAP register contains a VRAM tap point address output during a
screen-refresh (memory-to-shift-register) cycle. (The contents of DPYTAP
are not output during a shift-register transfer initiated under program con-
trol while the SRT bit in the DPYCTL register is set to 1.) During a
screen-refresh cycle, the 16 bits of the DPYTAP register are logical ORed
with the value output at the LADO-LAD15 pins during the column address
time. DPYTAP bit 0 is ORed with LADO, DPYTAP bit 1 is ORed with
LAD1, and so on. This means that the column address output during the
cycle is the OR of bits 2-7 of DPYADR and bits 0-15 of DPYTAP.

One application of the DPYTAP register is to permit horizontal panning of
the screen over a frame buffer that is wider than the screen. A DPYTAP
value of 0 locates the screen at its leftmost position within the frame buffer.
Incrementing DPYTAP causes the display to pan to the right through the
frame buffer.

DPYTAP is typically used to alter (set to a value other than all Os) only
those column address bits of the SRFADR field of DPYADR that are never
incremented. For instance, given a VRAM that requires an 8-bit column
address, assume that SRFADR alternately sets the two MSBs of the column
address to 00, 01, 10, and 11. In this case, DPYTAP should contain 1s only
in the bit positions corresponding to the six LSBs of the column address.

6-24

HCOUNT 	Horizontal Count Register 	HCOUNT

Address
	

>C000 01 CO

Bit
Assignments 15 14 13 12 11 10 9 8 7 	6 	5 4 3 2 1 0

HCOUNT

Description The HCOUNT register is a 16-bit counter used in the generation of the
horizontal sync and blanking signals. HCOUNT is incremented on the fall-
ing edge of the video input clock, and is used to count the number of video
clock periods per horizontal scan line. To generate horizontal sync and
blanking signals, the value of HCOUNT is compared to the value of the four
horizontal timing registers: HESYNC, HEBLNK, HSBLNK, and HTOTAL.
When external sync mode is disabled and the value in HCOUNT = HTO-
TAL, HCOUNT is reset to 0 on the next VCLK falling edge and the HSYNC
output is driven active low. HCOUNT is also reset to 0 if the external sync
mode is enabled and the input signal HSYNC is driven low.

Two separate, asynchronous elements of the GSP logic can access the
HCOUNT register:

• The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access HCOUNT as an I/O register.

• The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears HCOUNT in generating the sync
and blanking signals.

No synchronization between these two subsystems is provided, and
HCOUNT can only be reliably read or written to while VCLK is held at the
logic-high level. HCOUNT is typically not read or written to except during
chip test.

6-25

Description

Horizontal End Blank Register 	HEBLNK

>C000 0010

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

HEBLNK
	

1
The HEBLNK register is used during the generation of the blanking signal
output to the video monitor. The 16-bit value loaded into HEBLNK is
compared to HCOUNT, and designates the point at which the horizontal
blanking interval ends. The blanking signal output at the BLANK pin is a
composite of the internal horizontal and vertical blanking signals. When the
value in HCOUNT = HEBLNK, the BLANK output is driven inactive high
unless vertical blanking is currently active. Most video monitors require
HEBLNK to be set to a value that is less than the value in HSBLNK, but
greater than the value in HESYNC.

HEBLNK

Address

Bit
Assignments

6-26

HESYNC

Address

Bit
Assignments

Horizontal End Sync Register

>cow 0000

15 14 13 12 11 10 9

HESYNC

0 8 7 6 5 4 3 2 1

HESYNC

Description The HESYNC register is used during generation of the horizontal sync sig-
nal output to the video monitor. The 16-bit value loaded into HESYNC
determines the point at which the horizontal sync pulse ends. When the
value in HCOUNT = HESYNC, the signal output from the HSYNC pin is
driven inactive high to signal the end of the horizontal sync interval. Typical
monitors require that HESYNC be set to a value less than the value con-
tained in the HEBLNK register. (However, the HESYNC value is not re-
quired to be less than the HEBLNK value.) The minimum value of HESYNC
is O.

When external video is enabled and the HSYNC pin is configured as an in-
put, HESYNC should be loaded with a value that ensures that the condition
HCOUNT = HESYNC occurs after the external HSYNC signal has gone in-
active-high, but before HSYNC goes active low again. For example, a good
HESYNC value might be the average of the values in HEBLNK and
HS B LN K.

6-27

Description

Horizontal Start Blank Register 	HSBLNK

>C000 0020

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

HSBLNK

The HSBLNK register is used during generation of the blanking signal out-
put to the video monitor. The 16-bit value in HSBLNK is compared to
HCOUNT, and designates the point at which the horizontal blanking inter-
val begins. The blanking signal output at the BLANK pin is a composite of
the internal horizontal and vertical blanking signals. When the condition
HCOUNT = HSBLNK occurs, the BLANK output is driven from its inac-
tive-high level to its active-low level (unless it is already low due to vertical
blanking being active).

Several internal events coincide with the start of horizontal blanking. First,
when a screen-refresh cycle is programmed to occur during a particular
horizontal scan line, a request for the cycle is sent to the memory controller
at the beginning of the horizontal blanking interval that occurs at the end
of the line. Second, if a display interrupt request is programmed to occur
during a particular horizontal scan line, the request is generated at the start
of horizontal blanking. Typical monitors require that HSBLNK be set to a
value that is less than the value in HTOTAL, but greater than the value in
HEBLNK.

HSBLNK

Address

Bit
Assignments

6-28

HSTADRH
Host Interface Register,

High Word HSTADRH

Address >C000 00E0

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSTADRH

Description

The HSTADRH register contains the 16 MS Bs of a 32-bit pointer address;
the 16 LSBs are contained in HSTADRL. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the GSP. The host accesses the pointer ad-
dress through two 16-bit host interface registers that are mapped into the
host's memory or I/O address space.

The four LSBs of the 32-bit pointer address are forced to 0 to point to an
even word boundary in memory. If the address pointer is incremented past
the largest word address in memory, it will wrap around to the lowest ad-
dress (all Os).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. If
LBL=O, HSTADRH should be written last. If LBL=1, HSTADRL should
be written last.

Ji

Note:

When the TMS34010's on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. The host must perform one of two operations to read the
referenced data:

1) If INCR=O, the host processor reads the HSTDATA register twice.
The second read provides valid data.

2) If INCR=1 or is unknown, the host processor reads and then
writes the HSTADRH register (if LBL=O), or the HSTADRL reg-
ister (if LBL=1). The HSTDATA register then contains valid data.
If LBL is unknown, both HSTADRH and HSTADRL may be read
and then written to make HSTDATA valid.

6 - 29

Host Interface Register,
HSTADRL
	

Low Word
	

HSTADRL

Address >C000 OODO

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSTADRL

Description The HSTADRL register contains the 16 LSBs of a 32-bit pointer address;
the 16 MSBs are contained in HSTADRH. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the GSP. The host accesses the pointer ad-
dress through two 16-bit host interface registers that are mapped into the
host's memory or I/O address space.

The four LSBs of the 32-bit pointer address are forced to 0 to point to an
even word boundary in memory. If the address pointer is incremented past
the largest word address in memory, it will wrap around to the lowest ad-
dress (all Os).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. If
LBL=O, HSTADRH should be written last. If LBL=1, HSTADRL should
be written last.

Note:

When the TMS34010's on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. The host must perform one of two operations to read the
referenced data:

1) If INCR=O, the host processor reads the HSTDATA register twice.
The second read provides valid data.

2) If INCR=1 or is unknown, the host processor reads and then
writes the HSTADRH register (if LBL=0), or the HSTADRL reg-
ister (if LBL=1). The HSTDATA register then contains valid data.
If LBL is unknown, both HSTADRH and HSTADRL may be read
and then written to make HSTDATA valid.

6 - 30

Host Interface Control Register,
HSTCTLH 	 High Byte 	 HSTCTLH

Address 	>C000 0100

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 	0

HLT I CF I LBL IINCWI INCE I T.7.MIMI NMI

Fields Bits Name Function

0-7 Reserved Not used

8 NMI Nonmaskable interrupt

9 NMIM Mode bit for NMI

10 Reserved Not used

11 INCW Increment pointer address on write

12 INCR Increment pointer address on read

13 LBL Lower byte last

14 CF Cache flush

15 HLT Halt GSP processing

Description 	The HSTCTLH register contains seven programmable bits used to control
host interface communications. A host processor can access the control
bits in the HSTCTLL and HSTCTLH registers as a single host interface re-
gister, HSTCTL. The bits of the host interface's HSTCTL register are
mapped into two separate I/O register locations in the GSP's memory map,
HSTCTLL and HSTCTLH, to allow the GSP to alter the bits in one location
without affecting the bits in the other.

The HSTCTLH bits can be both written to and read by both the host pro-
cessor and the GSP. Unpredictable results will occur if the GSP and host
simultaneously write different values to the HSTCTLH bits. Typically only
the host alters the bits in HSTCTLH.

• N M I (Nonmaskable interrupt, host to GSP)

The nonmaskable interrupt allows the host processor to redirect the exe-
cution flow of GSP processing to an NMI routine, regardless of the current
state of the interrupt mask flags. The host writes a 1 to the NMI bit to send
a nonmaskable interrupt request to the GSP. The interrupt request cannot
be disabled, and will always be executed (unless the GSP is reset before it
can complete interrupt execution). The interrupt is initiated immediately
upon NMI becoming set (at the time the current instruction completes ex-
ecution, or in the case of a pixel array instruction, at the next interruptible
point in the instruction). Once the interrupt is taken, internal logic auto-
matically clears the NMI bit to 0.

One use of the NMI is to generate a soft reset after the host downloads new
program code into GSP memory. Following execution of a nonmaskable
interrupt, screen-refresh and DRAM-refresh functions continue unaffected.
The contents of internal registers other than the HSTCTL register are not
altered by the interrupt, although they can be modified by the NMI service
routine.

6-31

Host Interface Control Register,
HSTCTLH 	 High Byte 	 HSTCTLH

• NMIM (Nonmaskable interrupt mode)

The NMI mode bit determines whether or not the context of the interrupted
program is saved when a nonmaskable interrupt occurs. When NMIM=O,
the context is saved on the system stack before the NMI service routine is
executed. When NMIM=1, the context is discarded when the NMI service
routine is executed.

The NMIM =0 mode supports applications such as single stepping of in-
structions where the status and PC must be preserved between consecutive
nonmaskable interrupts. When NMIM=1, a nonmaskable interrupt can be
used to simulate a hardware reset in software (using the NMI vector).
Saving the context may be of no benefit if either:

- Control is never to be returned to the interrupt program
Or
- The integrity of the stack pointer is suspect.

The nonmaskable interrupt does not cause the I/O registers to be reset.
Consequently, if an NMI is used to simulate a hardware reset, the I/O reg-
isters should be reset by software within the NMI service routine.

NMI NMIM Effect

0 0 No effect

0 1 Undefined

1 0 NMI (save context on stack)

1 1 NMI (discard previous context)

• CF (Cache flush)

While CF is set to 1, the contents of the instruction cache are flushed. All
four P (present) flags in the cache control logic remain forced to 0 as long
as CF remains 1. When CF=1, the cache is disabled; instruction words are
fetched from local memory one at a time as they are needed for execution
by the GSP. Normal cache operation resumes when CF is set to 0, assum-
ing the CD bit in the CONTROL register is also 0. When the value of CF is
changed from 1 to 0, the cache begins operation in the same initial state
as that which immediately follows reset.

One use of the CF bit is during downloads of new software from the host
processor to GSP local memory. By setting CF to 1 and then to 0 again,
the host processor forces the GSP to begin to load new instructions into
the cache from memory rather than continue execution of stale instructions
already contained in the cache. A 0 must be loaded into CF for normal
cache operation to resume.

CF Effect

0 No effect

1 Flush and disable cache

6-32

Host Interface Control Register,
HSTCTLH 	 High Byte 	 HSTCTLH

• LBL (Lower byte last)

The LBL bit specifies whether an indirect access of GSP memory, initiated
by a host register access, begins when the upper or lower byte of the reg-
ister is accessed by the host processor.

LBL is provided to accommodate host processors with 8-bit data paths.
An 8-bit processor must access a 16-bit GSP host interface register as a
series of two 8-bit bytes. Processors which access the lower byte (bits
0-7) first and the upper byte (bits 8-15) second should typically set LBL
to 0, and those that access bytes in the opposite sequence should set LBL
to 1

When LBL is 0, a local bus cycle is initiated if

- The host writes to the upper byte of HSTADRH,
or
- The host reads from or writes to the upper byte of HSTDATA

If LBL is 1, a local bus cycle is initiated if

- The host accesses the lower byte of HSTDATA
or

The host writes to the lower byte of HSTADRL

With this capability, the GSP chip is capable of automatically resolving so
called "Little-Endian/Big-Endian" byte addressing incompatibilities be-
tween various processors, and promotes software transparency between 8-
and 16-bit versions of the same processor architecture (such as the 8088
and 8086)

LBL Effect

0 Initiate 16-bit local bus cycle on host access of
upper byte of HSTDATA, or on load of upper byte
of HSTADRH

1 Initiate 16-bit local bus cycle on host access of
lower byte of HSTDATA, or on load of lower byte
of HSTADRL

• INCR (Increment address before local read)

The INCR bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented before each read.

INCR Effect

0 Do not increment address pointer before read cy-
cle on local memory bus.

1 Increment address pointer before read cycle on
local memory bus.

6-33

Host Interface Control Register,
HSTCTLH 	 High Byte 	 HSTCTLH

When INCR=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 before being used for the next read of the
GSP memory. This means that HSTDATA is updated to the contents of the
next sequential word in the local memory in preparation for the next antic-
ipated read of HSTDATA by the host processor. A local read cycle also
occurs when the host loads a new address into the HSTADRL and
HSTADRH registers, but the address is not incremented in this case. When
incrementing is enabled, repeated reads of the HSTDATA register by the
host result in a series of adjacent words in GSP memory being read; other-
wise, the same memory word is read each time. Regardless of the value of
the INCR bit, each time HSTDATA is read by the host, a new word is au-
tomatically read into HSTDATA from the GSP's memory.

• INCW (Increment address after local write)

The INCW bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented after each write.

INCW Effect

0 Do not increment address pointer after write cycle
on local memory bus.

1 Increment address pointer after write cycle on lo-
cal memory bus.

When INCW=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 after being used as the memory write ad-
dress. When incrementing is enabled, repeated writes to the HSTDATA
register by the host cause a series of adjacent words in GSP memory to be
modified; otherwise, the same memory word is modified repeatedly. Re-
gardless of the value of the INCW bit, each time HSTDATA is written to by
the host, a new cycle is initiated to write the contents of HSTDATA to the
GSP's memory.

• H LT (Halt GSP program execution)

When the HLT bit is set to 1, the GSP suspends instruction processing at
the next instruction boundary. Once halted, the GSP does not respond to
interrupt requests (including NMI). Local memory refresh and video timing
functions continue unaffected while the GSP is halted. When HLT is again
set to 0, the GSP continues execution.

The state of the HLT bit immediately following reset is determined by the
state of the HCS pin at the time of the low-to-high transition of RESET. If
HCS is low, HLT is set to 0, and the GSP is enabled to begin executing its
reset routine. If HCS is high, the HLT bit is set to 1, and the GSP is halted.
Both the host processor and GSP can write to the HLT bit; this means the
GSP can halt itself by loading a 1 into HLT.

HLT Effect

0 Allow GSP to run

1 Halt GSP instruction execution

6-34

Host Interface Control Register,
HSTCTLL 	 Low Byte 	 HSTCTLL

Address 	>C000 00F0

Bit
Assignments

Fields

15 14 13 12 11 10 9 8 7 	6 	5 	4 	3. 	2 	1 	0

•. ofinokr
INT
Out MSGOUT

INT
In MSGIN

Bits Name Function

0-2 MSGIN Input message buffer

3 INTIN Input interrupt bit

4-6 MSGOUT Output message buffer

7 INTOUT Output interrupt bit

8-15 Reserved Not used

Description 	The HSTCTLL register contains eight programmable bits used to control
host interface communications. A host processor can access the control
bits in the HSTCTLL and HSTCTLH registers as a single host interface re-
gister, HSTCTL. The bits of the host interface's HSTCTL register are
mapped into two separate I/O register locations in the GSP's memory map,
HSTCTLL and HSTCTLH, to allow the GSP to alter the bits in one location
without affecting the bits in the other.

The HSTCTLH bits can be read by both the host processor and the GSP.
The following restrictions apply to writes:

• The MSGOUT field can be modified only by the GSP.

• The MSG IN field can be modified only by the host.

• The host can write a 1 to the INTIN bit, but writing a 0 has no effect.

• The GSP can write a 0 to the INTIN bit, but writing a 1 has no effect.

• The GSP can write a 1 to the INTOUT bit, but writing a 0 has no ef-
fect.

• The host can write a 0 to the INTOUT bit, but writing a 1 has no ef-
fect.

Internal arbitration logic permits the GSP and host processor to access
HSTCTLL at the same time without hazard. Synchronization of asynchro-
nous signals at the host interface pins is performed internally.

• MSGIN (Message in, host to GSP)

The MSGIN field buffers a 3-bit interrupt message to the GSP from the
host. The MSGIN field can be both written to and read by the host, but
only read by the GSP. The MSGIN field typically contains a command or
status code from the host, which is read by the GSP in response to a host-
generated interrupt (INTIN=1). The meaning of this code is defined in the
software of the host and GSP.

6-35

Host Interface Control Register,
HSTCTLL 	 Low Byte 	 HSTCTLL

• INTIN (Interrupt in, host to GSP)

The INTIN bit controls the interrupt request to the GSP from the host. To
generate an interrupt request, the host processor loads a 1 to INTIN. The
GSP deactivates the request by loading a 0 to INTIN. An attempt by the
host to load a 0 to INTIN has no effect. Similarly, an attempt by the GSP
to load a 1 to INTIN has no effect. A read-only copy of the INTIN bit is
available as the HIP bit in the INTPEND register. The HIP bit faithfully re-
presents the state of the INTIN bit at all times.

INTIN Effect

0 No interrupt request to GSP

1 Send interrupt request to GSP

• MSGOUT (Message out, GSP to host)

The MSGOUT field buffers a 3-bit interrupt message to the host from the
GSP. The MSGOUT field can be both written to and read by the GSP, but
only read by the host. The MSGOUT field permits an interrupt request
generated by means of the INTOUT bit to be qualified by an additional
command or status code, the meaning of which is defined in the software
of the host and GSP.

• INTOUT (Interrupt out, GSP to host)

The INTOUT bit controls the interrupt request to the host processor from
the GSP. An interrupt noilest is transmitted to the host by means of an
active-low level on the T. '.' pin. When INTOUT is 1, HINT is driven active
low; when INTOUT is 0, HINT is driven inactive high. The GSP activates
the interrupt request by loading a 1 to INTO UT, and the host deactivates the
interrupt request by loading a 0 to INTOUT. An attempt by the GSP to load
a 0 to INTOUT has no effect. Similarly, an attempt by the host to load a 1
to INTOUT has no effect.

INTOUT Effect

0 No interrupt request to host

1 Send interrupt request to host

6-36

HSTDATA 	Host Interface Data Register 	HSTDATA

Address
	

>c000 0000

Bit
Assignments 15 14 13 12 11 10 9 8 7

	
6
	

5
	

4
	

3
	

2 1 0

HSTDATA

Description The HSTDATA register buffers data transferred through the host interface
between GSP local memory and a host processor. HSTDATA can be ac-
cessed by the GSP at address >C000 OOCO. It is one of the four 16-bit
registers that can be accessed by the host register through the TMS34010
host interface. HSTDATA is typically accessed by the host rather than the
GSP. Using the HSTDATA register, the host can either read the GSP's
memory or write to it. The host initiates the indirect access through the host
interface using the 32-bit pointer address in the HSTADRL and HSTADRH
registers. During each indirect access, a 16-bit word is transferred between
the HSTDATA register and GSP memory. The host processor can access
the contents of the HSTDATA register in one 16-bit data transfer or two
8-bit transfers. When the TMS34010's on-chip processor reads from or
writes to HSTDATA, no automatic read or write cycle takes place between
HSTDATA and the memory word pointed to by HSTADRL and HSTADRH.

6-37

Description

Horizontal Total Register

>C000 0030

15 14 13 12 11 10 9
	

8
	

7
	

6

HTOTAL

The HTOTAL register is used during generation of the horizontal sync signal
output to the video monitor from the GSP. It determines the duration of
each horizontal scan line on the screen in terms of the number of VCLK
(video clock) periods. The contents of HTOTAL are compared with the
horizontal count in HCOUNT to determine the point at which the horizontal
sync pulse begins, which also represents the beginning of a new scan line.
HCOUNT counts from 0 to the value contained in HTOTAL. When
HCOUNT = HTOTAL, the HSYNC output is driven active low on the next
falling edge of the VCLK signal, and HCOUNT is reset to 0 on the same
clock edge.

HTOTAL is loaded with a 16-bit value greater than that contained in
HSBLNK, but less than or equal to 65535. In interlaced scan mode, the
value in HTOTAL should be an odd number (LSB=1) to achieve equal
spacing between adjacent scan lines. The total number of VCLK video
clocks in each horizontal scan line is calculated as HTOTAL + 1. When
external sync mode is enabled (DXV=0) and HSYNC is configured as an
input (HSD=0), HTOTAL should be loaded with a value greater than the
value of HCOUNT at the point at which the external sync pulse is expected.
If the external sync pulse does not occur, HCOUNT will be reset when
HCOUNT = HTOTAL.

HTOTAL

5 4 3 2 1 0

HTOTAL

Address

Bit
Assignments

6-38

INTENB 	 Interrupt Enable Register 	 INTENB

Address 	>C000 0110

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 	0

ANE DIE HIrl Rimprv.pi 	 I .<2E I XI E I Ri.n.]

Fields Bits Name Function

0 Reserved Not used

1 X1 E External interrupt 1 enable

2 X2E External interrupt 2 enable

3-8 Reserved Not used

9 HIE Host interrupt enable

10 DIE Display interrupt enable

11 WVE Window-violation interrupt enable

12-15 Reserved Not used

Description 	The INTENB register contains the interrupt mask used to selectively enable
the three internally and two externally generated interrupt requests. The
following interrupts are enabled by the INTENB register:

• External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINT2, respectively.

• The host interrupt is generated when the host processor sets the IN-
TIN bit in the HSTCTL register to 1.

• The display interrupt is generated when the vertical count in the
VCOUNT register reaches the value contained in the DPYINT register.

• The window-violation interrupt is caused by an attempt to write a
pixel to a region of the bit map lying outside the limits of the cur-
rently-defined window.

The status register contains a global interrupt enable bit, IE. The INTENB
register contains individual interrupt enable bits associated with each of the
interrupts (X1 E, X2E, HIE, DIE, and WVE). Interrupts are enabled through
a combination of setting the IE bit and the appropriate bit in the INTENB
register. When IE=O, all interrupts are disabled regardless of the values of
the bits in the INTENB register. When IE=1, each interrupt is enabled or
disabled according to the corresponding enable bit in the INTENB register
(1 enables the interrupt, 0 disables it).

6-39

INTPEND 	Interrupt Pending Register 	INTPEND

Address 	>C000 0120

Bit
Assignments 	15 14 13 12 11 10 9 8 7 	6 5 4 3 2 1 	0

r 	•re.:4 	,.VVPI DIP
Hil t

(2P X1 P RK1S I

Fields Bits Name Function

0 Reserved Not used

1 X1 P External interrupt 1 pending

2 X2P External interrupt 2 pending

3-8 Reserved Not used

9 HIP Host interrupt pending

10 DIP Display interrupt pending

11 WVP Window-violation interrupt pending

15-12 Reserved Not used

Description 	The INTPEND register indicates which interrupt requests are currently
pending. INTP EN D's six active bits indicate the status of the following in-
terrupts:

• External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINT2, respectively.

• The host interrupt request is generated when the host processor sets
the INTIN bit in the HSTCTL register to 1.

• The display interrupt request is generated when the vertical count in
the VCOUNT register reaches the value contained in the DPYINT re-
gister.

• The window-violation interrupt request is caused by an attempt to
write a pixel to a region of the bit map lying inside or outside the limits
of the currently-defined window, depending on the selected win-
dowing mode.

The individual pending bits in the INTPEND register reflect the status of
interrupt requests. The interrupt is requested if the corresponding pending
bit is 1. There is no request if the pending bit is 0. The status of each in-
terrupt request is reflected in the INTPEND register regardless of whether
the interrupt is enabled or not; this allows the GSP to poll interrupts.

The X1 E and X2E bits of INTPEND are read only. They reflect the input
levels on the LINT1 and LINT2 pins, and are not affected when the INTPEND
register is written to. If an external interrupt is disabled, the interrupt re-
quest is ignored, even though the corresponding pending flag in INTPEND
is set. The interrupt will be taken by the GSP only if the external request
is maintained at the corresponding interrupt request pin until the interrupt
is again enabled.

6-40

INTPEND 	Interrupt Pending Register 	INTPEND

The DIP and WVP bits in the INTPEND register reflect the status of interrupt
requests generated by conditions internal to the GSP. These two bits are
implemented as latches. Once set, DIP or WVP will remain set until a 0 is
written to it (or the GSP is reset). Writing a 1 to either of these bits has
no effect at any time. While an internal interrupt is disabled, the interrupt
request is ignored, even though the corresponding pending flag in INT-
PEND is set. If the interrupt is subsequently enabled while the interrupt
pending flag remains set (because of a prior interrupt request) then the in-
terrupt will be taken by the GSP.

The HIP bit in the INTPEND register is a read-only bit that always displays
the current contents of the INTIN bit in the HSTCTL register. Writing to the
INTPEND register has no effect on the HIP bit. A host interrupt request is
generated when the host processor writes a 1 to the INTIN bit of the
HSTCTL register. The GSP clears the interrupt request by writing a 0 to the
I NTI N bit.

6-41

PMASK 	 Plane Mask Register 	 PMASK

Address
	

>C000 0160

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMASK

Description The PMASK register selectively enables or disables various planes in the
bit map of a display system in which each pixel is represented by multiple
bits. PMASK contains a 16-bit value that determines which bits of each
pixel can be modified during execution of a DRAY, PIXT, FILL, LINE, or
PIXBLT instruction. Via the PMASK register, the programmer specifies
which bits within each pixel are protected (mask bit=1) and not protected
(mask bit=0) from modification. During a pixel write operation, the Os in
the plane mask represent bit positions within the destination pixel that are
to be modified by the pixel operation. The 1 s in the plane mask represent
bit positions in the destination pixel that are protected from modification.

The organization of a display memory is sometimes described in terms of
bit planes. If the pixel size is four bits, for example, and the bits in each
pixel are numbered from 0 to 3, the display memory is said to be composed
of four bit planes, numbered from 0 to 3. Plane 0 contains all the bits
numbered 0 from all the pixels, plane 1 contains all the bits numbered 1
from all the pixels, and so on. A 4-bit mask is constructed such that bit 0
of the mask enables (if 0) or disables (if 1) writes to the bits in plane 0,
mask bit 1 enables or disables writes to plane 1, and so on.

The plane mask for a 4-bit pixel is four bits; the plane mask for an 8-bit pixel
is eight bits; and so on. The plane mask must be replicated throughout the
16 bits of the PMASK register. For example, with four bits per pixel, the
PMASK register is loaded with four identical copies of the corresponding
4-bit plane mask, as indicated below.

15
	

12 11
	

8 7
	

43
	

0

PMASK MASK MASK MASK MASK

With a pixel size of eight bits, the corresponding 8-bit plane mask is repli-
cated twice - once in bits 0-7 of PMASK, and again in bits 8-15. In gen-
eral, all 16 bits of the register are used, and a mask for a pixel size of less
than 16 bits must be duplicated n times, where n is 16 divided by the pixel
size.

The individual bits of the PMASK register are associated with the corre-
sponding bits of the 16-bit local data bus (data are in fact multiplexed over
the same LADO-LAD15 pins as addresses). PMASK register bit 0 is asso-
ciated with bit 0 of the data bus (the bit transferred on LADO), PMASK bit
1 is associated with bit 1 of the data bus, and so on. In general, if PMASK
bit n is a 0, then bit n of the data bus is enabled by the mask; if PMASK
bit n is a 1, bit n is disabled by the mask.

6 - 42

PMASK 	 Plane Mask Register 	 PMASK

Plane masking is effectively disabled (allowing all bits of each pixel to be
modified) by loading all Os into the PMASK register. This is the default
state of PMASK following reset.

To maintain upward compatibility with future versions of the GSP, software
drivers should tread the PMASK register as a 32-bit register beginning at
address >C000 0160. In other words, software should write the plane
mask value not only to the 16-bit word at address >C000 0160, but also
to the word at >C000 0170. Writing the second word will have no effect
on the TMS34010, but will ensure software compatibility with future
graphics processors which may extend the PMASK register from 16 to 32
bits.

6-43

Bit
Assignments 15 14 13 12 11 10 9

	
8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

PSIZE

PSIZE 	 Pixel Size Register PSIZE

Address 	>C000 0150

Description 	The PSIZE register is used to specify the pixel size in bits. If the pixel size
is four, for example, PSIZE is loaded with the value four. If the pixel size
is eight, PSIZE is loaded with the value eight, and so on. All 16 bits of the
PSIZE register can be written to or read. Legal pixel sizes are 1, 2, 4, 8, and
16 bits; any other value of PSIZE is undefined.

PSIZE Pixel Size

>0001 1 	bit/pixel
>0002 2 bits/pixel
>0004 4 bits/pixel
>0008 8 bits/pixel
>0010 16 bits/pixel

6-44

REFCNT 	 Refresh Count Register 	 REFCNT

Address 	>C000 01F0

Bit
Assignments 	15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1 	0

ROWADR
	

RINTVL

Fields Bits Name Function

0-1 Reserved Not used

2-7 RINTVL Refresh interval

8-15 ROWADR Row address

Description 	The REFCNT register generates the addresses output during DRAM refresh
cycles and counts the intervals between successive DRAM refresh cycles.

DRAMs require periodic refreshing to retain their data. The GSP automat-
ically generates DRAM refresh cycles at regular intervals. The interval be-
tween refresh cycles is programmable. The DRAM refresh mode is selected
by loading the appropriate value to the two-bit RR (refresh rate) field in the
CONTROL register. DRAM refreshing can be disabled in systems that do
not require it. The modes are defined as follows.

RR Description

00 Refresh every 32
local clock periods

01 Refresh every 64
local clock periods

10 Reserved for future
expansion

11 No DRAM refreshing

At reset, the RR field is set to the initial value 00. During the time that the
reset signal to the GSP is active, no DRAM-refresh cycles are performed.

Bits 2-15 of REFCNT form a continuous binary counter. Bits 2-7 form the
RINTVL field, which counts the intervals between successive requests for
DRAM-refresh cycles. When RR=01, the RINTVL field is incremented by
1 every local clock cycle; that is, the register is incremented at bit 2. This
means that RINTVL overflows into ROWADR (a carry ripples from bit 7 to
bit 8 of REFCNT) every 64 local clock cycles. The overflow has two effects:

• ROWADR is incremented by 1.

• A request for a DRAM-refresh cycle is sent to the memory control
logic.

When RR=00, the RINTVL field is incremented by 2 every local clock pe-
riod. This means that a DRAM-refresh cycle is generated every 32 local
clock periods, twice the rate that results when RR=01. When RR=11,
DRAM refreshing is disabled and no DRAM-refresh cycles occur.

6-45

REFCNT 	 Refresh Count Register 	 REFCNT

During a DRAM-refresh cycle, the row address output to memory is taken
from the 8-bit ROWADR field of REFCNT. Specifically, bits 8-15 of
REFCNT are output on LADO-LAD7. REFCNT bits 8-14 are simultaneously
output on LADE-LAD14. (The RF bus status signal is output as a low level
on LAD15.) This means that the 8-bit row address needed to refresh a
DRAM can be taken from any eight adjacent LAD pins in the range
LADO-LAD14. Note that as ROWADR counts from 0 to 255, the refresh
addresses output at the selected eight LAD pins will sequence through all
256 values in the range 0 to 255, though not necessarily in the same order
as ROWADR.

6-46

Description

Vertical Count Register

>C000 01 DO

15 14 13 12 11 10 9
	

8
	

7
	

6

VCOUNT

The VCOUNT register is a 16-bit counter used during generation of the
vertical sync and blanking signals. VCOUNT counts the horizontal lines in
the video display, incrementing at the same clock edge at which HCOUNT
is internally reset to 0. This causes the falling edges of HSYNC and VSYNC
to coincide.

In order to generate vertical sync and blanking signals, the value of
VCOUNT is compared to the value of the four vertical timing registers,
VESYNC, VEBLNK, VSBLNK, and VTOTAL. When HCOUNT = HTOTAL
and VCOUNT = VTOTAL at the same time, VCOUNT is reset to 0 on the
next VCLK falling edge and the VSYNC output is driven active low.

If interlaced scan mode is enabled and the current field is even, and if
VCOUNT = VTOTAL and HCOUNT = HTOTAL/2, then VCOUNT is reset
to 0 and VSYNC goes low (HCOUNT is not reset until it reaches the value
HCOUNT = HTOTAL). When external sync mode is enabled, VCOUNT is
reset to 0 when the VSYNC input signal goes active low.

A display interrupt request is generated when VCOUNT = DPYINT. This
can be used to coordinate software activity with the refreshing of selected
lines on the screen.

Two separate, asynchronous elements of the GSP internal logic can access
VCOUNT:

• The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access VCOUNT as an I/O register.

• The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears VCOUNT in the course of gener-
ating the sync and blanking signals.

No synchronization between these two subsystems is provided, and
VCOUNT can only be reliably read or written while VCLK is held at the
logic-high level. VCOUNT is typically not read or written to except during
chip test.

VCOUNT

Address

Bit
Assignments

VCOUNT

5 4 3 2 1 0

6-47

VEBLNK 	Vertical End Blank Register 	VEBLNK

Address 	> C000 0050

Bit
Assignments 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VEBLNK

Description 	VEBLNK is a video timing register that designates the time at which the
vertical blanking interval ends. The 16-bit value contained in VEBLNK is
compared to VCOUNT to determine when to end the vertical blanking in-
terval. The vertical blanking interval ends when the following conditions
are satisfied:

• VCOUNT = VEBLNK

• HCOUNT = HTOTAL

The end of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and will not reach its inactive-high level until both internal blanking signals
have become inactive.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval ends when the follow-
ing conditions are satisfied:

• VCOUNT = VEBLNK

• The leading edge of the external horizontal sync pulse is detected

The beginning of the sync pulse is seen as a high-to-low transition at the
HSYNC pin.

Typical video monitors require VEBLNK to be set to a value less than the
value in VSBLNK, and greater than the value in VESYNC.

6-48

VESYNC

VESYNC is a video timing register that designates the time at which the
vertical sync pulse ends. The 16-bit value contained in VESYNC is com-
pared to VCOUNT to determine when to end the vertical sync pulse. The
sync pulse ends when the following conditions are satisfied:

VESYNC

Address

Bit
Assignments

Description

Vertical End Sync Register

=C000 0040

15 14 13 12 11 10 9

VESYNC

0 8 7 6 5 4 3 2 1

• VCOUNT = VESYNC

• HCOUNT = HTOTAL

The VSYNC output is driven inactive high to signal the end of the vertical
sync interval.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven'high when VCOUNT = VESYNC and HCOUNT = HTOTAL/2.

Typical video monitors require VESYNC to be set to a value less than the
value contained in the VEBLNK register; the minimum value of VESYNC is
0.

When external sync mode is enabled (DXV=0), the end of the external
vertical sync pulse is detected as a low-to-high transition at the VSYNC pin,
which is configured as an input. VESYNC should be loaded with a value
greater than the value in VCOUNT at the point at which the external VSYNC
input signal should go inactive high, but lower than the value in VCOUNT
when the external VSYNC should again become active low. For example,
VESYNC could be loaded with the sum of the values in VEBLNK and
VSBLNK divided by two.

6-49

Description

	

Vertical Start Blank Register 	VSBLNK

>C000 0060

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1 	0

VSBLNK

VSBLNK is a video timing register that designates the time at which the
vertical blanking interval starts. The 16-bit value contained in VSBLNK is
compared to VCOUNT to determine when to start the vertical blanking in-
terval. The vertical blanking interval starts when the following conditions
are satisfied:

• VCOUNT = VSBLNK

• HCOUNT = HTOTAL

The start of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and reaches its active-low level when either or both internal blanking sig-
nals are active.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval starts when the follow-
ing conditions are satisfied:

• VCOUNT = VSBLNK

• The leading edge of the external horizontal sync pulse is detected

The beginning of the horizontal sync pulse is seen as a high-to-low transi-
tion at the HSYNC pin.

VSBLNK should be set to a value less than the value in VTOTAL, and
greater than the value in VEBLNK.

VSBLNK

Address

Bit
Assignments

6-50

Vertical Total Register

>C000 0070

15 14 13 12 11 10 9
	

8
	

7
	

6

VTOTAL

VTOTAL contains a 16-bit value that designates the value of VCOUNT at
which the vertical sync pulse begins. The contents of VTOTAL are com-
pared to VCOUNT to determine when to start the vertical sync pulse. Ver-
tical sync begins when the following two conditions are satisfied:

• VCOUNT = VTOTAL

• HCOUNT = HTOTAL

These conditions cause HCOUNT to begin counting from 0 again.

The VSYNC output is driven active low to signal the start of the vertical sync
interval. The high-to-low transitions of VSYNC and HSYNC occur at the
same clock edge.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven low when VCOUNT = VESYNC and HCOUNT = HTOTAL/2. The
total number of horizontal lines in each vertical field is calculated as VTO-
TAL + 1. In interlaced mode the total number of horizontal lines in both
fields of the vertical frame is calculated as 2 x VTOTAL-1.

When external video is enabled (DXV=0), the VSYNC pin is configured as
an input rather than an output. The high-to-low transition of VSYNC is re-
cognized as the beginning of the vertical sync pulse, unless the condition
VCOUNT = VTOTAL and the start of horizontal sync are detected first.
VTOTAL should be loaded with a value at least as large as the value of
VCOUNT at which the external sync pulse should begin. Should the ex-
ternal sync pulse not occur, VCOUNT will be reset one VCLK period after
the conditions VCOUNT = VTOTAL and HCOUNT = HTOTAL occur.

VTOTAL should be set to a value greater than the value in VSBLNK. The
maximum value that can be loaded into VTOTAL is 65535.

Bit
Assignments

Description

VTOTAL

5 4 3 2 1 0

VTOTAL

Address

6-51

This page intentionally left blank.

7. Graphics Operations

This section provides an overview of the graphics drawing capabilities of the
TMS34010. Topics in this section include:

Section 	 Page
7.1 Graphics Operations Overview 	 7-2
7.2 Pixel Block Transfers 	 7-4
7.3 Pixel Transfers 	 7-10
7.4 Incremental Algorithm Support 	 7-10
7.5 Transparency 	 7-11
7.6 Plane Masking 	 7-12
7.7 Pixel Processing 	 7-15
7.8 Boolean Processing Examples 	 7-17
7.9 Multiple-Bit Pixel Operations 	 7-19

7.10 Window Checking 	 7-25

7 -1

Graphics Operations - Overview

7.1 Graphics Operations Overview

The TMS34010 instruction set provides several fundamental graphics drawing
operations:

• The PIXBLT and FILL instructions manipulate two-dimensional arrays
of pixels.

• The LINE instruction implements the fast inner loop of the Bresenham
algorithm for drawing lines.

• The DRAV (draw and advance) instruction draws a pixel and increments
the pixel address by a specified amount. This function supports the im-
plementation of incremental algorithms for drawing circles, ellipses, arcs,
and other curves.

• The PIXT (pixel transfer) instruction transfers individual pixels from one
location to another.

The PIXBLT instruction plays an important role in rapidly drawing high-
quality, bit-mapped text. In particular, the PIXBLT B,XY and PIXBLT B,L in-
structions expand character patterns stored as bit maps (at one bit per pixel)
into color or gray-scale characters of 1, 2, 4, 8 or 16 bits per pixel. This allows
character shape information to be stored independently of attributes such as
color and intensity, providing greater storage efficiency.

The TMS34010 provides several methods for processing the values of the
source and destination pixels before the result is written to the destination.
These operations include:

• Boolean and arithmetic pixel processing operations for combining source
pixels with destination pixels.

• A plane mask which specifies which bits within pixels can be altered
during pixel operations.

• Transparency, an option which permits objects written onto the screen
to have transparent regions through which the background is visible.

Pixel processing, plane masking and transparency can be used simultaneously.
These operations on pixel values can be used in combination with any of the
pixel drawing instructions listed above. The arithmetic operations are espe-
cially important in displays that use multiple bits per pixel to encode color or
intensity information. For example, the MAX and MIN operations allow two
objects with antialiased edges to be smoothly merged into a single image.

7 - 2

Graphics Operations - Overview

The TMS34010 has features such as automatic window checking to support
windowed graphics environments. Three window-checking modes are pro-
vided:

• Clipping a figure to fit a rectangular window.

• Requesting an interrupt on an attempt to write to a pixel outside of a
window.

• Requesting an interrupt on an attempt to write to a pixel inside of a
window.

The last of these modes can be used to identify screen objects that are pointed
to by a cursor. The window checking modes can be used with any of the pixel
drawing instructions that use XY addressing. Window checking is optional
and can be turned off.

The TMS34010 provides further support for windowed environments by rap-
idly detecting the following conditions: 	 1

• Whether a point lies inside or outside a rectangular window.

• Whether a line lies entirely inside or entirely outside a window.

Lines that lie entirely outside a window can be trivially rejected, meaning that
they take no further processing time. These conditions are detected via the
CPW (compare point to window) instruction, which takes only one machine
state to compare the XY coordinates of a point to all four sides of a window.

Another operation that occurs frequently in windowed environments is calcu-
lating the region where two rectangles intersect. This is a feature available
with the PIXBLT and FILL instructions. Based on the window-checking
mode, one of two methods can be selected to calculate the region of inter-
section:

• The destination pixel array is preclipped to a rectangular window before
the PixBlt or fill operation begins.

• The intersection of the destination pixel array with a rectangular window
is calculated, but no pixels are transferred.

7-3

Graphics Operations - Pixel Block Transfers

7.2 Pixel Block Transfers

The TMS34010 supports a powerful set of raster operations, known as Pixfilts
(pixel block transfers), that manipulate two-dimensional arrays of bits or pix-
els. A pixel array is defined by the following parameters:

• A starting address (by default, the address of the pixel with the lowest
address in the array)

• A width DX (the number of pixels per row)

• A height DY (the number of rows of pixels)

• A pitch (the difference between the starting addresses of two successive
rows)

A pixel array appears as a rectangular area on the screen. The array pitch is the
same in this case as the pitch of the display. The default starting address is
the address of the pixel in the upper left corner of the rectangle. (This assumes
that the ORG, PBH, and PBV bits in the CONTROL register are all set to their
default value of 0.)

Two operands must be specified for a PIXBLT instruction:

• A source pixel array

• A destination pixel array

The two arrays must have the same width and height, although they may have
different pitches. Each pixel in the source array is combined with the corre-
sponding pixel of the destination array. A Boolean or arithmetic pixel proc-
essing operation is selected and applied to the PIXBLT operation. The default
pixel processing operation is replace. If replace is selected, source pixel values
are simply copied into destination pixels.

Before executing a PIXBLT instruction, load the following parameters into the
appropriate GSP internal registers:

DYDX 	Composed of two portions: DX, which specifies the width of the
array, and DY, which specifies the height of the array.

PSIZE 	Pixel size (number of bits per pixel).

SADDR Starting address of source array (XY or linear address).

DADDR Starting address of destination array (XY or linear address).

SPTCH Source pitch, or difference in memory addresses of two vertically
adjacent pixels in the source array.

DPTCH Destination pitch, or difference in memory addresses of two verti-
cally adjacent pixels in the destination array.

7-4

Graphics Operations - Pixel Block Transfers

If either the source or destination array is specified in XY format, the contents
of the CONVSP and CONVDP registers will be used in instances in which the
Y component of the starting address must be adjusted prior to the start of the
PixBlt. The Y component may require adjustment, either to preclip the array
or to select a starting pixel in one of the lower two corners of the array.

Pitches and starting addresses must be specified separately for the two arrays
(source and destination). The width, height, and pixel size are common to
both arrays. (During a binary expand operation, only the destination pixel size
is specified; the source pixel size is assumed to be one bit.)

The starting address of a pixel array can be specified as a linear (memory)
address or as an XY address. Window checking can be used only when the
destination array is pointed to by an XY address.

On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. An array specified in linear format
can be transferred to an array specified in XY format (and vice versa) by means
of the PIXBLT L,XY and PIXBLT XY,L instructions.

The FILL instruction fills a specified destination pixel array with the pixel value
specified in the COLOR1 register. A fill operation can be thought of as a
special type of PixBlt that does not use a source pixel array. The source pixel
value used in pixel processing is the value in the COLOR1 register. The des-
tination array of a FILL instruction can be specified in either XY or linear for-
mat.

7.2.1 Color - Expand Operation

The TMS34010 allows shape information to be stored separately from attri-
butes such as color and intensity. A shape can be stored in compressed form
as a bit map containing 1s and Os. The color information is added as the shape
is drawn to the screen; the 1s in the bit map are expanded to the specified
Color 1 value, and the Os are expanded to the Color 0 value. This saves a
significant amount of memory when the pixel size in the display memory is two
bits or more.

Two PIXBLT instructions, PIXBLT B,XY and PIXBLT B,L, provide the color-
expand capability. The source array for either instruction is a bit map (one bit
per pixel) stored off-screen in linear format for greater storage efficiency. The
destination array can be specified in either XY or linear format. The pixel size
for the destination array is governed by the value in the PSIZE register. The
colors to which the 1s and Os in the source array are expanded are specified
in the COLOR1 and COLORO registers.

A primary benefit of the color-expand capability is the reduction in table area
needed to store text fonts. Font bit maps are stored in compressed form at one
bit per pixel. The color-expand operation adds color to a character shape at
draw time, allowing color to be treated as an attribute separate from the shape
of the character. The alternative would be to store the fonts in expanded form,
which can be costly. The amount of table storage necessary to store red letters
A-Z, blue letters A-Z, and so on, multiplied by the number of font styles
needed for an application program, would be prohibitive. Furthermore, the
color-expand operation is inherently faster than using pre-expanded fonts
because far fewer bits of character shape information have to be read from the
font table when a character is drawn to the screen.

7-5

Graphics Operations - Pixel Block Transfers

Figure 7-1 shows the expansion of a bit map, one bit per pixel and four bits
wide, into four 4-bit pixels (transforming 0-1 -1 -0 into yellow-red-red-yellow,
for example). Before transferring the expanded source array to the destination
array, any of the Boolean or arithmetic pixel processing operations can be ap-
plied.

Four bits per pixel example
of color expand

Four bit binary or unexpended Image

151151111111fill 	fillE1611111511 	 ararassra COLOR1
Register

COLORO 111117115111 	 IIRIMIE111 	Iti1511141111 Register
Execute Expand

timakelig tunituaii

Resulting 16-bit expanded Image

Figure 7-1. Color-Expand Operation

The expand function is also useful in applications that generate shapes or
patterns dynamically. During the first stage of this process, a compressed im-
age is constructed in an off-screen buffer area at one bit per pixel. The image
is built up of geometric objects such as rectangles, circles or polygons. Pat-
terns can also be added. When complete, the compressed image is color-
expanded onto the screen. This method defers the application of color and
intensity attributes until the final stage.

Combining color expand with the replace-with-transparency operation yields
a new operation that is particularly useful in drawing overlapping or kerned
text. The color value used to replace the Os in the source array is selected by
the programmer as all Os, which is the transparency code. The GSP defers the
check for transparency until after the color-expand operation has been per-
formed. As the color-expand operation is performed, the Os in the source array
are expanded to all Os. Only the pixels in the destination array that correspond
to nontransparent pixels in the resulting source array are replaced.

The PIXBLT B,XY and PIXBLT B,L instructions can be used in conjunction
with pixel processing, transparency and plane masking. Source pixels are ex-
panded before being processed. Window checking can be used with PIXBLT
B,XY.

7-6

Graphics Operations - Pixel Block Transfers

7.2.2 Starting Corner Selection

The default starting address of a pixel array is the lowest pixel address in the
array. When an array is displayed on the screen, as shown in Figure 7-2 a, the
starting address is the address of the pixel in the upper left corner of the array.
(The XY origin is located in its default position at the upper left corner of the
screen.) During a PixBlt operation, this pixel is processed first. The PixBlt
processes pixels from left to right within each row, beginning at the top row
and moving toward the bottom row. The pixel at the lower right corner of the
array is processed last.

Certain PixBlt operations allow any of the other three corners to be used as the
starting location. This may be necessary, for instance, if the source and des-
tination arrays overlap. The sequence in which pixels are moved when the
arrays overlap should be controlled so as to not overwrite the pixels in the
source array before they are written to the destination array.

Figure 7-2 shows how the PBV and PBH bits in the CONTROL register de-
termine the starting corner for the PixBlt operation. The starting corner is in-
dicated for each of four cases. PBH selects movement in the X direction, from
left to right or right to left. PBV selects movement in the Y direction, from top
to bottom or bottom to top.

Pixel Array
Address

4

+X

Pixel Array
Address

PBH=0, PBV=O
	

PBH.t PBV=O

Pixel Array
Address 	•

Pixel Array
Address

PBH=0, PBV=1
	

PBH=1, PBV=1

Note: Starting corners are shaded.

Figure 7 - 2. Starting Corner Selection

7 - 7

Graphics Operations - Pixel Block Transfers

PBH=O The PixBlt processes pixels from left to right; that is, in the direction
of increasing X.

PBH=1 	The PixBlt processes pixels from right to left; that is, in the direction
of decreasing X.

PBV=O The PixBlt processes rows from top to bottom; that is, in the di-
rection of increasing Y.

PBV=1 	The PixBlt processes rows from bottom to top; that is, in the di-
rection of decreasing Y.

All the pixels in one row are processed before moving to the next row.

When one or both of the arrays is specified in XY format, the GSP automat-
ically calculates the actual starting address (specified by PBH and PBV) from
the default starting address (that is, the lowest pixel address in the array) and
the width and height of the array. Automatic starting address adjustment is
available with the following instructions:

• PIXBLT L,XY

• PIXBLT XY,L

• PIXBLT XY,XY

The programmer supplies the default starting addresses for these PixBlts in the
SADDR and DADDR registers. During the course of instruction execution,
SADDR and DADDR are automatically adjusted to the address of the corner
selected by PBH and PBV.

When both arrays are specified in linear format, the starting addresses of the
appropriate corner pixels must be provided by the programmer. The PIXBLT
L,L instruction allows any of the four corners to be used as the starting lo-
cation, but in this case the programmer must adjust the addresses in SADDR
and DADDR to the corner selected by PBH and PBV.

7-8

Graphics Operations - Pixel Block Transfers

7.2.3 Interrupting PixBlts and Fills

PIXBLT and FILL are interruptible instructions. An interrupt can occur during
execution of one of these instructions; when interrupt processing is com-
pleted, execution of the PIXBLT or FILL resumes at the point at which the in-
terruption occurred.

The execution time of a PIXBLT or FILL instruction depends on the specified
pixel array size. In order to prevent high-priority interrupts from being delayed
until completion of PixBlts and fills of large arrays, the PIXBLT and FILL in-
structions check for interrupts at regular intervals during their execution.

When a PIXBLT or FILL instruction is interrupted the PBX (PixBlt executing)
status bit is set to 1. This records the fact that the interrupt occurred during
a pixel array operation. The PC and the ST are pushed onto the stack, and
control is transferred to the appropriate interrupt service routine. At the end
of the interrupt service routine, an RETI (return from interrupt) instruction is
executed to return control to the interrupted program. The RETI instruction
pops the ST and PC from the stack. When the PBX bit is detected, execution
of the interrupted PIXBLT or FILL instruction resumes.

At the time of the interrupt, the state of the PIXBLT or FILL instruction is saved
in certain B-file registers. The source and destination address registers contain
intermediate values. The source and destination pitches may also contain in-
termediate values, depending on the instruction. The SADDR, SPTCH,
DADDR, DPTCH registers and registers B10-B14 (as well as the original set
of implied operands) contain the information necessary to resume the in-
struction upon return from an interrupt.

If the interrupt routine uses any of these registers, they should be saved on the
stack and restored when interrupt processing is complete. By following this
procedure, PIXBLT or FILL instructions can be safely executed within interrupt
service routines.

Note:

The PBX bit is not set to 1 when a PIXBLT or FILL instruction is aborted
due to a window violation.

7-9

Graphics Operations - Pixel Transfers/Incremental Algorithm Support

7.3 Pixel Transfers

The TMS34010 uses the PIXT (pixel transfer) instructions to transfer individ-
ual pixels from one location to another. The following pixel transfers can be
performed:

• From an A- or B-file register to memory,

• From memory to an A- or B-file register,

or

• From one memory location to another.

The address of a pixel in memory can be specified in XY or linear format. Li-
near addresses must be pixel aligned.

The pixel size for all PIXTs is specified by the value in the PSIZE register. Pixel
sizes are restricted to 1, 2, 4, 8, or 16 bits to facilitate XY address computa-
tions, window checking, transparency, and arithmetic pixel processing.

The PIXT instruction can be used in conjunction with window checking,
Boolean or arithmetic pixel processing, plane masking, and transparency.

7.4 Incremental Algorithm Support

The TMS34010 supports incremental drawing algorithms via its DRAV (draw
and advance) and LINE instructions. The DRAV instruction is used primarily
in the construction of algorithms for incrementally drawing circles, ellipses,
arcs, and other curves. The DRAV instruction can also be used in the inner
loop of algorithms for drawing straight lines incrementally. Lines, however,
are treated as a special case by the TMS34010 in order to achieve even faster
drawing rates. A separate instruction, LINE, implements the entire inner loop
of the Bresenharn algorithm for drawing lines.

The DRAV (draw and advance) instruction draws a pixel to a location pointed
to by a register; the pointer register is then incremented to point to the next
pixel. The pointer is specified as an XY address. The X and Y portions of the
address are incremented independently, but in parallel. The value written to
the destination pixel in memory is taken from the COLOR1 register.

The DRAV instruction is embedded in the inner loop of an incremental algo-
rithm to speed up its execution. As an incremental algorithm plots each pixel
on a curve, it also determines where the next pixel will be drawn. The next
pixel is typically one of the eight pixels immediately surrounding the pixel just
plotted on the screen. Advancing in this manner, the algorithm tracks the
curve from one end to the other.

The DRAV and LINE instructions may be used in conjunction with Boolean
or arithmetic pixel processing operations, window checking, plane masking
and transparency.

7 - 10

Graphics Operations - Transparency

7.5 Transparency

When a PixBIt is used to draw an object to the screen, some of the pixels in
the rectangular pixel array that contains the object may not be part of the ob-
ject itself. Transparency is a mechanism that allows surrounding pixels in the
array to be specified as invisible. This is useful for ensuring that only the ob-
ject, and not the rectangle surrounding it, is written to the screen.

Transparency is enabled by setting the T bit in the CONTROL register to 1, or
disabled by setting the T bit to 0. When enabled, a pixel that has a value of 0
is considered transparent, and will not overwrite a destination pixel. Trans-
parency detection is applied not to the source pixel values, but to the pixel
values resulting from plane masking and pixel processing. When an operation
performed on a pair of source and destination pixels yields a 0 result, the GSP
detects this and prevents the destination pixel from being altered. In the case
of pixel processing operations such as AND, MIN, and replace, a source pixel
value of 0 ensures that the result of the operation will be a transparent pixel.

Figure 7-3 illustrates how transparency works in the GSP. Assuming four bits
per pixel, the hardware must detect strings of Os of length four falling between
pixel boundaries. While bit strings A and B are both of pixel length, only
string A is detected as transparent. String B crosses the pixel boundary. The
memory interface logic generates an internal mask to govern which bits are
modified during a write cycle. This mask contains is in the bits corresponding
to the transparent pixel. Only destination bits corresponding to Os in the mask
will be modified.

Data to be written

String A 	Id—String B —$

1010110000j1000101101

Mask generated

Data to be modified

Resulting data

10 0 0 oil 1 1 1 1 o 0 0 010 0 0

1A A A A1B B B BIC C C CID D D D1

10 1 0 118 B B BI1 0 0 010 1 	1 01

Note: This example assumes four bits per pixel.

Figure 7-3. Transparency

Figure 7-7 (page 7-17) and Figure 7-8 (page 7-19) illustrate several pixel
processing operations. Figure 7-8 h shows an example of a replace operation
performed with transparency enabled. The pixels surrounding the letter A
pattern in the source array are transparent (all Os). Compare Figure 7-8 h with
Figure 7-7 d; this replace-with-transparency operation is analogous to the
logical OR operation in a one-bit-per-pixel display.

Transparency can be used with any instruction that writes to pixels, including
the PIXBLT, FILL, DRAY, LINE, and PIXT instructions. Transparency does not
affect writes to non-pixel data.

7-11

Graphics Operations - Plane Masking

7.6 Plane Masking

The plane mask is a hardware mechanism for protecting specified bits within
pixels. Mask-protected pixels will not be modified during graphics in-
structions. The plane mask allows the bits within pixels to be manipulated as
though the display memory were organized into bit planes (or co/or planes)
that can selectively be protected from modification. The number of planes
equals the number of bits per pixel.

Consider an example in which the pixel size is four bits. The bits within each
pixel are numbered 0-3, and belong to planes 0-3, respectively. All the bits
numbered 0 in all the pixels form plane 0, all the bits numbered 1 in all the
pixels form plane 1, and so on.

The plane mask allows one or more planes to be manipulated independently
of the other planes. Given four planes of display memory, for example, three
of the planes can be dedicated to eight-color graphics, while the fourth plane
can be used to overlay text in a single color. The plane mask can be set so that
the text plane can be modified without affecting the graphics planes, and vice
versa.

The PMASK register contains the plane mask. Each bit in the plane mask
corresponds to a bit position in a pixel. The 1 s in the mask designate pixel
bits that are protected, while Os in the mask designate pixel bits that can be
modified. Those pixel bits that are protected by the plane mask are always
read as Os during read cycles, and are protected from alteration during write
cycles. While no single control bit enables or disables plane masking, it is ef-
fectively disabled by setting PMASK to all Os; this is the default condition
following reset.

In principal, the number of bits in the plane mask is the same as the pixel size.
However, the mask for a single pixel must be replicated to fill the entire 16-bit
PMASK register. For example, if the pixel size is four bits, the 4-bit mask is
replicated four times within PMASK; in bits 0-3, 4-7, 8-11, and 12-15. These
four copies of the mask are applied to the four pixels in a word written to or
read from memory. A 16-bit PMASK value for pixels of 1, 2, 8, or 16 bits is
constructed similarly by replicating the mask 16, 8, 2, or 1 times, respectively.

The plane mask affects only pixel accesses performed during execution of the
PIXBLT, FILL, PIXT, DRAY, and LINE instructions. Data accesses by non-
graphics instructions are not affected.

The following list summarizes operation of the PMASK register during pixel
reads and writes:

• 	Pixel Read:

The Os in PMASK correspond to unprotected bits in the source pixel that
are seen by the GSP to contain the actual values read from memory.

The is in PMASK correspond to protected bits in the source pixel that
are seen as Os by the GSP, regardless of the values read from memory.

7 - 12

Graphics Operations - Plane Masking

• Pixel Write:

The Os in PMASK specify those bits in the destination pixel in memory
which may be altered.

The is in PMASK specify protected bits in the destination pixel which
cannot be altered.

When a pixel is being transferred from a source to a destination location, plane
masking is applied to the values read from the source and destination before
pixel processing is applied. As the operands are read from memory, the bits
protected by the plane mask are replaced with Os before the specified Boolean
or arithmetic pixel processing operation is performed. Transparency detection
is performed on the result of this operation. When the result is written back
to the destination, those bits of the destination that are protected by the plane
mask are not modified.

Source pixels that originate from registers are not affected by the plane mask,
and undergo pixel processing in unmodified form. The FILL, DRAY, LINE,
PIXT Rs,*Rd, and PIXT Rs,*Rd.XY instructions obtain their source pixels from
registers.

Figure 7-4 shows how special hardware in the local memory interface of the
TMS34010 applies the plane mask to pixel data during a read cycle. The pixel
size for this example is eight bits per pixel. This could represent the execution
of a PIXT •Rs.XY,Rd instruction, for instance.

Move this pixel
Into a GSP register

15(MSB) 	 8 	7 	 0(LSB)
(a) Original data In memory (2pixels)IA A A A A A A AIBBBBBBBBI

(b) Plane mask (PMASK)
	

11 1 0 0 1 0 0 0 1 1 	1 0 0 1 0 0 0 I

(o) Data read Into GSP register
	

10000000010013B0BBBI

Notes: 1. This example assumes eight bits per pixel.
2. The pixel moved into the GSP register is left justified. All register bits to the left of

the pixel are zero filled.

Figure 7-4. Read Cycle With Plane Masking

• Figure 7 - 4 a shows the 16-bit word containing the pixel as it is read
from memory.

• The word is AN Ded with the inverse of the plane mask shown in b.

• The result in Figure 7-4 c shows that the bits within the data word that
correspond to is in the mask have been set to Os.

7-13

Graphics Operations - Plane Masking

After plane masking, the designated pixel is loaded into the eight LSBs of the
32-bit destination register, and the 24 MSBs of the register are filled with Os.

Figure 7-5 shows the effect of combining plane masking with pixel transpar-
ency. Again, the performance of the special hardware in the local memory
interface controller is demonstrated. The example shows the transfer of two
pixels during the course of a PixBlt operation with transparency enabled, the
pixel size set at eight bits, and the replace pixel processing operation. The
inverse of PMASK is ANDed with the source data, and transparency detection
is applied to the resulting entire pixel. In other words, the result is used to
control the write in the manner described in the previous discussion of pixel
transparency. Since the three LSBs of the source pixel in bits 8-15 are Os, and
the rest of the pixel is masked off, the entire source pixel is interpreted as
transparent. The memory interface logic generates an internal mask to govern
which bits are modified during a write cycle. This mask contains Os in the bits
corresponding to the transparent pixel.

15(MSB)
	

8
	

7
	

0(LSB)
(a) Original data In memory (2 pixels)

(b) Souroe data In memory
(to be moved)

(0) Plane mask (PMASK)

(d) Mask source data for trans-
parency detection (SRC • 15);MR)

(e) Transparency mask

(f) Combined mask (PMASR• trans-
parency mask)

(g) Resulting memory data after
write cycle (C ombined Mas• •
SRC DATA + ombfrief Weal. •
DST DATA)

1A A A A A A A AIBBBBBBBB1

IYYYYY000IZ Z 22 ZZ Z Z1

111111 	00ol-1111100o)

lo o 0 0 0 0 0 olo go 0 ozz z1

Igo g o go 0 011111 111 11

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

IAA A A AA A AIBBBBBZ Z Z1

Note: This example assumes eight bits per pixel.

Figure 7-5. Write Cycle With Transparency and Plane Masking

• Figure 7-5 a shows the original data at the destination location in me-
mory.

• The source data are shown in b.

• The source data are ANDed with the inverse of the plane mask shown
in c.

• Figure 7-5 d shows the intermediate result produced by c.

• This result is used to generate the transparency mask in e, which is
AN Ded with the inverse of the plane mask in c to produce the composite
mask shown in f.

• The result in g is produced by replacing with the source only those bits
of the destination corresponding to 1s in the composite mask in f.

7-14

Graphics Operations - Pixel Processing

7.7 Pixel Processing

Source and destination pixel values can be combined according to the pixel
processing operation (or raster operation) selected. The TMS34010's pixel
processing operations include 16 Boolean and 6 arithmetic operations. The
Booleans are performed in bitwise fashion on operand pixels of 1, 2, 4, 8, or
16 bits. The arithmetic operations treat operand pixels of 4, 8, or 16 bits as
2's complement integers.

When a pixel is read from its source location, it is logically or arithmetically
combined with the corresponding destination pixel according to the pixel
processing option selected, and the result is written to the destination pixel.
The pixel processing operation is selected by the PPOP field in the CONTROL
register. Table 7-1 and Table 7-2 list the 22 PPOP codes and their meanings.

Table 7-1. Boolean Pixel Processing Options

PPOP Field Operation

00000 Source ' Destination

00001 Source AND Destination " Destination

00010 Source AND —Destination " Destination

00011 Os " Destination

00100 Source OR —Destination " Destination

00101 Source XNOR Destination " Destination

00110 —Destination ' Destination

00111 Source NOR Destination " Destination

01000 Source OR Destination ' Destination

01001 Destination ' Destination

01010 Source XOR Destination ' Destination

01011 —Source AND Destination ' Destination

01100 1s " Destination

01101 —Source OR Destination ' Destination

01110 Source NAND Destination " Destination

01111 —Source ' Destination

Table 7-2. Arithmetic (or Color) Pixel Processing Options

PPOP Field Operation

10000 Source + Destination ' Destination

10001 ADDS(Source, Destination) ' Destination

10010 Destination - Source " Destination

10011 SUBS(Source, Destination) " Destination

10100 MAX(Source, Destination) " Destination

10101 MIN(Source, Destination) ' Destination

10110-11111 Reserved

7-15

Graphics Operations - Pixel Processing

In Table 7-2, pixel processing codes 10000 and 10010 correspond to standard
2's complement addition and subtraction. A result that overflows the specified
pixel size causes the pixel value to wrap around within its 4, 8, or 16-bit range.
Carry bits are, however, prevented from propagating to adjacent pixels.

The ADDS (add with saturation) and SUBS (subtract with saturation) oper-
ations shown in Table 7-2 produce results identical to those of standard ad-
dition or subtraction, except when arithmetic overflow occurs. When the
ADDS operation would produce an overflow result, the result is replaced with
all 1s. When the SUBS operation would produce an underflow result, the re-
sult is replaced with all Os.

The MAX operation shown in Table 7-2 compares the source and destination
pixels and then writes the greater value to the destination location. The MIN
operation is similar, but writes the lesser value to the destination.

Figure 7-6 depicts the interaction of pixel processing with other graphics op-
erations when a source pixel is transferred to a destination pixel. Note that this
is a general description; some of these operations do not occur if they are not
selected. Pixels are first read from memory and modified by the plane mask.
Pixel processing is then performed on the modified pixel values. The plane
mask is applied to the result. Bits which are 1s in the PMASK produce 0 bits
in the result of this process. Thus, some processed pixels may become trans-
parent as the result of plane masking. Next, transparency detection is applied
to the data, and finally, a read-modify-write operation is invoked.

Source 	 Destination \
pixel pixel

Read Readt

PMASK PMASK

Pixel
Processing

V

PMASK

Transparency
Detect

Read-Modify-Write t

Destination
Pixel

t Only necessary if rep/ace is not selected.
t Only necessary when plane masking or transparency is active and

the pixel size is not 16, or when the data is not word-aligned.

Figure 7-6. Graphics Operations Interaction

7-16

Graphics Operations - Boolean Processing Examples

7.8 Boolean Processing Examples

Figure 7-7 illustrates the effects of five commonly used Boolean operations
when applied to one-bit pixels. Black regions contain Os, and white regions
contain 1 s. Figure 7-7 a and b show the original source and destination ar-
rays. The source operand in a is the letter A, and the destination in b is a
calligraphic-style X.

(A) SOURCE ARRAY
	

(B) ORIGINAL DESTINATION
ARP. a ..

(C) REPLACE (D) OR (E) AND-NOT

(F) AND (G) XOR

Figure 7-7. Examples of Operations on Single-Bit Pixels

7-17

Graphics Operations - Boolean Processing Examples

7.8.1 Replace Destination with Source

A simple replacement operation overwrites the pixels of the destination array
with those of the source. Figure 7-7 c shows the letter A written over the
center portion of a larger X using the replace operation. The rectangular region
around the letter A obscures a portion of the X lying outside the A pattern.
Other operations allow only those pixels corresponding to the A pattern within
the rectangle to be replaced, permitting the background pattern to show
through. These are the logical OR and logical AND-NOT (NOT source AND
destination) operations. The replace-with-transparency operation performs
similarly in color systems.

7.8.2 Logical OR of Source with Destination

Figure 7-7 d illustrates the use of the logical OR operation during a PixBlt.
For a one-bit-per-pixel display, the OR function leaves the destination pixels
unaltered in locations corresponding to Os in the source pixel array. Destina-
tion pixels in positions corresponding to 1s in the source are forced to 1s.

7.8.3 Logical AND of NOT Source with Destination

Logically AN Ding the negated source with the destination is complementary
to the logical OR operation. Destination pixels corresponding to 1s in the
source array remain unaltered, but those corresponding to Os in the source are
forced to Os. Figure 7-7 e is an example of the AND-NOT PixBlt operation
(notice the negative image of the letter A). For comparison, Figure 7-7 f
shows the result of simply AN Ding the source and destination.

7.8.4 Exclusive OR of Source with Destination

The XOR operation is useful in making patterns stand out on a screen in in-
stances where it is not known in advance whether the background will be 1s
or Os. At every point at which the source array contains a pixel value of 1, the
corresponding pixel of the destination array is flipped - a 1 is converted to a
0, and vice versa. XOR is a reversible operation; by XORing the same source
to the same destination twice, the original destination is restored. These pro-
perties make the XOR operation useful for placing and removing temporary
objects such as cursors, and in "rubberbanding" lines. As seen in the example
of Figure 7-7 g, however, the object may be difficult to see if both the source
and destination arrays contain intricate shapes.

7-18

Graphics Operations - Multiple-Bit Pixel Operations

7.9 Multiple-Bit Pixel Operations

The Boolean operations described in Section 7.8 are sufficient for single-bit
pixel operations, but they may be inappropriate for multiple-bit pixel oper-
ations, especially when color is involved. For example, the result of a logical
OR operation on a black-and-white (one bit per pixel) display is easily pre-
dicted - logically ORing black and white yields white. However, the intuitive
meaning of this operation is less clear when it is applied to multiple-bit pixels;
what effect should be expected when the color red is ORed with blue?

7.9.1 Examples of Boolean Operations

Boolean operations can be applied to multiple-bit pixels by combining the
corresponding bits of each pair of source and destination pixels on a bit-by-bit
basis according to the specified Boolean operation.

Figure 7-8 illustrates Boolean operations on multiple-bit pixels. Figure 7-8 a
illustrates the source array. It contains a red letter A which has the value 8
(10002); the black background pixels have the value 0 (00002). Figure 7-8
b shows the destination array, a yellow X which has the value 12 (11002); the
pixels in the blue rectangle have the value 2 (00102). Figure 7-8 c through
g show the effects of combining the source and destination arrays using the
replace, logical OR, OR-NOT, AND and XOR PixBlt operations. Compare
these to Figure 7-7 (page 7-17). Figure 7-8 i through n are discussed in
Section 7.9.1.1 through Section 7.9.1.4.

(a)
	

(b)

(c)
	

(d)
	

(e)

Figure 7-8. Examples of Boolean Operations

7-19

Graphics Operations - Multiple-Bit Pixel Operations

(f)
	

(g)
	

(h)

(I)
	

(k)

(I)
	

(m)
	

(n)

Figure 7-8. Examples of Boolean Operations (Concluded)

7.9.1.1 Figure 7 -8 i and j - Simple Addition and Subtraction

Figure 7-8 i shows the result of adding the source and destination arrays.
Simple binary 2's complement addition is used. When the sum of the two
pixels exceeds the maximum pixel value, the result overflows.

Figure 7-8 j shows the result of subtracting the source array from the desti-
nation array. Underflow occurs for those pixels whose calculated difference
is negative.

Simple addition and subtraction are complementary operations. They are re-
versible operations in the same sense as the XOR operation - by adding a
source to a destination, and then subtracting the same source, the original
destination is recovered.

7-20

Graphics Operations - Multiple-Bit Pixel Operations

7.9.1.2 Figure 7-8 k and I - Add and Subtract with Saturate

The add and subtract operations described in Section 7.9.1.1 are binary 2's
complement operations which allow overflow and underflow. An add-with-
saturate operation can be defined that stops the result at the maximum value
rather than allowing it to overflow. For example, with four bits per pixel, ad-
ding 00102 to 11102 produces 11112. Similarly, a subtract-with-saturate
operation can be defined that stops the result at 0 rather than allowing it to
underflow.

Figure 7-8 k and / illustrate examples of add and subtract with saturate. In
these examples, the pixel size is four bits. By dedicating a different color to
each value, the effects of each PixBlt operation become more visible. This
method may present problems, however. For example, adding red to blue may
not produce a meaningful result.

An alternate method uses the 16 values 0 to 15 to represent increasing inten-
sities of a single color. Then the addition and subtraction operations would
have obvious meaning - they would increase and decrease the intensity by
known amounts. Developing this idea further, at 12 bits per pixel, four bits
of intensity could be dedicated to each of the three color components, red,
green and blue. Arithmetic operations could then be performed on the corre-
sponding components of each pair of source and destination pixels. These
results would also have obvious meanings, and would not be limited to in-
tensities of a single color, as is the case with four bits per pixel.

Figure 7-9 (page 7-22) presents examples in which the pixel values represent
intensities of a single color.

7.9.1.3 Figure 7 - 8 m - Maximum

Figure 7-8 m illustrates the results of the MAX operation on the source and
destination arrays. MAX compares two pixel values and replaces the destina-
tion pixel with the larger value. In some respects, MAX is the arithmetic
equivalent of the Boolean OR function (compare Figure 7-8 m with Figure 7-7
b) . The use of MAX in gray-scale and color displays is similar to that of OR
in simple black and white.

If the most-significant bits in each pixel are assigned to represent object pri-
ority (whether an object appears in front of or behind another object), the
MAX operation can be used to replace only those pixels of the destination ar-
ray whose priorities are lower than those of the corresponding pixels in the
source array. This allows an object to be drawn to the screen so that it appears
either in front of or behind other objects previously drawn. In Figure 7-8 m
the red A has a numerical value that is greater than that of the blue back-
ground, but less than that of the X.

The MAX function is also useful for smoothly combining two antialiased ob-
jects that overlap.

7-21

Graphics Operations - Multiple-Bit Pixel Operations

7.9.1.4 Figure 7-8 n - Minimum

Figure 7-8 n illustrates the results of the MIN operation on the source and
destination arrays. MIN compares two pixel values and replaces the destina-
tion pixel with the smaller value. MIN is similar to the Boolean AND function.
MIN can be used with priority-encoded pixel values, similar to MAX, but the
effect is reversed. In Figure 7-8 n, the priorities of the two objects are reversed
from that of the MAX example shown in Figure 7-8 m. The MIN operation
also has uses similar to those of MAX in smoothly combining antialiased ob-
jects that overlap.

7.9.2 Operations On Pixel Intensity

Figure 7-9 illustrates the visual effects of various PixBIt operations on two
intersecting disks. In these examples, each pixel is a four-bit value represent-
ing an intensity from 0 (black) to 15 (white). Before the PixBIt operation,
only a single disk resides on the screen, as shown in Figure 7-9 a. The in-
tensity of the disk is greatest at the center (where the value is 12), and grad-
ually falls off as the distance from the center increases. Figure 7-9 b through
f show the effects of combining a second, identical disk with the first. Figure
7-9 b through e are produced using arithmetic operations; f is the result of a
logical OR of the source and destination. These operations are discussed in
Section 7.9.2.1 through Section 7.9.2.4.

(a)
	

(b)
	

(c)

(d)
	

(e)

Figure 7-9. Examples of Operations on Pixel Intensity

7 - 22

Graphics Operations - Multiple-Bit Pixel Operations

The gradual change in intensity at the edge of the disk in Figure 7-9 a is similar
to the result produced by certain antialiasing techniques whose purpose is to
reduce jagged-edge effects. A text font might be stored in antialiased form,
for example, to give the text a smoother appearance. When two characters
from the font table are PixBlt'd to adjacent positions on the screen, they may
overlap slightly. The particular arithmetic or Boolean operation selected for the
PixBlt determines the way in which the antialiased edges of the characters are
combined within regions of overlap.

7.9.2.1 Figure 7 -9 b - Replace with Transparency

In Figure 7-9 b, a second disk is PixBlt'd into a position near the first disk. A
replace-with-transparency operation is performed. Those pixels of the first
disk that lie within the rectangular region containing the second disk, but are
not part of the second disk, remain intact. The visual effect is that the second
disk (at the right) appears to lie in front of the original disk (at the left).
However, assuming that the gradual change in intensity at the perimeter of the
disks is done for the purpose of antialiasing, the sharp edge that results where
the second disk covers the first defeats this purpose. In other applications, this
sharp edge may be desirable; for example, it might be used to make a text
character or a cursor stand out from the background. The replace-with-
transparency operation also supports object priority by writing objects to the
screen in ascending order of priority.

7.9.2.2 Figure 7 -9 c - Add with Overflow and Subtract with Underflow

In Figure 7-9 c, a second disk is PixBlt'd into an area overlapping the first disk,
using an add-with-overflow operation. In this example, when 1 is added to
an intensity of 15, the sum is truncated to four bits to produce the result 0.
The effect of arithmetic overflow is visible at the intersection of the two disks
as discontinuities in intensity.

This effect is useful for making objects stand out against a cluttered back-
ground. Add with overflow has an additional benefit - the object can be re-
moved by subtracting (with underflow) the object image from the screen.

7.9.2.3 Figure 7 - 9 d - Add and Subtract with Saturation

In Figure 7-9 d, the original disk is on the left. A second disk is PixBlt'd into
a region overlapping the original disk, using an add-with-saturate operation.
Whenever the sum of two pixels exceeds the maximum intensity value, which
is 15 for this example, the sum is replaced with 15. The bright region that
occurs where the two disks intersect is produced when the corresponding
pixels of the two disks are added in this manner. Subtract-with-saturate is the
complementary operation; when the difference of the two pixel values is neg-
ative, the sum is replaced by the minimum intensity value, 0.

The add-with-saturate operation shown in Figure 7-9 d approximates the ef-
fect of two light beams striking the same surface; the surface is brightest in the
area in which the two beams overlap.

7-23

Graphics Operations - Multiple-Bit Pixel Operations

These operations can be used to achieve an effect similar to that of an airbrush
in painting. Consider a display system that represents each pixel as 12 bits,
and dedicates four bits each to represent the intensities of the three color
components, red, green, and blue. This method permits the intensity of each
component to be directly manipulated. With each pass of the simulated air-
brush over the same area of the screen, the color changes gradually toward the
color of the paint in the airbrush. For example, assume that the paint is yellow
(a mixture of red and green). Each time a pixel is touched by the airbrush, the
intensity of the red and green components is increased by 1, and the intensity
of the blue component is decreased by 1. With each sweep of the airbrush,
the affected area of the screen turns more yellow until the red and green
components reach the maximum intensity value (and are not allowed to over-
flow), and the blue component reaches 0 (and is not allowed to underflow).

7.9.2.4 Figure 7 - 9 e - MAX and MIN Operations

In Figure 7-9 e, the original disk is on the left. A second disk is PixBlt'd into
the rectangular region to its right using the MAX operation. In the region in
which the disks overlap, each pair of corresponding pixels from the two disks
is compared and the greater value is selected. This produces a relatively
smooth blending of the two disks. Unlike add with saturate, the MAX function
does not generate a "hot spot" where two objects intersect.

The visual effect achieved using the MAX operation is desirable in an appli-
cation, for instance, in which white antialiased lines are constructed on top of
each other over a black background. MAX also smooths out places in which
the lines are overlapped by antialiased text. MAX is successful in maintaining
two visually distinct antialiased objects, while the add-with-saturate tends to
run them together.

MIN, which is complementary to MAX, can be used similarly to smooth the
appearance of intersecting black antialiased lines and text on a white back-
ground.

The MAX and MIN operations are particularly useful in color applications in
which the number of bits per color gun is small (eight bits or less). Other
operators could also be used to smooth the transition between the two over-
lapping antialiased objects in Figure 7-9 e, but any additional accuracy at-
tained by using a more complex smoothing function would probably be lost
in truncating the result to the resolution of the integer used to represent the
intensity at each point.

7-24

Graphics Operations - Window Checking

7.10 Window Checking
The TMS34010's hardware window clipping confines graphics drawing op-
erations to a specified rectangular window in the XY address space. Other
window checking modes cause an interrupt to be requested on a window hit
or a window miss.

Window checking affects only pixel writes performed by the following graph-
ics instructions:

• PIXBLT

• FILL

• LINE

• DRAV

• PIXT

Data writes by non-graphics instructions are not affected.

A window is a rectangular region of display memory specified in terms of the
XY coordinates of the pixels in its two extreme corners (minimum X and Y, and
maximum X and Y). The corner pixels are considered to lie within the window.
Window checking is available only in conjunction with XY addressing; it is not
available with linear addressing. Specifically, the destination pixel address
must be an XY address.

One of four window checking modes is selected by the value loaded into the
W field of the CONTROL register:

W=0: Window checking disabled. No window checking is performed.

W=1: Window hit detection. Request interrupt on attempt to write inside
window.

W=2: Window miss detection. Request interrupt on attempt to write outside
window.

W=3: Window clipping. Clip all pixel writes to window.

When window checking is enabled (modes 1, 2 or 3), an attempt to write to
a pixel outside the window causes the V (overflow) bit in the status register
to be set to 1; a write (or attempt to write) to a pixel inside the window sets
V to 0. When window checking is turned off (mode 0), the V bit is unaffected
during pixel writes.

7-25

Graphics Operations - Window Checking

7.10.1 W=1 Mode - Window Hit Detection

The W=1 mode detects attempts to write to pixels within the window. This
form of window checking supports applications which permits objects on the
screen to be picked by pointing to them with a cursor. In this mode, all pixel
writes are inhibited, whether they address locations inside or outside the
window. A window violation interrupt is requested on an attempt to write to
a pixel inside the window.

For the PIXBLT and FILL instructions, the V (overflow) bit is set to 1 if the
destination array lies completely outside the window. No interrupt request is
generated (the WVP bit in the INTPEND register is not affected) in this case.
However, if any pixel in the destination array lies within the window, the V
bit is set to 0 and a window violation interrupt is requested (the WVP bit is
set to 1). If the interrupt is enabled, the saved PC points to the instruction that
follows the PIXBLT or FILL that caused the interrupt. If the interrupt is disa-
bled, execution of the next instruction begins.

While no pixel transfers occur during the PIXBLT and FILL instructions exe-
cuted in this mode, the specified destination array is clipped to lie within the
window. In other words, the DADDR and DYDX registers are adjusted to be
the starting address, width, and height of the reduced array that is the inter-
section of the two rectangles represented by the destination array and the
window. This function can be adapted to determine the intersection of two
arbitrary rectangles on the screen - a calculation that is often performed in
windowed graphics systems.

In the case of a DRAV or PIXT instruction, an attempt to write to a pixel out-
side the window causes the V bit to be set to 1. No interrupt request is gen-
erated (the WVP bit is not affected). An attempt to write to a pixel inside the
window causes the V bit to be set to 0, and a window violation interrupt re-
quest is generated (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is 0 if any destination pixel proc-
essed by the instruction lies within the window; otherwise, V is 1. Attempts
to write to pixels outside the window do not cause interrupt requests to be
generated (the WVP bit is not affected). An attempt to write to a pixel inside
the window causes a window violation interrupt to be requested (the WVP
bit is set to 1) and the LINE instruction aborts. If the interrupt is enabled, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

The W=1 mode can be used to pick an object on the screen by means of the
following simple algorithm. An object previously drawn on the screen is
picked by moving the cursor to the object's position and selecting it. To de-
termine which object is pointed to, the software first sets the window to a
small region surrounding the position of the cursor. The software next steps
a second time through the same display list used to draw the current screen
until one of the objects causes a window interrupt to occur. This should be
the object pointed to by the cursor. If no object causes an interrupt, the pick
window can be enlarged and the process repeated until the object is found.
If two objects cause interrupts, the size of the pick window can be reduced
until only one object causes an interrupt.

7-26

Graphics Operations - Window Checking

7.10.2 W=2 Mode - Window Miss Detection

The W=2 mode permits a PIXBLT or FILL instruction to be aborted if any pixel
in the destination array lies outside the window. The destination array is
written only if the array lies entirely within the window, in which case the V
(overflow) bit is set to 0, and no interrupt request is generated (the WVP bit
is not affected). If any pixel in the destination array lies outside the window,
the V bit is set to 1, and a window violation interrupt is requested (the WVP
bit is set to 1).

For the DRAV and PIXT instructions, the destination pixel is drawn only if it
lies within the window. In this case, the V bit is set to 0, and no interrupt re-
quest is generated (the WVP bit is not affected). If the destination location
lies outside the window, the pixel write is inhibited, the V bit is set to 1, and
a window violation interrupt is requested (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is 0 if the last destination pixel
processed by the instruction lies within the window; otherwise, V is 1. At-
tempts to write to pixels inside the window do not cause interrupt requests to
be generated (the WVP bit is not affected). An attempt to write to a pixel
outside the window causes a window violation interrupt to be requested (the
WVP bit is set to 1) and the instruction aborts. If the interrupt is enabled, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

7.10.3 W=3 Mode - Window Clipping

In the W=3 mode, only writes to pixels within the window are permitted;
writes to pixels outside the window are inhibited. No interrupt request is
generated for any case.

For a PIXBLT or FILL instruction, only the portion of the destination array ly-
ing within the window is drawn. At the start of instruction execution, the
specified destination array is automatically preclipped to lie within the window
before the first pixel is transferred. Hence, no execution time is lost attempting
to write destination pixels which lie outside the window. In the case of a
PIXBLT, the source array is preclipped to fit the adjusted dimensions of the
destination array before the transfer begins.

During execution of a DRAV or PIXT instruction, a write to a pixel inside the
window is permitted, and the V bit is set to 0. An attempted write to a pixel
outside the window is inhibited, and the V bit is set to 1.

For the LINE instruction, writes to pixels outside the window are inhibited at
drawing time; no preclipping is performed. The value of the V bit at the end
of a LINE instruction is determined by whether the last pixel calculated by the
instruction fell inside (V=0) or outside (V=1) the window.

7-27

(X start , Ystart)

ti

	\(y")
.1711■J VOIR.. •

Window

Graphics Operations - Window Checking

7.10.4 Specifying Window Limits

The limits of the current window are specified in the WSTART (window start)
and WEND (window end) registers. WSTART specifies the minimum XY co-
ordinates in the window, and WEND specifies the maximum XY coordinates.

As Figure 7-10 shows, WSTART specifies the XY coordinates (Xstart ,Ystart)
at the upper left corner of the window, and WEND specified the XY coordi-
nates (Xend,rend) at the bottom right corner of the window. The origin is lo-
cated in its default position in the top left corner of the screen.

Origin
Display
Memory

A pixel with coordinates (XX)
lies within the window if both

X start 5 X s X end and v start s Y 5 Vend

Figure 7-10. Specifying Window Limits

Figure 7-10 shows that a pixel that has coordinates (X,Y) lies within the
window if Xstart < X 5_ Xen d and Ystart <Y 15- rend. If a pixel does not meet
these conditions, it lies outside the window.

When Xstart > Xend or Ystart 	rend, the window is empty; that is, it contains
no pixels. Under these conditions, the window checking hardware detects all
destination pixel addresses as lying outside the window. Note that the con-
ditions Xstart — Xend and Ystart = Yen d together specify a window containing
a single pixel.

Window start and end coordinates must lie in the range (0,0) to
(+32767,+32767). A window cannot contain pixels with negative X or Y
coordinates.

+y

7-28

Graphics Operations - Window Checking

7.10.5 Window Violation Interrupt

A window violation (WV) interrupt is requested (the WVP bit in the INTPEND
register is set to 1) when:

• W=1 and an attempt is made to write to a pixel inside the window

or

• W=2 and an attempt is made to write to a pixel outside the window

The interrupt occurs if it is enabled by the following conditions:

• The WVE bit in the INTENB register is 1

• The IE bit in the status register is 1

Alternatively, if the WV interrupt is disabled (IE=O or WVE=O), the window
violation can be detected by testing the value of either the V bit in the status
register or the WVP bit following the operation.

When a WV interrupt occurs, the registers that change during the LINE,
PIXBLT and FILL instructions contain their intermediate values at the time the
violation was detected.

7.10.6 Line Clipping

The TMS34010 supports two methods for clipping straight lines to the
boundaries of a rectangular window: postclipping and preclipping. Postclip-
ping means that just before each pixel on the line is drawn, it is compared with
the window limits. If it lies outside the window, the write is inhibited. In
contrast, preclipping involves determining in advance of any drawing oper-
ations which pixels in the line lie within the window. The algorithm draws
only these pixels, and makes no attempt to write to pixels outside the window.
A preclipped line may take less time to draw since no calculations are per-
formed for pixels lying outside the window. In contrast, postclipping spends
the same amount of time calculating the position of a pixel outside the win-
dow as it does calculating a pixel inside the window.

When postclipping is used, special window comparison hardware compares
the coordinates of the pixel being drawn against all four sides of the window
at once. The W=3 window-checking mode is selected, and window checking
is performed in parallel with execution of the LINE instruction, so no overhead
is added to the time to draw a pixel. However, unless this form of clipping is
used carefully, another type of overhead may become significant. For example,
in a CAD (computer-aided design) environment where only a small portion
of a system diagram is to be displayed at once, potentially a great deal of time
could be spent performing calculations for points (or entire lines) lying off-
screen.

Preclipping is generally faster than postclipping, depending on how likely a
line is to lie outside the window. The first step in preclipping a series of lines
is to identify those that lie either entirely inside or outside the window. This
is accomplished by using an "outcode" technique similar to that of the Co-
hen-Sutherland algorithm. Those lines lying entirely outside are "trivially re-
jected" and consume no more processing time. Those lines lying entirely

7-29

0100 0101 0110

Window XXMIN XXMAX

- Y = Y MIN

0010

1001 	1000 	1010

Y = Y MAX

Graphics Operations - Window Checking

within are drawn from one endpoint to the other with no clipping required.
This still leaves a third category of lines that may cross a window boundary,
and these require intersection calculations. However, this technique is pow-
erful for reducing the number of lines that require such calculations. While the
calculation of outcodes could be performed in software, this would represent
significant overhead for each line considered. The TMS34010 provides a more
efficient implementation via its CPW (compare point to window) instruction,
which compares a point to all four sides of the window at once.

The outcode technique classifies a line according to where its endpoints fall
in relation to the current clipping window. The area surrounding the window
is partitioned into eight regions, as indicated in Figure 7-11. Each region is
assigned a 4-bit code called an outcode. The outcode within the window is
00002. When an endpoint of a line falls within a particular region, it is as-
signed the outcode for that region. If the two endpoints of a line both have
outcodes 00002, the line lies entirely within the window. If the bitwise AND
of the outcodes of the two endpoints yields a value other than 00002, the line
lies entirely outside the window. Lines that fall into neither of these categories
may or may not be partially visible within the window.

Figure 7-11. Outcodes for Line Endpoints

For those lines that require intersection calculations after the outcodes have
been determined, midpoint subdivision is an efficient means of preclipping.
The object again is to ensure that drawing calculations are performed only for
pixels lying within the window. An example of the midpoint subdivision
technique is illustrated in Figure 7-12. The line AB lies partially within the
window. The first step is to determine the coordinates of the line's midpoint
at C. These are calculated as follows:

(XC, YC)
X A

2

+ XB 	

''

 A

2

+ YB)

7-30

Graphics Operations - Window Checking

X = X MIN
	

X = X MAX

(Xcyc) = 01.6±)4 YA
2 	2 I

(XCIXD) 'C(A+XC YA 	+Ye) 2 	2

Figure 7-12. Midpoint Subdivision Method

Comparing the outcodes of B and C, segment BC lies entirely outside the
window and can be trivially rejected. Segment AC still lies partially within the
window and will be subdivided again. The coordinates of point D, the mid-
point of AC, are calculated as before. Point D is determined to lie within the
window. The LINE instruction is now invoked two times, for segments DC
and DA, with D selected as the starting point in each case. For each segment
the W=2 window-checking mode is selected, but the window violation inter-
rupt is disabled. When each line crosses the window boundary, the win-
dow-checking hardware detects this and the LINE instruction aborts. In this
way the LINE instruction performs drawing calculations only for portions of
DA and DC lying within the window.

7-31

This page intentionally left blank.

8. Interrupts, Traps, and Reset

The TMS34010 supports eight interrupts, including reset. Memory addresses
>FFFF FC00 to >FFFF FFFF contain the 32 vector addresses used during in-
terrupts, software traps and reset. Each vector is a 32-bit address that points
to the beginning of the appropriate interrupt service routine.

This section includes the following topics:

Section 	 Page
8.1 Interrupt Interface Registers 	 8-3
8.2 External Interrupts 	 8-3
8.3 Internal Interrupts 	 8-4
8.4 Interrupt Processing 	 8-5
8.5 Traps 	 8-8
8.6 Illegal Opcode Interrupts 	 8-8
8.7 Reset 	 8-9

Table 8-1 and Figure 8-1 (page 8-2) summarize the TMS34010 interrupts and
their priorities. RESET has the highest priority, and the illegal opcode interrupt
has the lowest. If two interrupts are requested at the same time, the highest
priority interrupt is serviced first (assuming it is enabled). The reset and
nonmaskable interrupt cannot be disabled.

8-1

Interrupts, Traps, and Reset

Table 8 - 1. Interrupt Priorities

Int. Priority
Internal/
External Description and Source

Reset 1 I

	

• ._ 	reset. Taken when the input signal at the
:• • 	: 	pin is asserted low.

NMI 2 I Nonmaskable interrupt. Generated by a host
processor.

HI 3 I Host interrupt. Generated by a host processor.

DI 4 I Display interrupt. Generated by the TMS34010.

WV 5 I Window violation interrupt. Generated by the
TMS34010.

I NT1 6 E External interrupts 1 and 2. Generated by
external devices.

I NT2 7 E

I LLOP 8 I Illegal 	opcode 	interrupt. 	Generated 	by 	the
TMS34010 	when 	an 	illegal 	opcode 	is 	en-
countered.

Trap
Number 	A 3.20Re

0 	>rr 	::L .
1 	>FFFF I- I-Co
2 	>FFFF FFAO
3 	>FFFF FF80
4 	>FFFF FF60
5 	>FFFF FF40
8 	>FFFF FF20
7 	>FFFF Fri0

>FFFF "CU..
9 	>FFFF FEE:

10 	>FFFF
11 	>FFFF :
12 	>FFFF
13 	>FFFF
14 	>FFFF • . .
15 	>FFFF
16 	>FFFF
17 	>FFFF FCCO
18 	>FFFF F.•
19 	>FFFF
20 	>FFFF
21 	>FFFF FD4.)
22 	>FFFF h
23 	>FFFF
24 	>FFFF I • •
25 	>FFFF
26 	>FFFF
27 	>FFFF F •
28 	>FFFF 	1 ,,,
29 	>FFFF
30 	>FFFF t- L2(
31 	>FFFF HOC

Reset
External Interrupt 1
External Interrupt 2

to.n Maskable Interrupt
Fins! Interrupt
Dmpay Interrupt
Window Violation

Illegal Opcode

Figure 8-1. Vector Address Map

8-2

Interrupts, Traps, and Reset - Registers/External Interupts

8.1 Interrupt Interface Registers

Two registers, a subset of the I/O registers discussed in Section 6, monitor and
mask interrupt requests. These registers are summarized below; for more in-
formation, please refer to the register descriptions in Section 6.

The interrupt enable register, INTENB, contains the interrupt mask that se-
lectively enables various interrupts. An interrupt is enabled when the status
IE (global interrupt enable) bit and the appropriate bit in the INTENB register
are both set to 1.

• X1E (bit 1) enables external interrupt 1.

• X2E (bit 2) enables external interrupt 2.

• HIE (bit 9) enables the host interrupt.

• DIE (bit 10) enables the display interrupt.

• WVE (bit 11) enables the window violation interrupt.

The interrupt pending register, INTPEND, indicates which interrupts are cur-
rently pending. When an interrupt is requested, the appropriate bit in the
INTPEND register is set.

• X1P (bit 1) indicates that external interrupt 1 is pending.

• X2P (bit 2) indicates that external interrupt 2 is pending.

• HIP (bit 9) indicates that the host interrupt is pending.

• DIP (bit 10) indicates that the display interrupt is pending.

• WVP (bit 11) indicates that the window violation interrupt is pending.

8.2 External Interrupts

External interrupt requests are received via local interrupt pins LINT1 and
LINT2. Each of the two external interrupt pins is dedicated to an individual
interrupt, allowing two independent interrupt requests to be generated. (The
pins are not encoded.) The local interrupt pins are level-sensitive, active-low
inputs. Once an interrupt request has been initiated by driving an interrupt
pin low, it must remain low until the GSP can respond to the interrupting de-
vice. This is necessary to ensure that the GSP detects the request. If the active
level is maintained after returning from the interrupt service routine, however,
the interrupt will be taken once again.

Signals input to the local interrupt pins are assumed to be asynchronous to the
GSP local clocks, and are synchronized internally by the GSP before they are
processed. If two external interrupt requests are active at the same time, INT1
will be serviced first. Table 8-2 shows the interrupt trap vectors for INT1 and
INT2.

Table 8-2. External Interrupt Vectors

Name
Input
Pin

Vector
Address

INT1 LINT1 >FFFF FFC0

INT2 LINT2 >FFFF FFAO

3-3

Interrupts, Traps, and Reset - Internal Interrupts

8.3 Internal Interrupts

Several internal conditions are associated with specific interrupts. Table 8-3
summarizes these interrupts. If two internal interrupts are requested simul-
taneously, or if two or more internal interrupt requests are pending, the highest
priority interrupt will be serviced first; NMI has the highest priority, followed
by HI, DI, and WV. When internal and external interrupts are pending, the
internal interrupts are serviced first (with the exception of the ILLOP inter-
rupt)

Table 8-3. Interrupts Associated with Internal Events

Name Function Level
Vector

Location Description

NMI Nonmaskable
interrupt

8 >FFFF FEED The host processor sets the NMI bit in the
HSTCTL register to a 1.

HI Host interrupt 9 >FFFF FECO The host processor sets the INTIN bit in the
HSTCTL register to a 1.

DI Display interrupt 10 >FFFF FEAO A particular horizontal line on the video display
is being refreshed. The line number is specified
in the DPYINT register.

WV Window violation
interrupt

11 >FFFF FE80 An attempt has been made to move a pixel to a
destination location that lies inside or outside a
specified window, depending on the selected
windowing mode.

ILLOP Illegal operand
interrupt

30 >FFFF FC20 See Section 8.6.

The nonmaskable interrupt, or NMI, occurs when a host processor requests
an interrupt by writing a 1 to the NMI bit in the HSTCTL register. This inter-
rupt cannot be disabled, and will always occur as soon as possible following
the request. The NMI will be delayed only for completion of an instruction
already in progress, or until the next interruptible point of an interruptible in-
struction such as a PIXBLT is reached.

The NMI mode bit in the HSTCTL register determines whether or not context
information is saved on the stack when a nonmaskable interrupt occurs:

• If NMIM = 0, the PC and ST are pushed on the stack before the interrupt
is serviced.

• If NMIM = 1, nothing is saved on the stack before the interrupt is ser-
viced.

The display interrupt (DI) is used to coordinate processing activity with the
refreshing of particular areas of the display. The display interrupt request be-
comes active when a particular display line, specified in the DPYINT register,
is output to the monitor screen. At the start of each horizontal blanking period,
the VCOUNT register is compared to the DPYINT register. When the vertical
count value in VCOUNT = DPYINT, a display interrupt request is generated.
If enabled, the interrupt is taken.

8 - 4

Interrupts, Traps, and Reset - Interrupt Processing

8.4 Interrupt Processing

An interrupt is said to be pending if it has been requested but has not yet been
processed. If a pending interrupt is enabled, and no interrupt of higher priority
is pending at the same time, the interrupt is accepted by the GSP at the end
of the current instruction (or at the next interruptible point in the middle of a
PIXBLT or FILL instruction). When the GSP takes an interrupt, it performs the
following actions:

1) The GSP pushes the PC on the stack.

2) The GSP pushes the ST on the stack. PIXBLT and FILL instructions that
are interrupted by external, host, and nonmaskable (if NMIM=0) inter-
rupts set the PBX bit in the ST before pushing the ST.

3) The GSP modifies the contents of the ST as follows:

3130 29 28 27 28 25 24
(0 o 0 010 01010

23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 	7 8 	5 4 3 2 	1 0
0 010 10 0 0 0 0 00 0 010 10 0 0 0 01011 0 0 0 0 1

X FE1 \ PB 	IE

Reserved

4) The GSP fetches the interrupt vector from external memory into the PC.

5) The GSP begins executing the instruction pointed to by the new PC
value.

Reserved ry FS1 F60

In step 5, the GSP resumes instruction execution at the entry point of the in-
terrupt service routine. At the time the first instruction of the service routine
begins execution, the new status register contents imply the following condi-
tions:

• All interrupts are disabled (except NMI and reset)

• Field 0 is 16 bits long and is zero extended

• Field 1 is 32 bits long and is zero extended

The service routine can allow itself to be interrupted by loading a new inter-
rupt-enable mask into the INTENB register and setting status bit IE to 1. The
INTENB mask value is selected to determine which interrupts can interrupt the
currently executing service routine. The service routine can also load new field
sizes if values other than the defaults are required.

The last instruction in any interrupt service routine must be RETI (return from
interrupt). Unlike the RETS (return from subroutine) instruction, which only
pops the PC from the stack, RETI pops both the ST and PC. This restores the
original state of the interrupted program so that execution can proceed from
the point at which the interrupt occurred.

8-5

Interrupts, Traps, and Reset - Interrupt Processing

8.4.1 Interrupt Latency

An external interrupt, host interrupt request, or NMI request will be delayed
by an amount of time that depends on the instruction in progress and on the
local memory bus traffic at the time of the request.

The delay from an interrupt request to the time that the first instruction of the
interrupt service routine begins execution is the sum of six potential sources
of delay:

1) Interrupt request recognition
2) Screen-refresh cycle
3) DRAM-refresh cycle
4) Host-indirect cycle
5) Instruction interrupt
6) Interrupt context switch

In the best case, items 2 through 5 cause no delay. The minimum delay due
to items 1 and 6 is 17 machine states.

• The interrupt request recognition delay is the time required for a
request to be internally synchronized to the local clock. In the case of
an external interrupt request, the delay is measured from the high-to-low
transition of the INT1 or INT2 pin. In the case of a host interrupt or NMI
request, the delay is measured from completion of the host's write to the
INTIN or NMI pin.

• The screen-refresh and DRAM - refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay an interrupt.

• The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends on the application. The delay due to
a single host-indirect cycle is two machine states, assuming no wait
states, but multiple host-indirect cycles occurring within a brief period
of time could cause additional delays. Theoretically, a fast host proces-
sor could generate so many local memory cycles that the GSP would be
prevented from servicing interrupts for an indefinite period.

• The instruction interrupt time refers to the time required for an in-
struction that was already executing at the time the interrupt request was
received to either complete or to reach the next interruptible point in an
instruction (such as a PIXBLT, FILL, or LINE).

• The interrupt context switch operation pushes the PC and ST onto
the stack, and fetches the PC for the interrupt service routine from the
appropriate vector in memory.

8-6

Operation
Latency (n States)

Max Min

Instruction interrupt See Table 8-5 0

DRAM-refresh cycle 0 2
See Note 2

Screen-refresh cycle 0 2
See Note 2

Host-indirect cycle See Note 1 0

Interrupt recognition 1 2

Interrupt context switch 16 16

Interrupts, Traps, and Reset - Interrupt Processing

Table 8-4 shows the minimum and maximum times for each of the six oper-
ations listed. The interrupt latency is calculated as the sum of the numbers in
the six rows. In the best case, the interrupt latency is only 17 machine states.
The worst-case latency can be as high as 22 machine states plus the delays
due to host-indirect cycles and instruction completion. Table 8-5 shows in-
struction interrupt times for some of the longer, non interruptible instructions.
Table 8-5 also shows the instruction completion time for a JRUC instruction
that jumps to itself - the GSP may be executing this instruction if the software
is simply waiting for an interrupt.

Table 8-4. Six Sources of Interrupt Delay

Notes: 1) The latency due to host-indirect cycles depends on both the
hardware system and the application. Theoretically, a host pro-
cessor could generate so many local memory cycles that the GSP
could effectively be prevented from servicing interrupts. The delay
due to a single host-indirect cycle is two machine states, assuming
no wait states.

2) DRAM-refresh and screen-refresh cycle times assume no wait
states.

3) Context switch time assumes that the SP is aligned to a word
boundary; that is, the four LSBs of the SP are Os. If the SP is not
aligned, the delay is 28 states.

Table 8-5. Sample Instruction Completion Times

Instruction
Worst-Case Instruction

Interrupt Time (In States)

SP Aligned SP Not Aligned

DIVS AO,A2 43 43

MMFM SP,ALL 72 144

MMTM SP,ALL 73 169

Wait: JRUC wait 1 1

Notes: 1) The worst-case instruction interrupt time is equal to the instruction
execution time less one machine state (except for PIXBLTs, FILLs,
and LINE).

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

8-7

Interrupts, Traps, and Reset - Traps/Illegal Opcode Interrupts

8.5 Traps

The TMS34010 supports 32 software traps, numbered 0 through 31. Soft-
ware traps behave similarly to interrupts, except that they are initiated when
the GSP executes a TRAP instruction. Unlike an interrupt, a software trap
cannot be disabled.

When the GSP executes a TRAP instruction, it performs the same sequence
of actions that it performs for interrupts. The TRAP 1 through TRAP 31 in-
structions cause the status register and the PC to be pushed onto the stack.
TRAP 0 is similar to a hardware reset because it does not push the status re-
gister or PC onto the stack; it differs from a hardware reset because it does not
cause the GSP's internal registers to be set to a known initial state. TRAP 8
is similar to an NMI interrupt, except that the NMIM (NMI mode) bit in the
HSTCTLL register has no effect on instruction execution; the status register
and PC are stacked unconditionally when TRAP 8 is executed.

A 32-bit vector address is associated with each software trap. To determine
the vector address for a trap number N, where N = 0 through 31, subtract
32N from >FFFF FFEO. Figure 8-1 on page 8-2 shows the vector addresses
for the software traps.

8.6 Illegal Opcode Interrupts

The GSP recognizes several reserved opcodes as illegal. When one of these
opcodes is encountered in the instruction stream, the GSP will trap to vector
number 30, located at memory address >FFFF FC20. An illegal opcode is si-
milar in effect to a TRAP 30 instruction. The illegal opcode interrupt cannot
be disabled. Table 8-6 lists ranges of illegal opcodes.

Table 8 - 6. Illegal Opcodes Ranges

>0000 through >00FF
>0200 through >02FF
>0400 through >04FF
>0800 through >08FF
>0A00 through >OAFF
>0000 through >OCFF
>0E00 through >OEFF
>3400 through >37FF
>7000 through >7FFF
>9E00 through >9FFF
>BE00 through >BFFF
>D800 through >DEFF
>FE00 through >FFFF

8-8

Interrupts, Traps, and Reset - Reset

8.7 Reset

Reset puts the TMS34010 into a known initial state. It is entered when the
input signal at the RESET pin is asserted low. RESET must remain active low
for a minimum of 40 local clock (LCLK1 and LCLK2) periods to ensure that
the TMS34010 has sufficient time to establish its initial internal state.

While RESET remains asserted, all outputs are in a known state, no DRAM-re-
fresh cycles take place, and no screen-refresh cycles are performed.

At the low-to-high transition of the RESET signal, the state of the HCS input
determines whether the GSP will be halted or begin executing instructions.
The GSP may be in one of two modes, host-present or self-bootstrap mode.

• Host-Present Mode

If HCS is high at the end of reset, GSP instruction execution is halted and
remains halted until the host clears the HLT (halt) bit in HSTCTL (host
control register). Following reset, the eight RAS-only refresh cycles re-
quired to initialize the dynamic RAMs are performed automatically by the
GSP memory control logic. As soon as the eight RAS-only cycles are
completed, the host is allowed access to GSP memory. At this time, the
GSP begins to automatically perform DRAM refresh cycles at regular
intervals. The GSP remains halted until the host clears the HLT bit. Only
then does the GSP fetch the level-0 vector address from location
>FFFF FFEO and begin executing its reset service routine.

• Self-Bootstrap Mode

If I-ICS is low at the end of reset, the GSP first performs the eight
RAS-only refresh cycles required to initialize the DRAMs. Immediately
following the eight RAS-only cycles, the GSP fetches the level-0 vector
address from location >FFFF FFEO, and begins executing its reset ser-
vice routine.

Unlike other interrupts and software traps, reset does not save previous ST or
PC values. This is because the value of the stack pointer just before a reset is
generally not valid, and saving its value on the stack is unnecessary. A TRAP
0 instruction, which uses the same vector address as reset, similarly does not
save the ST or PC values.

8.7.1 Asserting Reset

A reset is initiated by asserting the RESET input pin at its active-low level. To
reset the GSP at power up, RESET must remain active low for a minimum of
40 local clock periods after power levels have become stable. At times other
than power up, the GSP is also reset by holding RESET low for a minimum of
40 clock periods. The 40-clock interval is required to bring GSP internal cir-
cuitry to a known initial state. While RESET remains asserted, the output and
bidirectional signals are driven to a known state.

The GSP drives its RAS signal inactive high as long as RESET remains low. The
specifications for certain DRAM and VRAM devices, including the TMS4161,
TMS4164 and TMS4464 devices, require that the RAS signal be driven inac-
tive-high for 100 microseconds during system reset. Holding RESET low for

8-9

Interrupts, Traps, and Reset - Reset

150 microseconds will cause the RAS signal to remain high for the 100 mi-
croseconds required to bring the memory devices to their initial states.
DRAMs such as the TMS4256 specify an initial RAS high time of 200 micro-
seconds, i•- 11: ring that RESET be held low for 250 microseconds. In general,
holding RI • ' low for t microseconds ensures that RAS remains high initially
for t - 50 microseconds.

8.7.2 Suspension of DRAM-Refresh Cycles During Reset

An active-low level at the RESET pin is con i ■ l.•••l to be a power-up condition,
and DRAM refresh is not performed until ••• • goes inactive high. Conse-
quently, the previous contents of the local memory may not be valid after a
reset.

8.7.3 Initial State Following Reset

While the RESET pin is asserted low, the GSP's output and bidirectional pins
are forced to the states listed in Table 8-7.

Table 8-7. State of Pins During a Reset

Outputs Driven
To High level

Outputs Driven
To Low Level

Bidirectional
Pins Driven to

High Impedance

DDOUT BLANK HSYNC
Y VSYNC
• HDO-HD15

LADO-LAD15
TR/QE

RAS
CAS

T./
HINT

Immediately following reset, all I/O registers are cleared (set to >0000), with
the possible exception of the HLT bit in the HSTCTL register. The HLT bit is
set to 1 if HCS is high just before the low-to-high transition of RESET.

Just before execution of the first instruction in the reset routine, the
TMS34010's internal registers are in the following state:

• General-purpose register files A and B are uninitialized.

• The ST is set to >0000 0010.

• The PC contains the 32-bit vector fetched from memory address
>FFFF FFEO.

The instruction cache is in the following state at this time:

• The SSA (segment start address) registers are uninitialized.

• The LRU (least recently used) stack is set to the initial sequence 0,1,2,3,
where 0 occupies the most-recently-used position, and 3 occupies the
least-recently-used position.

• All P (present) flags are cleared to Os.

8 - 10

Interrupts, Traps, and Reset - Reset

8.7.4 Activity Following Reset

Immediately following the low-to-high transition of RESET, the GSP performs
a series of eight RAS-only memory cycles to bring the DRAMs and VRAMs to
their initial operating states. These cycles are completed before any accesses
of the GSP's memory (by either the GSP or host processor) are allowed to
occur. If the host processor attempts to access the GSP memory indirectly
before the eight RAS-only cycles have completed, it will receive a not-ready
signal from the GSP until the cycles have completed. The eight RAS-only cy-
cles occur regardless of the initial value to which the HLT bit in the HSTCTL
register is set.

Each of the eight RAS-only cycles is a standard DRAM-refresh cycle. The RF
bus status signal output with the row address is active low. The row address
is all Os.

Following the eight RAS-only cycles, the GSP automatically begins to initiate
a new DRAM-refresh cycle every 32 GSP local clock cycles. The first DRAM
refresh cycle begins approximately 32 local clock periods after the end of reset.
A DRAM-refresh cycle will continue to be initiated every 32 GSP clock cycles
until the DRAM-refresh rate is changed by the GSP or host processor.

The GSP is configured by means of an external signal input on the HCS pin to
either:

• Begin executing instructions immediately after reset is completed (self-
bootstrap mode)
or

• Halt until the host processor instructs it to begin executing (host-present
mode)

8.7.4.1 Self - Bootstrap Mode

In self-bootstrap mode, the GSP begins executing instructions immediately
following reset. This mode is typically used in a system in which the reset
vector and reset service routine are contained in nonvolatile memory, such as
a bootstrap ROM. This type of system does not necessarily require a host
processor, and the GSP may be responsible for performing host processor
functions for the system.

The GSP is configured in self-bootstrap mode when the FICS pin is low just
before the low-to-high transition of RESET. The low HCS level forces the HLT
bit to 0. Immediately following the end of reset and the eight RAS-only cycles,
the GSP fetches the level-0 vector address and begins executing the reset in-
terrupt routine.

At the low-to-high transition of RESET, the FICS input is internally delayed
before being checked to determine how to set the HLT bit. In a system with-
out a host processor, for instance, this permits the HCS and RESET pins to be
tied together, eliminating the need for additional external logic.

Transitions of the HCS and RESET signals are assumed to be asynchronous
with respect to the GSP local clock. HCS and RESET are internally synchro-
nized to the local clock by being held in latches for at least one clock period
before being used by the GSP. The delay through the synchronizer latch is
from one to two local clock periods, depending on the phase of the signal
transitions relative to the clock. To permit the HCS and RESET pins to be wired

8-11

Interrupts, Traps, and Reset - Reset

together, GSP on-chip logic delays the HCS low-to-high transition to ensure
that it is detected after the RESET low-to-high transition. The level of the
delayed FICS signal at the time the low-to-high RESET transition is detected
determines the setting of the HLT bit.

8.7.4.2 Host-Present Mode

Host-present mode assumes that a host processor is connected to the GSP's
host interface pins. In this mode, the GSP local memory can be composed
entirely of RAM (no ROM). Following reset, the host processor must down-
load the initial program code, interrupt vectors, and so on, before allowing the
GSP to begin executing instructions.

The GSP is configured in host-present mode as follows. On the trailing edge
of RESET, the HCS (host interface chip select) input is sampled. If the HCS pin
is inactive high, internal logic forces the HLT (halt) bit to a 1. In this fashion,
the GSP is automatically halted following reset, and will not begin execution
of its reset service routine until the host processor loads a 0 to HLT. In the
meantime, the host processor is able to load the memory and I/O registers with
the appropriate initial values before the GSP begins executing instructions.
This may include writing the reset vector and reset service routine into the
GSP's memory, for example.

No additional external logic is required to force HCS high before the low-to-
high transition of RESET. The simple external decode logic typically used will
drive the HCS input active low only when one of the GSP's host interface re-
gisters is addressed by the host processor. Assuming that the host processor
is not actively chip-selecting the GSP at the end of reset, FICS is high.

8-12

9. Screen Refresh and Video Timing

The TMS34010 generates the synchronization and blanking signals used to
drive a video screen in a graphics system. The GSP can be programmed to
support a variety of screen resolutions and interlaced or non interlaced video.
If desired, the GSP can be programmed to synchronize to externally generated
video signals. The GSP also supports the use of video RAMs by generating
the memory-to-shift-register cycles necessary to refresh a screen.

This section includes the following topics:

Section Page
9.1 Video Timing Signals 	 9-2
9.2 Screen Sizes 	 9-3
9.3 Video Timing Registers 	 9-4
9.4 Horizontal Video Timing 	 9-6
9.5 Vertical Video Timing 	 9-8
9.6 Display Interrupt 	 9-14
9.7 Dot Rate 	 9-15
9.8 External Sync Mode 	 9-1 6
9.9 Video RAM Control 	 9-19

9-1

Screen Refresh and Video Timing - Video Timing Signals

9.1 Video Timing Signals

The TMS34010 generates horizontal sync, vertical sync, and blanking signals
(HSYNC, VSYNC, and BLANK) on chip. The GSP's video timing logic is driven
by the video input clock (VCLK). The sync and blanking signals control the
horizontal and vertical sweep rates of the screen and synchronize the screen
display to data output by the VRAMs.

HSYNC is the horizontal sync signal used to control external video circuitry.
It may be configured as an input or an output via the DXV and HSD
bits in the DPYCTL register. When DXV=0 and HDS=0, external
video is selected and HSYNC is an input. Otherwise, HSYNC is an
output.

VSYNC is the vertical sync signal used to control external video circuitry. It
may be configured as an input or an output via the DXV bit in the
DPYCTL register. If DXV=1, internal video is selected and VSYNC is
an output. If DXV=0, external video is selected and VSYNC is an in-
put.

BLANK is used to turn off a CRT's electron beam during horizontal and
vertical retrace intervals. The signal output at the BLANK pin is a
composite of the internally generated horizontal and vertical blank-
ing signals. BLANK can also be used to control starting and stopping
of the VRAM shift registers.

VCLK 	is derived from the dot clock of the external video system. VCLK
drives the internal video timing logic.

9 - 2

Screen Refresh and Video Timing - Screen Sizes

9.2 Screen Sizes

The TMS34010's 26-bit word address provides direct addressing of up to 128
megabytes of external memory. This address reach supports very high-reso-
lution displays. For example, the designer of a large TMS34010-based system
could decide to use the lower half of the address space for display memory,
and use the upper half for storing programs and data. Half of this memory
space, for example, could be used as a display memory, and the remaining
memory can be used for programs and data. The 64-megabyte display mem-
ory in this example could support the following display sizes:

• 8192 by 4096 pixels at 16 bits per pixel

• 8192 by 8192 pixels at 8 bits per pixel

• 16,384 by 8192 pixels at 4 bits per pixel

• 16,384 by 16,384 pixels at 2 bits per pixel

• 32,768 by 16,384 pixels at 1 bit per pixel

The video timing registers also support high-resolution displays. The 16-bit
vertical counter register, VCOUNT, directly supports screen lengths of up to
65,536 lines. The 16-bit horizontal counter register, HCOUNT, does not di-
rectly limit the horizontal resolution. Each horizontal line can be programmed
to be up to 65,536 VCLK (video clock) periods long. The VCLK period,
however, is an arbitrary number of dot-clock periods in length, depending on
the external divide-down logic used to produce the VCLK signal from the dot
clock. Thus, the number of pixels per line supported by the GSP horizontal
timing registers is limited only by the amount of video memory that is present.

9-3

Screen Refresh and Video Timing - Video Timing Registers

9.3 Video Timing Registers

The video timing registers are a subset of the I/O registers described in Section
6. The values in the video timing registers control the video timing signals.
These registers are divided into two groups:

• Horizontal timing registers control the timing of the HSYNC signal
and the internal horizontal blanking signal.

HCOUNT counts the number of VCLK periods per horizontal scan
line.

HESYNC 	specifies the point in a horizontal scan line at which the
HSYNC signal ends.

HEBLNK 	specifies the endpoint of the horizontal blanking interval.

HSBLNK 	specifies the starting point of the horizontal blanking in-
terval.

HTOTAL 	defines the number of VCLK periods allowed per horizon-
tal scan line.

• Vertical timing registers control the timing of the VSYNC signal and
the internal vertical blanking signal.

VCOUNT 	counts the horizontal scan lines in the screen display.

VESYNC 	specifies the endpoint of the VSYNC signal.

VEBLNK 	specifies the endpoint of the vertical blanking interval.

VSBLNK 	specifies the starting point of the vertical blanking interval.

VTOTAL 	specifies the value of VCOUNT at which VSYNC may be-
gin.

Figure 9-1 illustrates the relationship between the horizontal and vertical tim-
ing signals in the construction of a two-dimensional raster display pattern.
The vertical sync and blanking signals span an entire frame. The horizontal
sync and blanking signals span a single horizontal scan line within the frame.
HBLNK and VBLNK are the internal horizontal and vertical blanking signals that
combine to form the BLANK signal output. The display is active (not blanked)
only when HBLNK and VBLNK are both inactive high.

9-4

Screen Refresh and Video Timing - Video Timing Registers

Start
New

Frame

	

► VCOUNT=0 	►

	

VESYNC 	

	

VEBLNK 	

VSBLNK

VTOTAL

Horizontal Internal ---•i

L HSYNC

LL HBLNK

i 1-1

	

i•Ji 	j —
•: 	I 	.. 	.
• i

Ver ray
Inte•.a

Start New Line

Antivq.
DleplaY

Figure 9-1. Horizontal and Vertical Timing Relationship

Horizontal front porch refers to the interval between the beginning of hori-
zontal blanking and the beginning of the horizontal sync signal. Horizontal
back porch is the interval between the end of the horizontal sync signal and
the end of horizontal blanking.

Vertical front porch refers to the interval between the beginning of vertical
blanking and the beginning of the vertical sync signal. Vertical back porch is
the interval between the end of the vertical sync signal and the end of vertical
blanking.

9-5

Screen Refresh and Video Timing - Horizontal Video Timing

9.4 Horizontal Video Timing

The following discussion applies to internally generated video timing (the DXV
and HSD bits in the DPYCTL register are set to 1 and 0, respectively). Hori-
zontal timing signals are the same for interlaced and noninterlaced video.

The HESYNC, HEBLNK, HSBLNK, and HTOTAL registers control horizontal
signal timing as shown in Figure 9-2. All horizontal timing parameters are
specified as multiples of VCLK. The time between the start of two successive
HSYNC pulses is specified by HTOTAL. HCOUNT counts from 0 to the value
in HTOTAL and then repeats. The value in HTOTAL represents the number
of VCLK periods, minus one, per horizontal scan line. The value in HESYNC
represents the duration of the sync pulse, minus one. The values in HEBLNK
and HSBLNK specify the beginning and end points of the horizontal blanking
interval.

HBLNK

	

I Horz. 1 	I Horz. I Horz.
sync S

	

1 Porch 1 	I Porch I

	

-----16 	 7-1

	

rIESYNC+11 	I

	

1 4 	101 	1

14—I HEBLNK+1 —oil

HSYNC

HSBLNK+1

	 HTOTAL+1 	01

Figure 9-2. Horizontal Timing

Figure 9-3 shows the internal logic used to generate the horizontal timing
signals. HCOUNT is incremented once each VCLK period (on the high-to-low
transition) until it equals the value in HTOTAL. On the next VCLK period
following HCOUNT=HTOTAL, HCOUNT is reset to 0, and begins counting
again.

The limits of the horizontal sync pulse are defined by the values in HESYNC
and HTOTAL. HSYNC is driven active low when HCOUNT=HTOTAL; it is
driven inactive high when HCOUNT=HESYNC. After HCOUNT becomes
equal to HTOTAL or HESYNC, there is a one-clock delay before the
active/inactive transition takes place at the HSYNC pin.

The internal HBLNK signal is driven active low after HCOUNT=HSBLNK; it is
driven inactive high after HCOUNT=HEBLNK. HBLNK is logically ORed (ne-
gative logic) with VBLNK to produce the BLANK signal; that is, BLANK goes low
when either HBLNK or VBLNK is low. After HCOUNT becomes equal to
HSBLNK or HEBLNK, there is a one-clock delay before the transition takes
place at the BLANK pin.

9-6

HTOTAL HESYNC

VCLK HCOUNT

I Comparator
NI

Comparator

LI

•■•

R Comparator Comparator

S

	 R 	 HSYNC

HBLNK

Screen Refresh and Video Timing - Horizontal Video Timing

1115LNK I 	I HEBLNK

Figure 9-3. Horizontal Timing Logic - Equivalent Circuit

Figure 9-4 illustrates horizontal signal generation. 	In this example,
HTOTAL= N, HSBLNK= N-2, HESYNC=2, and HEBLNK=4. Signal transitions
at the HSYNC and BLANK pins occur at high-to-low VCLK transitions. After
HCOUNT becomes equal to HTOTAL, HSBLNK, HESYNC, or HEBLNK, there
is a one-clock delay before the transition takes place at the HSYNC or BLANK
pin.

When HCOUNT=HSBLNK (shortly before the end of the horizontal scan),
horizontal blanking begins. At this time, the DIP (display interrupt) bit in the
INTPEND register will be set to 1 if VCOUNT=DPYINT. The next screen-re-
fresh cycle may also occur at this time - the GSP can be programmed to refresh
the screen after one, two, three, or four scan lines.

VCLK

HCOUNT

HSYNC

BLANK

CDm®C. 9 4E9 4.11CD CD AD 461 aPICD 4113I IC*

Horizontal 	Horizontal 	Horizontal
Front Porch 	Sync Pulse 	Back Porch

HSBLNK = N-2 HTOTAL = N
HESYNC = 2 	HEBLNK = 4

Figure 9 -4. Example of Horizontal Signal Generation

9-7

Screen Refresh and Video Timing - Vertical Video Timing

9.5 Vertical Video Timing

The following discussion applies to internally generated video timing (the DXV
bit in the DPYCTL register is set to 1).

The VESYNC, VEBLNK, VSBLNK, and VTOTAL registers control vertical signal
timing as shown in Figure 9-5. All vertical timing parameters are specified as
multiples of the horizontal sweep time H, where

H = (HTOTAL + 1) x (VCLK period)

VTOTAL specifies the time interval between the start of two successive vertical
sync pulses; this value is the number of H intervals, less one, in each vertical
frame. VESYNC represents the duration of the VSYNC pulse, less one, in each
vertical frame. VSYNC's high-to-low and low-to-high transitions coincide with
high-to-low transitions at the HSYNC pin.

VSBLNK and VEBLNK specify the starting and ending points of vertical
blanking. Blanking begins when VTOTAL=VSBLNK and ends when
VTOTAL=VEBLNK. Assuming that horizontal blanking is active at the start
of each HSYNC pulse, transitions of the internal vertical blanking signal,
VBLNK, occur while horizontal blanking is active.

VBLNK

I Vert. I Vert. 	I Vert.
I Front I 	I Back Syno I Porch I 	 Porch

	

\ft 	
ESYNC +11

la 	'1 	I

VEBLNK+1

14 	

VSBLNK+1

	 VTOTAL+1

Figure 9-5. Vertical Timing for Noninterlaced Display

Figure 9-6 shows the internal logic that generates the vertical timing signals.
VCOUNT increments at the beginning of each HSYNC pulse until it equals the
value in VTOTAL. When VCOUNT=VTOTAL, VCOUNT is reset to 0 and be-
gins counting again. VSYNC is driven active low after VCOUNT=VTOTAL; it
is driven inactive high after VCOUNT=VESYNC. The internal VBLNK signal is
driven active low after VCOUNT=VSBLNK; it is driven inactive high after
VCOUNT=VEBLNK. VBLNK is logically ORed (negative logic) with HBLNK to
produce the BLANK signal. This description applies to a noninterlaced display.
The vertical timing changes slightly for an interlaced display.

VSYNC

9-8

Comparator

VTOTAL VESYNC

HSYNC VC OUNT

R CT) VBLNK

8
'Sr \r

R a 	VSYNC Comparator Comparator
/-1

'Sr
Comparator

V ULM< I NK

.................

...............................

...

............

......
........

2

3

4

5

6

Screen Refresh and Video Timing - Vertical Video Timing

Figure 9-6. Vertical Timing Logic - Equivalent Circuit

9.5.1 Noninterlaced Video Timing

Noninterlaced scan mode is selected by setting the NIL bit in the DPYCTL
register to 1. In this mode, each video frame consists of a single vertical field.
Figure 9-7 shows the path traced by the electron beam on the screen. Box A
shows the vertical retrace, which is an integral number of horizontal scan lines
in duration. Box B shows the active portion of the frame. Solid lines represent
lines that are displayed; dashed lines are blanked.

Monitor Screen
	

Monitor Screen

(a)
	

(b)

Figure 9 - 7. Electron Beam Pattern for Noninterlaced Video

9-9

Screen Refresh and Video Timing - Vertical Video Timing

Figure 9-8 illustrates the video timing signals that generate the display. In this
example, VSBLNK=8, VTOTAL=9, VESYNC=1, and VEBLNK=2. (In actual
applications, much larger values are used; these values were chosen for illus-
tration only.) Each horizontal scan line is preceded by a horizontal retrace.
The horizontal scan pattern repeats until VCOUNT=VTOTAL; VCOUNT is then
reset to 0, and vertical retrace returns the beam to the top of the screen. BLANK
is active low during both horizontal and vertical retrace intervals.

VCOUNT is incremented each time HCOUNT is reset to 0 at the end of a scan
line. The VSYNC output b.•.1 ns when VCOUNT=VTOTAL, coinciding with the
start of HSYNC. The VSY;. 7 output ends when VCOUNT=VESYNC; this also
coincides with the start of an HSYNC pulse.

The starting screen-refresh address is loaded from DPYSTRT into DPYADR
at the end of the last active horizontal scan line preceding vertical retrace. This
load is triggered when HCOUNT= HSBLNK and VCOUNT=VSBLNK.

VCOUNT

HSYNC

HBLNK

VSYNC

VBLNK

Vertical
Sweep

Horizontal
Sweep

00000000000€1111)

14 Si "4 	a

	

.!ALNK = 8
	

VTOTAL = 9

	

= 1
	

VEBLNK = 2

Figure 9-8. Noninterlaced Video Timing Waveform Example

9-10

Screen Refresh and Video Timing - Vertical Video Timing

9.5.1.1 Interlaced Video Timing

Interlaced scan mode is selected when the NIL bit in the DPYCTL register is
set to 0. In this mode, each display frame is composed of two fields of hori-
zontal scan lines. The display consists of alternate lines from the two fields.
This doubles the display resolution while only slightly increasing the frequency
with which data is supplied to the screen.

Figure 9-9 illustrates the path traced by the electron beam on the screen.
Figure 9-10 shows the timing waveforms used to generate the display in Fig-
ure 9-9. In this example, VSBLNK=6, VTOTAL=7, VESYNC=1, and
VEBLNK=2. (In actual applications, much larger values are used; these values
were chosen for illustration only.)

In interlaced mode, two separate vertical scans are performed for each frame -
one for the even line numbers (even field) and one for the odd line numbers
(odd field). The even field is scanned first, starting at the top left of the screen
(see Figure 9-9 b). When VCOUNT=VTOTAL, the vertical retrace returns the
beam to the top of the screen, and the odd field is scanned (Figure 9-9 d).
The electron beam starts scanning the odd and even fields at different points.
The reason for this is illustrated in Figure 9-10. The end of the VSYNC pulse
that precedes the even field coincides with start of an HSYNC pulse; however,
the VSYNC pulse that precedes the odd field ends exactly halfway between two
HSYNC pulses

Even Field Odd Field

Mr..r..to. Screen
	

Monito• Screen
	

Monitor Screen
	

Monitor Screen

w":'•••••••••.....
.....

.......

.........
........

(a)
	

(b)
	

(c)
	

(d)

Juxtaposition of even
and odd fields on
monitor screen.

Figure 9 - 9. Electron Beam Pattern for Interlaced Video

9-11

Screen Refresh and Video Timing - Vertical Video Timing

In interlaced mode, video timing logic operation is altered so that the odd field
begins when HCOUNT= HTOTAL/2. The beam is thus positioned so that
horizontal scan lines in the odd field fall between horizontal scan lines in the
even field. To place each line of the odd field precisely between two lines of
the even field, load HTOTAL with an odd number.

The transition from d to a in Figure 9-9 shows that the vertical retrace at the
end of the odd field begins at the end of a horizontal scan line; that is, it co-
incides with the start of an HSYNC pulse, which results from the condition
HCOUNT= HTOTAL. The VSYNC pulse duration is an integral number of hor-
izontal scan retrace intervals. When vertical retrace ends and the active portion
of the next even field begins, the beam is positioned at the beginning of a
horizontal scan line.

Horizontal timing is similar for interlaced and noninterlaced displays.
HCOUNT is reset to 0 at the end of each horizontal scan line. A screen-refresh
cycle begins before the end of the line, coinciding with the start of the hori-
zontal blanking interval. Assuming that the starting corner of the display is the
upper left corner, the DUDATE field of the DPYCTL register is added to the
screen-refresh address (SRFADR in the DPYADR register) to generate the row
address for the next screen-refresh cycle. In interlaced mode, the DUDATE
value must be twice that of the value needed to produce the same display in
noninterlaced mode (that is, two times the difference in addresses between
consecutive scan lines). This causes the screen refresh to skip alternate lines
during the odd and even fields.

At the beginning of each vertical blanking interval, the screen-refresh address
(SRFADR in the DPYADR register) is loaded with the starting value specified
by the DPYSTRT register. When vertical blanking precedes an even field, the
new DPYADR row address is incremented by half the value in the DUDATE
field. This is in preparation to display line 2 (Figure 9-9 b). When vertical
blanking precedes an odd field, the row address loaded into DPYADR from
DPYSTRT is not incremented. In this case, the starting row address in
DPYSTRT points to the beginning of line 1 (Figure 9-9 d).

9-12

® ' 	
V

Even Field

.•: I.. NK = 8
.L‘: NC = 1

Odd Field

VTOTAL = 7
VEBLNK = 2

VCOUNT

HSYNC

HBLNK

VSYNC

VBLNK

Vertical
Sweep

Horizontal
Sweep

fib (ID MI L)f*LILuJ41 CO LICI 14 (.11 OW ID
I•— H 	2 4 e 8 	 1 3 5 7

Screen Refresh and Video Timing - Vertical Video Timing

Figure 9 - 10. Interlaced Video Timing Waveform Example

9-13

Screen Refresh and Video Timing - Display Interrupt

9.6 Display Interrupt

The TMS34010 can be programmed to interrupt the display when a specified
line is displayed on the screen. This is called a display interrupt. It is enabled
by setting the DIE bit in the INTENB register to 1 and loading the DPYINT
register with the desired horizontal scan line number. When VCOUNT =
DPYINT, the interrupt request is generated to coincide with the start of hori-
zontal blanking at the end of the specified line.

The display interrupt request can be polled by disabling the interrupt (setting
DIE=0) and checking the value of the DIP bit in the INTPEND register.
Writing a 0 to DIP clears the request.

The display interrupt has several applications. It can be used to coordinate
modifications of the bit map with the display of the bit map's contents, for
example. While the bottom half of the screen is displayed, the GSP can modify
the bit map of the top half of the screen, and vice versa.

The display interrupt is also useful in split screen applications. By modifying
the contents of the DPYADR register halfway through a frame, different parts
of the bit map can be displayed on the top and bottom halves of the screen.
No special steps are necessary to ensure that loading a new value to DPYADR
will not interfere with an ongoing screen-refresh cycle. The display interrupt
is requested at the beginning of the horizontal blanking interval. If a screen-
refresh cycle occurs during the same horizontal blanking interval, the GSP
cannot respond to the interrupt request until the refresh cycle and subsequent
updating of DPYADR are complete. This is true whether the interrupt is taken
or the GSP simply polls the DIP bit and detects a 0-to-1 transition. After DIP
has been set to 1, DPYADR can be loaded with a new value to achieve the
split screen anytime before the next screen-refresh cycle.

9-14

Screen Refresh and Video Timing - Dot Rate

9.7 Dot Rate

A typical screen must be refreshed 60 times per second for a noninterlaced
scan or 30 times per second for an interlaced scan. For a noninterlaced dis-
play, the dot period (time to refresh one pixel) is estimated as:

Dot Period =
(0.8)(1/60 second)

(pixels/line) x (lines/frame)

For an interlaced display, the dot period is estimated as

Dot Period =
(0.8)(1/30 second)

(pixels/line) x (lines/frame)

The 0.8 factor in the numerator accounts for the fact that the display is typi-
cally blanked for about 20% of the duration of each frame. This factor varies
somewhat from monitor to monitor.

During each dot period, the complete information for one pixel must be ob-
tained from the display memory (or frame buffer). Thus, the rate at which vi-
deo data must be supplied from the display memory (which is usually the
limiting factor for large systems) is a function of pixel size as well as screen
dimensions.

9-15

Screen Refresh and Video Timing - External Sync Mode

9.8 External Sync Mode

External sync mode allows the TMS34010 to use horizontal and vertical sync
signals from an external source. This permits graphics images generated by
the GSP to be superimposed upon or mixed with images from external
sources.

External sync mode is selected by setting the DXV and HSD bits in the
DPYCTL r .0 	. to 0. HSYNC and VSYNC are now configured as inputs. (Al-
ternately, 	can be configured as an output and VSYNC as an input by
setting DXV=O and HSD=1.) When an active-low sync pulse is input to one
of these pins, the corresponding counter (HCOUNT or VCOUNT) is forced to
all Os. By forcing the counters to follow the external sync signals, the blanking
intervals and screen-refresh cycles are also forced to follow the external video
signals.

The HSYNC and VSYNC inputs are sampled on each VCLK rising edge.
HCOUNT or VCOUNT will be cleared 2.5 clock periods (on a VCLK falling
edge) following a high-to-low transition at the HSYNC or VSYNC pin, respec-
tively. BLANK remains an output, but its timing is affected because the point
at which HCOUNT and VCOUNT are cleared is controlled by the external sync
signals. The 2.5-clock delay must be considered when selecting values for the
HSBLNK and HEBLNK registers.

9.8.1 A Two-GSP System

One GSP can generate video timing for two GSPs. As Figure 9-11 shows,
GSP #1 is configured for internal sync mode (DXV=1) and generates the sync
timing. GSP #2 is configured for external sync mode (DXV=O and HSD=O),
and receives the HSYNC and VSYNC inputs from GSP #1. Assume that the vi-
deo timing registers of the two devices are named as follows:

GSP #1 	 GSP#2
HCOUNT1 	 HCOUNT2
HESYNC1 	 HESYNC2
HSBLNK1 	 HSBLNK2
HEBLNK1 	 HEBLNK2
HTOTAL1 	 HTOTAL2
VCOU NT1 	 VCOUNT2
VESYNC1 	 VESYNC2
VSBLNK1 	 VSBLNK2
VEBLNK1 	 VEBLNK2
VTOTAL1 	 VTOTAL2

GSP #2's registers should be programmed in terms of the values in GSP #1's
registers, as shown in Table 9-1. The BLANK signals from GSP #1 and GSP
#2 are the same, and switch in unison on the same VCLK edges. When
HCOUNT1 is cleared on a VCLK falling edge, HCOUNT2 is cleared three full
VCLK periods later. For short horizontal blanking periods, HEBLNK2 may
need to be loaded with a value that is less than zero. For example, assume that
HSBLNK1 =HTOTAL1 -4 and HEBLNK1 =1 (that is, the horizontal blanking
interval is six VCLK periods). To ensure that GSP #2's horizontal blanking
interval begins and ends at the same time as GSP #1's, GSP #2's registers
must be loaded with values so that HSBLNK2=HTOTAL1 -8 and
H EB LN K2 = HTOTAL1 -2.

9-16

Screen Refresh and Video Timing - External Sync Mode

VCLK

GSP #1•

HCOUNT

HSYNC
(Output to GSP #2)

GSP #2;

HCOUNT

=MID C 11111M11111MS

14-2.5 Clocks-0i Cl ear
HCOUNT HAVS1C

N-2 	N-1

4

Figure 9-11. External Sync Timing - Two GSP Chips

The values in HTOTAL2 and VTOTAL2 must be large enough so that the
conditions HCOUNT=HTOTAL and VCOUNT=VTOTAL do not cause
HCOUNT and VCOUNT, respectively, to be cleared before the leading edges
of the external horizontal and vertical sync pulses occur. In the example in
Table 9-1, HTOTAL2 and VTOTAL2 are set to their maximum values. The
value of HESYNC2 must be such that HCOUNT=HESYNC2 occurs between
the end of an external HSYNC pulse and the beginning of the next external
HSYNC pulse. The value of VESYNC2 must be such that VCOUNT=VESYNC2
occurs between the end of an external VSYNC pulse and the beginning of the
next external VSYNC pulse.

Table 9-1. Programming GSP #2 For External Sync Mode

HEBLNK2 	HEBLNK1 - 3
HSBLNK2 	HSBLNK1 - 3
HTOTAL2 	65535
HESYNC2 	(HEBLNK2 + HSBLNK2)/2
VEBLNK2 	VEBLNK1
VSBLNK2 	VSBLNK1
VTOTAL2 	65535
VESYNC2 	(VEBLNK2 + VSBLNK2)/2 t

t Suggested value; see description in text.

Since the internal counter can only be resolved to the nearest VCLK edge,
precise synchronization with an external video source can be achieved only
when VCLK is harmonically related to the external horizontal sync signal. In
general, however, the HSYNC and VSYNC inputs are allowed to change asyn-
chronously with respect to VCLK, although the precise VCLK edge at which
an external sync pulse is recognized can be guaranteed only if the setup and
hold times specified for sync inputs are met.

9-17

Screen Refresh and Video Timing - External Sync Mode

9.8.2 External Interlaced Video

External sync mode can be used for both interlaced and noninterlaced dis-
plays. When locking onto external interlaced sync signals, the GSP discrimi-
nates between the odd and even fields of the external video signals based on
whether its internal horizontal blanking is active at the time that the start of the
external vertical sync pulse is detected. In Figure 9-10, for example, the even
field begins at a point where HBLNK is active low, and the odd field begins
while HBLNK is high.

In interlaced mode, the discrimination between the even and odd fields of an
external video source is based on the value of HCOUNT at a point two VCLK
periods past the rising VCLK edge at which the GSP detects the VSYNC input's
high-to-low transition. If HCOUNT contains a value greater than the value in
HEBLNK, but less than or equal to the value in HSBLNK, the GSP assumes
that the vertical sync pulse precedes the start of an odd field. Otherwise, the
next field is assumed to be even. Alternatively, the GSP can be placed in
noninterlaced mode, even though the external sync signals it is locking onto
are for an interlaced display. In this case, the GSP will simply cause identical
display information to be output to the monitor during the odd and even fields.

9-18

Screen Refresh and Video Timing - Video RAM Control

9.9 Video RAM Control

The TMS34010 automatically schedules the VRAM (video RAM) memory-
to-shift-register cycles needed to refresh a video monitor screen. These cycles
are referred to as screen-refresh cycles.

In addition to automatic screen-refresh cycles, the GSP can be configured to
perform memory-to-shift-register and shift-register-to-memory cycles under
the explicit control of software executing on the GSP's internal processor.
One of the primary uses for this capability is to facilitate nearly instantaneous
clearing of the screen. The screen is cleared in 256 memory cycles or less by
means of a technique referred to here as bulk initialization of the display me-
mory.

9.9.1 Screen Refresh

A screen-refresh cycle loads the VRAM shift registers with a portion of the
display memory corresponding to a scan line of the display. The internal re-
quests for these cycles occur at regular intervals coinciding with the start of
the horizontal blanking intervals defined by the video timing registers. When
horizontal blanking ends, the contents of the shift registers are clocked out
serially to drive the video inputs of a monitor. A screen-refresh cycle typically
occurs prior to each active line of the display.

9.9.1.1 Display Memory

The display memory is the area of memory which holds the graphics image
output to the video monitor. This memory is typically implemented with
VRAMs. During a screen-refresh cycle, a portion of the display memory cor-
responding to one (or possibly more) scan lines of the display are loaded into
the VRAM shift registers. Depending on the screen dimensions selected, not
all portions of the display memory are necessarily output to the monitor.

The width of the display memory is referred to as the screen pitch, which is the
difference in 32-bit memory addresses between two vertically-adjacent pixels
on the screen. The screen pitch is also the difference in starting memory ad-
dresses of the video data for two consecutive scan lines. When XY addressing
is used, the screen pitch must be a power of two to facilitate the conversion
of XY addresses to memory addresses. The value loaded into the DUDATE
field of the DPYCTL register represents the screen pitch, and is the amount
by which the screen-refresh address is incremented (or decremented) follow-
ing each screen-refresh cycle.

The portion of display memory that is actually output to the monitor is referred
to as the on-screen memory. The starting location of the on-screen memory
is specified by the SRFADR field in the DPYSTRT register.

The starting screen-refresh address is output during the screen-refresh cycle
that occurs at the start of each frame. At the end of the screen-refresh cycle,
the address is incremented to point to the area of memory containing the pixels
for the second scan line. The process is repeated for each subsequent scan
line of the frame.

9-19

15 2 1 0
DPYSTRT sks-h7re

Screen Refresh and Video Timing - Video RAM Control

A screen-refresh cycle typically affects all video RAMs in the system. A me-
mory-to-shift-register cycle transfers data from a selected row of memory to
the internal shift register of each VRAM. The data is then shifted out to refresh
the display.

A screen-refresh cycle takes place during the horizontal blanking interval that
precedes a scan line to be displayed. Typically, the shift registers containing
the video data for the line are clocked only during the active portion of the
scan line, that is, when the BLANK output is high. At higher dot rates, the pixel
clock or dot clock used to shift video data to the monitor is run through a
frequency divider to create the VCLK signal input to the GSP.

The 8-bit row address output during the screen-refresh cycle specifies the row
in memory to be loaded into the shift register internal to the VRAM. The
number of bits of video data transferred to the shift registers of all the VRAMs
in the system during a single screen-refresh cycle is calculated by multiplying
the number of VRAMs times the length of the shift register in each VRAM.
For example, 64 TMS4161 (64K-by-1) VRAM devices are sufficient to con-
tain the bit map for a 1024-by-1024-pixel display with four bits per pixel. The
length of the shift register in each TMS4161 is 256 bits. Thus, in a single
screen-refresh cycle, a total of 64 times 256, or 16,384, bits are loaded. This
is enough data to refresh four complete scan lines of the display. In general,
a single screen-refresh cycle performed during a horizontal blanking interval
is sufficient to supply one or more complete scan lines worth of data to the
video monitor screen.

9.9.1.2 Generation of Screen - Refresh Addresses

The DPYADR, DPYCTL, DPYSTRT, and DPYTAP registers are used to gener-
ate the addresses output during screen-refresh cycles. Figure 9-12 shows
these four registers, and indicates the register fields which determine the way
in which screen-refresh addresses are generated.

15
	

2 1 0
DPYADR

16 14 13 12 11 10 9
	

2 1 0

1111111N11111111OMMEMMINI
NIL
	

ORG

15 14 13
	

0
DPYj'AP

Figure 9-12. Screen-Refresh Address Registers

DPYCTL

DPYTAP

9-20

Screen Refresh and Video Timing - Video RAM Control

• DPYADR contains the SRFADR field, which is a counter that generates
the addresses output during screen-refresh cycles.

• DPYSTRT contains the SRSTRT field, the starting address loaded into
SRFADR at the beginning of each frame.

• DPYCTL contains several fields that affect screen-refresh addresses. The
8-bit DUDATE field is loaded with seven Os and a single 1 that points
to the bit position within SRFADR (bits 2-9 of DPYADR) at which the
address is to be incremented (or decremented) at the end of each
screen-refresh cycle. The ORG bit determines whether the screen-re-
fresh address is incremented or decremented. If ORG=0, the screen or-
igin is located at the top left corner of the screen and the address is
incremented; otherwise, it is decremented. The NIL bit determines
whether the GSP is configured to generated an interlaced (NIL=O) or
noninterlaced (NIL=1) display. The generation of screen-refresh ad-
dresses can be modified to accommodate either type of display.

• The DPYTAP register is used to specify screen-refresh address bits to
right of the position at which DUDATE increments the address. DPY-
TAP provides the additional control over screen-refresh address gener-
ation necessary to allow the screen to pan through the display memory.

Bits not directly involved in address generation are shaded in Figure 9-12.

The address output during a screen-refresh cycle identifies the starting pixel
on the scan line about to be output to the monitor. Figure 9-13 (page 9-22)
shows a 32-bit logical address of the first pixel on one of the scan lines ap-
pearing on the screen. The screen-refresh address consists of bits 4-23 of the
logical address, which are generated by combining the values contained in
SRFADR and DPYTAP. Where SRFADR and DPYTAP overlap (bits 10-17
of the logical address), the address bits are generated by logical ORing the
corresponding bits of SRFADR and DPYTAP. The 8-bit DU DATE value con-
tains seven Os and a single 1 pointing to the position at which SRFADR is to
be incremented (or decremented). The DPYTAP register should be loaded
with the portion of the pixel address in Figure 9-13 lying to the right of the
position indicated by the DUDATE pointer bit. SRFADR contains the portion
of the pixel address that is incremented by the DUDATE pointer bit.

Following system power up, the software loads the starting screen-refresh
address into the DPYSTRT register and the increment to the screen-refresh
address into the DPYCTL register. For a typical CRT display, the starting ad-
dress is the address in memory of the pixel that appears in the upper left corner
of the display. If ORG bit in DPYCTL is 0, the l's complement of the starting
address should be loaded into DPYSTRT. If ORG=1, the starting address
loaded into DPYSTRT should not be complemented.

DPYADR is automatically loaded with the starting display address from
DPYSTRT prior to the start of each frame. As shown in Figure 9-14 a, bits
2-15 of DPYSTRT (SRSTRT) are loaded into bits 2-15 of DPYADR
(SRFADR). The load occurs coincident with the start of the horizontal
blanking interval that occurs just at the end of the last active scan line of the
preceding frame.

9-21

Output During Row Address Time

Output During
C oiumn P ,dress Time

20 	18 	12

6RFADR
(DPYADR Bits 2-15)

 l ...111ATE 	•
(DP1' i I Bits 2-9)

DPYTAP
(Bits 0-13)

31 	28 	24

Screen Refresh and Video Timing - Video RAM Control

Figure 9-13. Logical Pixel Address

The address output during each screen-refresh cycle is contained in bits 2
through 15 of the DPYADR register (the 14-bit SRFADR field). As shown in
Figure 9-14 b, DPYADR bits 4-15 are output at the LADO-LAD11 pins during
the row address time of the screen-refresh cycle. If 0 RG =0, the DPYADR bits
are inverted before being output; otherwise, they are output unaltered. Zeros
(logic-low level) are output on LAD12-LAD14, and a one (logic-high level)
is output on LAD15; this is the RF status bit.

During the column address time of the screen-refresh cycle, bits 2-6 of
DPYADR are output at LADE-LAD10. If ORG =0, the DPYADR bits are in-
verted before being output. DPYTAP bits 6-10 are ORed with DPYADR bits
2-6 and output at LADE-LAD10. Bits 0-5 and 11-13 of DPYTAP are output
at LADO-LAD5 and LAD11-LAD13, respectively. Zeros are output at
LAD14-LAD15 (the TR and IAQ status bits).

After the row and column addresses have been output, the address in
DPYADR bits 2-15 is decremented by the 8-bit value in DPYCTL bits 2-9 (the
DUDATE field). This is done in preparation for the next screen-refresh cycle.
The 8-bit DUDATE value is a binary number consisting of seven Os and a
single 1. This single 1 indicates the position at which DPYADR will be dec-
remented. If ORG=O, the screen-refresh address in DPYADR is effectively
incremented; the one's complement of the address contained in DPYADR is
decremented by the DUDATE amount, but is inverted before being output.
This is equivalent to incrementing the address. If ORG =1, the address is de-
cremented.

9-22

15 14 13 12 11 10 9
DPYADR
Register

7 6 5 1 0 8 4 3 2

LAD Bus Pins

0

1

2

3

4

5

8

7

8

9

D 	.10

D i 	► 11

O —1-1.1 	12

O T 13

O —H. 14

1 	15(1)

ORG

Screen Refresh and Video Timing - Video RAM Control

SRSTRT

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
DPYSTRT

Register
••••

DPYADR
Register

v V Ir •V VW VVV V
1111111111

11111 . 	 ..

SRFADR

(a) Display-Address Initial Value

(b) Row-Address Time

Figure 9 - 14. Screen - Refresh Address Generation

9-23

Screen Refresh and Video Timing - Video RAM Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DPYADR 	I 	I I T i 	l I I

Register I 	

ORG -->
UMW

LAD Bus Pins

0
1

2

3

4

5
6

11111 	I 	1 	I 	I 	I 	I 	I 	I 	I
• • • • • • • 0 • • • •

I 	 I 	 I 	 I 	 I 	 I 	 I 	 1 	 I 	 1 	 I 	 I 	 I

(c) Column - Address Time

Figure 9-14. Screen-Refresh Address Generation (Continued)

DPYTAP
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7

8

9

10

11

12
13

0 —H 14(r-R)
0 	L 	15(1A0)

L 	

9-24

DPYADR
Register

DUDATE

14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
I 	 1 	 I

I 	 I 	 I

[II
9 	8 	7

I 1
8

vl, 	4, 	4,
5 	4 	3 	2 	1 	0

r . .

v_ Irtrpriv II
der 	 ,. arn,

in 	4— i

■

A

15 14 13 12 1 10

Screen Refresh and Video Timing - Video RAM Control

DPYTAP 1
15

Register 	

(d) Display-Address Update

Figure 9-14. Screen-Refresh Address Generation (Concluded)

9.9.1.3 Screen Refresh for Interlaced Displays

The size of the DUDATE increment specified for an interlaced display should
be twice that required for a noninterlaced display of the same dimensions.
This allows every other line to be skipped during the even or odd field of an
interlaced frame. Before the start of the even field, half the value of the DU-
DATE increment is added to the starting address loaded into DPYADR to ob-
tain the necessary starting displacement. The SRSTRT field in DPYSTRT
points to the area of memory containing the video data for scan line 1 in the
example of Figure 9-9 on page 9-11.

9-25

Screen Refresh and Video Timing - Video RAM Control

9.9.1.4 Panning the Display

The DPYTAP register supports horizontal panning of the screen across a dis-
play memory that is larger than the screen. The value contained in the low-
order bits of DPYTAP furnish the LSBs of the column address output during
the screen-refresh cycle. Incrementing this value results in panning to the
right; decrementing this value results in panning to the left.

9.9.1:5 Scheduling of Screen - Refresh Cycles

The internal request for a screen-refresh cycle is generated when horizontal
blanking begins. This gives the GSP essentially the entire horizontal blanking
interval in which to perform the screen-refresh cycle. The delay from the start
of horizontal blanking to the start of the screen-refresh cycle is called the
screen - refresh latency, and is determined by the internal memory controller.

The best and worst case screen-refresh latencies are given in Table 9-2. In the
best case, the delay from the high-to-low transition of the BLANK output to the
start of the screen-refresh cycle (the time the row address is output) is only
3.25 machine states (or local clock periods). In the worst case, the delay is
(7.25 + 2W) states, where W represents the number of wait states required
per memory cycle. The worst case number is based on the fact that the start
of the screen-refresh cycle can be delayed by up to three states if a read-mo-
dify-write operation began one state before the memory controller received the
request for the screen-refresh cycle. A screen-refresh request is given higher
priority than requests for DRAM-refresh, host-indirect or GSP CPU cycles;
hence, no further delays will occur unless an external device generates a hold
request.

Table 9-2. Screen-Refresh Latency

Min 	 Max

3.25 states 	(7.25 + 2W) states

Note: W is the number of wait states
per memory cycle.

The horizontal blanking interval should be sufficiently long in duration for the
screen-refresh cycle to be completed before blanking ends. The required mi-
nimum blanking interval is therefore about (9.25 + 3W) machine states, de-
pending on how soon after the end of blanking the external video logic begins
clocking the VRAM shift registers. Of course, this time must be translated from
machine states (local clock periods) to VCLK periods to program the HEBLNK
register.

The horizontal sync pulse is permitted to be as small as a single VCLK period
in duration.

No screen-refresh cycles are performed during vertical blanking until nearly the
end of vertical blanking - at the start of the horizontal blanking interval that
precedes the first active scan line of the new frame.

9-26

Screen Refresh and Video Timing - Video RAM Control

9.9.2 Video Memory Bulk Initialization

VRAMs may be rapidly loaded with an initial value using a special GSP feature
that converts pixel accesses to shift register transfers. This rapid loading
method is referred to as bulk initialization of the video memory, and can be
used with VRAMs such as the TMS4161 and TMS4461. When the SRT (shift
register transfer) bit in the DPYCTL register is set to a 1, all reads and writes
of pixel data are converted at the memory interface of the GSP to shift-
register-transfer cycles. When SRT=O, pixel accesses are performed in normal
fashion.

When SRT=1, the processor can initiate shift-register-transfer cycles under
explicit program control. By performing a series of such cycles, some or all
of the display memory can be set to an initial background color or pattern very
rapidly (in a small fraction of one frame time). First, the VRAM shift registers
are loaded with the initial value. The video memory is then set to the initial
color or pattern one row at a time by writing the shift register contents to the
memory.

During a shift-register-transfer cycle (when SRT=1), the row and column
addresses are output in unaltered form; that is, the address is not affected by
the state of SRT. The 8-bit row address output during the cycle designates
which row in memory is involved in the transfer. The direction of the transfer
is determined by whether the cycle is a read or a write. A write cycle such as
a PIXT transfer from a general-purpose register to memory is converted to a
VRAM shift-register-to-memory cycle. Similarly, a read cycle such as a PIXT
transfer from memory to a general-purpose register is converted to a VRAM
memory-to-shift-register cycle.

Only pixel transfers are affected by the SRT bit. The manner in which all other
data accesses and instruction fetches are performed is not affected.

Before bulk initialization of the display memory, the VRAM shift registers are
loaded with the solid color or pattern with which the display memory will be
loaded. This can be done in one of two ways, by either

• Serially shifting bits into the shift register

Or

• First loading a row of display memory with the color or pattern using a
series of "normal" pixel writes (when SRT=O), and then loading the
contents of this row into the shift register by means of a PIXT memo-
ry-to-register instruction (executed while SRT=1).

To speed up the bulk initialization operation further, a series of transfers can
be made more rapidly by using a single FILL instruction in place of a series of
PIXT instructions. The fill region is selected so that each pixel write cycle
generates a new row address. The fill region is specified to be precisely 16
bits wide, the width of the memory data bus. Also, plane masking is disabled,
transparency is turned off, and the pixel processing rep/ace operation is se-
lected. This ensures that each row is addressed only once during the course
of the fill operation.

The number of bits of the display memory that are altered by a single shift-
register-to-memory transfer cycle is calculated by multiplying the number of
VRAM devices by the number of shift register bits in each device. The entire
frame buffer is loaded with the initial color or pattern in 256 memory cycles.

9-27

This page intentionally left blank.

10. Host Interface Bus

A host processor can communicate with the TMS34010 by means of an
interface bus consisting of a 16-bit data path and several transfer-control
signals. The TMS34010's host interface provides a host with access to four
programmable 16-bit registers (resident on the TMS34010), which are
mapped into four locations in the host processor's memory or I/O address
space. Through this interface, commands, status information, and data are a,
transferred between the TMS34010 and host processor.

A host processor may read from or write to TMS34010 local memory indirectly
via an autoincrementing address register and data port. This optional
autoincrement feature supports efficient block moves. The TMS34010 and
host can send interrupt requests to each other. A pin is dedicated to the in-
terrupt request from the TMS34010 to the host. To allow block moves initi-
ated by a host to take place more efficiently, the host may suspend TMS34010
program execution to eliminate contention with the TMS34010 for local
memory. DRAM-refresh and screen-refresh cycles continue to occur while the
TMS34010 is halted.

This section includes the following topics:

Section 	 Page
10.1 Host Interface Bus Pins 	 10 - 2
10.2 Host Interface Registers 	 10 - 2
10.3 Host Register Reads and Writes 	 10-4
10.4 Bandwidth 	 10 - 22
10.5 Worst-Case Delay 	 10-23

10-1

Host Interface Bus - Pins/Registers

10.1 Host Interface Bus Pins

The GSP's host interface bus consists of a 16-bit bidirectional data bus and
nine control lines. These signals are described in detail in Section 2.

HDO-HD15
form a 16-bit bidirectional bus, used to transfer data between the
GSP and a host processor.

HCS 	is the host chip select signal. It is driven active low to allow a host
processor to access one of the host interface registers.

HFSO, HFS1
are function select pins. They specify which of four host interface
registers a host will access (see Section 10.2).

HREAD is driven active low to allow a host processor to read the contents
of the selected host interface register, output on HDO-HD15.

HWRITE is driven active low to allow a host processor to write the contents
of H DO-H D15 to the selected host interface register.

HLDS 	is driven low to enable a host processor to access the lower byte
of the selected host interface register.

	

HUDS 	is driven low to enable a host processor to access the upper byte
of the selected host interface register.

	

- HRDY 	informs a host processor when the GSP is ready to complete an
access cycle initiated by the host.

HINT 	transmits interrupt requests from the GSP to a host processor.

10.2 Host Interface Registers

The host interface registers are a subset of the I/O registers discussed in Sec-
tion 6. The host interface registers can be accessed by both the GSP and the
host processor. These registers occupy four 16-bit locations in the host
processor's memory or I/O address map. One of these four locations is se-
lected by placing a particular code on the two function select inputs, HFSO
and HFS1, as shown in Table 10-1. A 16-bit host processor will typically
connect two of its low-order address lines to HFSO and HFS1. An 8-bit pro-
cessor typically connects two low-order address lines to HFSO-HFS1 and uses
a third low-order address bit to enable either the upper or lower byte of the
selected register by activating one of the byte select inputs, HUDS or HLDS.
In the second case, the registers occupy eight 8-bit locations in the host
processor's memory map.

10-2

Host Interface Bus - Registers

Table 10-1. Host Interface Register Selection

HFS1 HFSO Selected
Register

0 0 HSTADRL

0 1 HSTADRH

1 0 HSTDATA

1 1 HSTCTL

HSTADRL and HSTADRH contain the 16 LSBs and 16 MSBs, respectively,
of a 32-bit pointer address. A host processor uses this address to indirectly
access GSP local memory.

The HSTDATA register buffers data that is transferred through the host in-
terface between GSP local memory and a host processor. HSTDATA contains
the contents of the address pointed to by the HSTADRL and HSTADRH reg-
isters.

The HSTCTL register is accessible to the GSP as two separate I/O registers,
HSTCTLL and HSTCTLH, but is accessed by a host processor as a single
16-bit register. HSTCTL contains several programmable fields that control
host interface functions.

NMI. Nonmaskable interrupt, bit 8. Allows a host processor to interrupt
GSP execution.

NMIM. NMI mode, bit 9. Specifies if the context of an interrupted pro-
gram is saved when a nonmaskable interrupt occurs.

CF. Cache flush, bit 14. Setting this bit flushes the contents of the GSP
instruction cache. A host processor can force the GSP to execute new
code after a download by flushing old instructions out of cache.

LBL. Lower byte last, bit 13. Specifies which byte of a register an 8-bit
host processor will access first.

/NCR. Increment address before local read, bit 12. Controls whether the
32-bit pointer in the HSTADR registers will be incremented before being
used in a local read cycle that updates the HSTDATA register.

INCW. Increment address after local write, bit 11. Controls whether the
32-bit pointer in the HSTADR registers will be incremented after being
used in a local write cycle that transfers the contents of the HSTDATA
register to memory.

HLT. Halt GSP program execution, bit 15. A host processor can halt the
TMS34010's on-chip processor by setting this bit to 1.

MSGIN. Message in, bits 0-2. Buffers a 3-bit interrupt message from a
host processor to the GSP.

INTIN. Input interrupt bit, bit 3. A host must load a 1 into this bit to
generate an interrupt request to the GSP.

MSGOUT. Message out, bits 4-6. Buffers a 3-bit interrupt message from
the GSP to a host.

INTOUT. Interrupt out, bit 7. The GSP must load a 1 to this bit to send
an interrupt request to a host processor.

C>C7

\

10-3

Write to upper ri byte of selected
register

Write to lower
FL byte of selected

register

Read from upper
byte of selected
register

Read from lower

11_ byte of selected
register

Host Interface Bus - Reads and Writes

10.3 Host Register Reads and Writes

Host interface read and write cycles are initiated by the host processor and are
controlled by means of the HCS, HWRITE, HREAD, HUDS, and HLDS signals.
Host-initiated accesses of the register selected by the function-select code
input on HFSO and HFS1 are controlled as follows:

• While HCS, HLDS, and HWRITE are active low, the contents of

H DO-H D7 are latched into the lower byte of the selected register.

• While HCS, HUDS, and HWRITE are active low, the contents of

HD8-HD15 are latched into the upper byte of the selected register.

• While HCS, HLDS, and HREAD are active low, the contents of the lower
byte of the selected register are driven onto HDO-H D7.

• While HCS, HUDS, and HREAD are active low, the contents of the upper
byte of the selected register are driven onto H D8-H D15.

As this list indicates, at least three control signals must be active at the same
time to initiate an access. The last of the three signals to become active begins
the access, and the first of the three signals to become inactive signals the end
of the access. A signal that begins or completes an access is referred to in the
following discussion as the strobe signal for the cycle. Any of the signals
listed above may be a strobe. Figure 10-1 shows a functional representation
of the logic that controls the GSP's host interface.

TM834010

Figure 10-1. Equivalent Circuit of Host Interface Control Signals

l-;t: 3
HWrI•F

HLDS

HREAD

10-4

Host Interface Bus - Reads and Writes

The designer must ensure that HREAD and HWRITE are never active low si-
multaneously during an access of a host interface register; this may cause in-
ternal damage to the device.

10.3.1 Functional Timing Examples

The functional timing examples in this section are based on the circuit shown
in Figure 10-1.

• The HCS input is the strobe in Figure 10-2 and Figure 10-3.

• The HWRITE signal is the strobe in Figure 10-4.

• The HREAD signal is the strobe in Figure 10-5.

• The HUDS and HLDS signals are strobes in Figure 10-6 and Figure 10-7.

OVRAW.Ver.t.W.V ttedNiFINMA HFSO-HFS1 WodAY,'
riFrinEicn Select

HREAD

HWRITE

HLDS 	 Enable Write to Lower Byte

HUDS 	 Inhibit Write to Upper Byte

HCS

HDO-HD15 Valid Data In ICYZINAMS.0104
etWitY/hiehilefehi

HRDY 	 (High)

Figure 10-2. Host 8-Bit Write with HCS Used as Strobe

10-5

Host Interface Bus - Reads and Writes

HF60-HF61 	 'dad Rum 1106 Beleot

HwArrE

HREAD

HLDS 	 Inhibit Read from Lower Byte

HUDS 	 Enable Read from Upper Byte

HC6

HDO-HD15 Valid Data Out

HRDY 	 (High)

Figure 10-3. Host 8-Bit Read with HCS Used as Strobe

HFSO-HFS1

HWRITE

HCS

HLDS

HUDS

HREAD

HDO-HD15

HRDY

Valid Fubotion &elect

viworw,do,tweAte,

Enable Read from Lower Byte

Enable Read from Upper Byte

(
Valid Data Out

(High)

Figure 10-4. Host 16-Bit Read with HREAD Used as Strobe

10-6

Host Interface Bus - Reads and Writes

HFSO-HFS1 Valid Function Select

HREAD

HCS

HLDS 	 Enable Write to Lower Byte

HUDS 	 Enable Write to Upper Byte

HWRffE

HDO-HD15
% .'ef.Y.Y.WIST14.19;

..g.:7;;;•;;;;;;;;;;:;;;;ffe;:,VA:ti ,

HRDY (High)

Figure 10-5. Host 16-Bit Write with HWRITE Used as Strobe

HFSO-HF61

HREAD

(10:411% Valid Function Select

HCS

HWRITE

HLDS
------,\Strobe Low Byter---

 HUM
--- \Strobe High Byter--

HDO-HD15 42183augs34 Valid Nits In

HRDY 	 (High)

Figure 10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes

10-7

Host Interface Bus - Reads and Writes

HFSO-HFS1 Valid %lotion Boloot

HOS

HwRrrE

HREAD

Strobe Low Byter--
HLDS

-- \Strobe High Byte
HODS

HDO-HD15

Valid Data Out

HRDY 	 (High)

Figure 10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes

10.3.2 Ready Signal to Host

The default state of the bus ready output pin, HRDY, is active high. HRDY is
driven inactive low to force the host processor to wait in circumstances in
which the GSP is not prepared to allow a host-initiated register access to be
completed immediately.

HRDY is always driven low for a brief period at the beginning of a read or
write access of the HSTCTL register. When the host attempts to read from or
write to the HSTCTL register, HRDY is driven low at the beginning of the ac-
cess, and is driven high again after a brief interval of one to two local clock
cycles.

When the host processor performs certain types of host interface register ac-
cesses, a local memory cycle results. For example, in reading from or writing
to the HSTDATA register, a read or write cycle on the local bus will result. If
the host processor attempts to perform an access that will initiate a second
local memory cycle before the GSP has had sufficient time to complete the
first, the GSP will drive its HRDY output low to indicate that the host must
wait before completing the access. When the GSP has completed the local
memory cycle resulting from the previous access, it drives HRDY high to in-
dicate that the host processor can now complete its second access.

10-8

Host Interface Bus - Reads and Writes

A data transfer through the host interface takes place only when some com-
bination of HCS, HREAD, HWRITE, HUDS, and HLDS are active simultaneously;
however, the HRDY signal is activated by the HCS input alone. HRDY can be
active-low only while the GSP is chip-selected by the host processor, that is,
only when I-ICS is active low. A high-to-low transition on HRDY follows a
high-to-low transition on HCS. The benefit of this mode of operation is that
HRDY becomes valid as soon as HCS goes low, which typically is early in the
cycle. HRDY is always driven high when HCS is inactive high.

A transient low level on the HCS input may cause a corresponding low pulse
on the HRDY output. Systems that cannot tolerate such transient signals must
be designed to prevent I-ICS from going low except during a valid host inter-
face access.

In summary, the following rules govern the HRDY output:

1) If a high-to-low HCS transition occurs while the GSP is still completing
a local memory cycle resulting from a previous host-indirect access,
HRDY will go low. If the register selected is HSTDATA, HSTADRL or
HSTADRH, HRDY will remain low until the local memory cycle is com-
pleted. If the register selected is HSTCTL, the HRDY output will remain
low for one to two local clock periods.

2) If the host is given a ready signal (HRDY high) to allow it to complete
a register access that will cause a local memory read or write cycle,
HRDY stays high to the end of the access. The access ends when the
strobe for the cycle ends. The strobe ends when HREAD and HWRITE are
both inactive high, or when HLDS and HUDS are both inactive high, or
when FICS is inactive high, whichever is the first to occur. As soon as
the strobe ends, a low level on FICS will allow HRDY to go low again.
If the strobe is an input other than -C, and HCS remains low after the
strobe ends, HRDY can go low as a delay from the end of the strobe. If
FICS is the strobe for the access, the access ends when HCS goes high,
and HRDY can go low again as soon as HCS goes low again.

3) If HSTCTL is selected (FSO = FS1 = 1) at the high-to-low transition
of HCS, HRDY vvill go low as a delay from the fall of HCS, and will remain
low for one to two local clock periods. To avoid a low-going pulse on
HRDY when accessing a register other than HSTCTL, FSO-FS1 should
be valid prior to the high-to-low transition of FC.

Figure 10-8 and Figure 10-9 (page 10-10) show examples of host interface
register accesses in which HRDY is driven low.

10-9

Host Interface Bus - Reads and Writes

HFSO-HFS1 34(Valid Function Select

HREAD

HCS

HUDS
HWRITE,

HRDY

HDO-HD15

Valid Data In 	 iyl IT

Figure 10-8. Host Interface Timing - Write Cycle With Wait

HFSO-HFS1 	 Valid Function Select

HWRfTE

HLDSF, IM

HRDY

HDO-HD15 _

Figure 10-9. Host Interface Timing - Read Cycle With Wait

10-10

Host Interface Bus - Reads and Writes

10.3.3 Indirect Accesses of Local Memory

The host processor indirectly accesses GSP local memory by reading from or
writing to the HSTDATA register. HSTDATA buffers data written to or read
from the local memory. The word in local memory that is accessed is the word
pointed to by the 32-bit address contained in the HSTADRL and HSTADRH
registers. The pointer address is loaded into HSTADRL and HSTADRH by the
host processor before performing one or more indirect accesses of local me-
mory using the HSTDATA register.

The four LSBs of HSTADRL are forced to Os internally so that the address
formed by HSTADRL and HSTADRH always points to a word boundary in
local memory. Between successive indirect accesses of local memory using
the HSTDATA register, the local memory address contained in the HSTADR
registers can be autoincremented by 16. This allows the host processor to
access a block of sequential words in local memory without the overhead of
loading a new address prior to each access.

During a sequence of one or more indirect reads of local memory by the host,
the GSP maintains in HSTDATA a copy of the local memory word currently
addressed by the HSTADRL and HSTADRH registers. Reading from
HSTDATA returns the word prefetched from the local memory location
pointed to by the HSTADRL and HSTADRH registers, and causes HSTDATA
to be updated from local memory again. Writing to HSTDATA causes the
word written to HSTDATA to subsequently be written to the location in local
memory pointed to by the HSTADRL and HSTADRH registers.

Two increment-control bits, INCR and INCW (contained in the HSTCTL reg-
ister), are set to 1 to cause the pointer address in HSTADRL and HSTADRH
to be incremented by 16 during reads and writes, respectively. In preparing
to use the autoincrement feature, the appropriate increment-control bit, INCR
or INCW, is loaded with a 1, and the HSTADRL and HSTADRH registers are
set up to point to the first location of a buffer region in the local memory.

• When INCR is set to 1, a read of HSTDATA causes the address in
HSTADRL and HSTADRH to be incremented before being used in the
local memory read cycle that updates HSTDATA.

• When INCW is set to 1, a write to HSTDATA causes the address in
HSTADRL and HSTADRH to be incremented after being used in the lo-
cal memory read cycle that writes the new contents of HSTDATA to local
memory.

Loading the pointer address automatically triggers an update of HSTDATA to
the contents of the local memory word pointed to. No increment of HSTADRL
and HSTADRH takes place at this time regardless of the state of the increment
bits. Each subsequent host access of HSTDATA causes HSTADRL and
HSTADRH to be automatically incremented (assuming INCR or INCW is set)
to point to the next word location in the local memory. In this manner, a series
of contiguous words in local memory can be accessed following a single load
of the HSTADRL and HSTADRH registers without additional pointer-
management overhead.

10-11

Host Interface Bus - Reads and Writes

10.3.3.1 Indirectly Reading from a Buffer

Figure 10-10 illustrates the procedure for reading a block of words beginning
at local memory address N. Assume that the INCR bit in the HSTCTL register
is set to 1 and the LBL bit in HSTCTL is set to 0.

• In Figure 10-10 a, the host processor loads the 32-bit address N into
HSTADRL and HSTADRH.

• The loading of the second half of the address into HSTADRH causes the
GSP host interface control logic to automatically initiate a read cycle on
the local bus. This read cycle, shown in Figure 10-10 b, transfers the
contents of memory address N to the HSTDATA register.

• In c, the host processor reads the HSTDATA register, fetching the data
previously read from address N.

• The read of HSTDATA by the host processor causes the GSP to auto-
matically increment the contents of HSTADRL and HSTADRH by 16,
as shown in d.

• The contents of the new address are read into HSTDATA, as shown in
Figure 10-10 e. This data will be available in HSTDATA the next time
it is read by the host processor.

The process shown in c through e repeats for every word read from GSP local
memory.

10 - 12

Host
Processor

(a)

Host
Processor

Host
Processor

(b)

1
	

A 	I

Host
Processor

Host
Processor

Host
Interface
Registers

HSTADRH HSTADRL
N'18

IT? I
HSTDATA

Host
Interface
Registers

HSTADRH HSTADRL
I 	1416 	I-

HSTDATA
I 	B

Local
Memory

	WM N+16
---A--

N

0

Local
Memory

 	Irl— N+18
A 	N

0

(d)

(e)

Host Interface Bus - Reads and Writes

Host
Interface
Registers

A

Local
Memory

HSTADRH HSTADRL
I_ 1_1____l 	---._______w__÷3 _

N
+16

HSTDATA
A

0

Local
Memory

HSTADRH HSTADRL
Pt/

HSTDATA
I 	I

Host
interface
Registers

B N#18
N

0

Host
Interface
Registers

Local
Memory

(c)

B V— N+18

,, .

HSTADRH HSTADRL

	

I N
	

I-

HSTDATA

	

A 	I

0

Figure 10 -10. Host Indirect Read from Local Memory (INCR=1)

10-13

Host Interface Bus - Reads and Writes

10.3.3.2 Indirectly Writing to a Buffer

Figure 10-11 illustrates the procedure for writing a block of words to GSP
local memory. The block begins at address N. Assume that the INCW bit is
set to 1 and the LBL bit is set to 0.

• In Figure 10-11 a, the host processor loads the 32-bit address N into
HSTADRL and HSTADRH.

• The loading of the second half of the address into HSTADRH causes the
GSP host interface control logic to automatically initiate a read cycle on
the local bus. This read cycle, which takes place in Figure 10-11 b,
fetches the contents of memory address N into HSTDATA.

• The data loaded into this register will not be used, however. Instead, the
host processor writes to the HSTDATA register in Figure 10-11 c, over-
writing its previous contents.

• In response to the host's write to HSTDATA, the GSP automatically ini-
tiates a write cycle to transfer the contents of HSTDATA to the local
memory address N as shown in d.

• Following the write, the GSP automatically increments the address in
HSTADRL and HSTADRH to point to the next word, as shown in e. At
this point the host interface registers are ready for the host processor to
write the next word to HSTDATA.

The process shown in c through e repeats for every word written to GSP local
memory.

10 - 14

Host
Processor

(c)

Host Interface Bus - Reads and Writes

(b)

(a)
N+18
N

0

B
A

Host
Processor

Host
Interface
Registers

Local
Memory

Host
Processor

Host
Interface
Registers

Local
Memory

----14-- N+16
—A— N

0

HSTADRH HSTADRL

HSTDATA
I 	A

Host
Interface
Registers

Local
Memory

HSTADRH HSTADRL
M NAB
-----A— N

0

Host
Processor

(d)

Host
Processor

(e)

Local
Memory

Host
Interface
Registers

Local
Memory

W--6--
--C----

0

N+16
N

Host
Interface
Registers

HSTADRH HSTADRL
E:=1=r------______ 	 N+16

N

HSTDATA
I 	C 	I 	

HSTADRH HSTADRL
1-14+ 18 	I 	

a.....®41

HSTDATA
I 	c 	I

Figure 10 - 11. Host Indirect Write to Local Memory (INCW=1)

10-15

1711CT 	 11.16

Host Interface Bus - Reads and Writes

10.3.3.3 Combining Indirect Reads and Writes

If the HSTDATA register in Figure 10-11 is read by the host processor fol-
lowing step e, the value returned will be the value that the host previously
loaded into the register. The host must read HSTDATA a second time to ac-
cess data from GSP local memory. This principle is illustrated in Figure 10-12,
which shows how the host interface performs when a write is followed by two
reads. For this example, INCW=1 and INCR=0.

• In Figure 10-12 a, HSTADRL and HSTADRH together point to location
N in the GSP's local memory. The host processor is shown writing to
HST DATA.

• In b, the data buffered in HSTDATA is written to location N in memory.

• The address registers are incremented in c.

• In d, the host processor reads the HSTDATA register, which returns the
value that the host loaded into the register in step a.

• Reading HSTDATA causes a memory read cycle to take place in e, which
loads the value from memory address N+16 into HSTDATA.

• In f, a second read of HSTDATA by the host processor returns the value
from memory address N+16.

Host
Processor

Host
Interface
Registers

Local
Memory

HSTADRH I HSTADRL
N+18

(a) N

HSTDATA
C

0

Host Host Local
Processor Interface Memory

Registers

HSTADRH H6TADRL
N+18

(b)

HSTDATA
I 	C

0

Figure 10-12. Indirect Write Followed by Two Indirect Reads
(INCW=1, INCR=O)

10 - 16

Host
Processor

Host
Processor

(c)

(e)

Host
Interface
Registers

Local
Memory

HSTADP.I •STADRL
	N.-le

HSTDATA

N+16
N

Host
Interface
Registers

Local
Memory

Host
Interface
Registers

Host
Processor

Local
Memory

(d)

_
N (f)

0

B
C

Host
Processor

Local
Memory

Host
Interface
Registers

Host Interface Bus - Reads and VVrites

Figure 10-12. Indirect Write Followed by Two Indirect Reads (INCW=1,
INCR=0) (Concluded)

10-17

Host Interface Bus - Reads and Writes

10.3.3.4 Accessing Host Data and Address Registers

When the TMS34010 internal processor accesses the HSTDATA, HSTADRL,
or HSTADRH register, no subsequent cycle occurs to transfer data between
HSTDATA and local memory. Also, the address in HSTADRL and HSTADRH
is not incremented, regardless of the state of the INCR and INCW bits.

The host processor can indirectly access any register in the GSP's internal I/O
register file by first loading HSTADRL and HSTADRH with the address of the
register, and they writing to or reading from HSTDATA.

No hardware mechanism is provided to prevent simultaneous accesses of the
HSTDATA, HSTADRL and HSTADRH registers by the host processor and by
the GSP internal processor. Software must be written to avoid simultaneous
accesses, which can result in invalid data being read from or written to these
registers.

10.3.3.5 Downloading New Code

The TMS34010 host interface provides a means of efficiently downloading
new code from a host processor to GSP local memory. The host initiates this
operation through the following process:

• Before downloading, the host interrupts and halts the GSP by writing
1s to the HLT and NMI bits in the HSTCTL register. The host processor
should then wait for a period of time equal to the TMS34010 interrupt
latency. (GSP hardware will reset the NMI bit if the nonmaskable in-
terrupt is initiated before the halt occurs.)

• The code is then downloaded using the auto-increment features of the

•

host interface registers.

After downloading the code, the host should flush the cache as de-
scribed in Section 5.4.5, Flushing the Cache (page 5-26).

• The nonmaskable interrupt vector is written through the host port to
location >FFFF FEEO so that the new code will begin execution at the
vectored address.

• The NMI bit in the HSTCTL register should be set to 1 to initiate a non-
maskable interrupt. At the same time, the NMIM bit in the HSTCTL re-
gister should be set to 1. If the host does not need the current context
to be stored on the stack, or if the nonmaskable interrupt was taken in
the first step, the NMIM bit should be set to 1. Otherwise, NMIM should
be set to 0.

• The host restarts the GSP by writing a 0 to the HLT bit in the HSTCTL
register.

Setting the HLT and NMI bits to 1 simultaneously reduces the worst-case
delay (compared to setting HLT only). NMI latency is the delay from the 0-
to-1 transition of the NMI bit and the start of execution of the first instruction
of the NMI service routine. Halt latency is the delay from the 0-to-1 transition
of the HLT bit and the time at which the GSP actually halts (see Section
10.3.4). The maximum NMI latency may be much less than the halt latency

10 - 18

Host Interface Bus - Reads and Writes

if a PIXBLT, FILL, or LINE instruction is in progress at the time of the NMI or
halt request. An NMI request will interrupt instruction execution at the next
interruptible point, but a halt request is ignored until the executing instruction
completes or is interrupted. When NMI and HLT are set to 1 simultaneously,
the GSP will have halted before beginning execution of the first instruction in
the NMI service routine. Therefore, the delay from the setting the NMI and
HLT bits to the time that the GSP actually halts is simply the NMI latency.

10.3.4 Halt Latency

The TMS34010 may be halted by a host processor via the HLT bit in the
HSTCTL register. The delay from the receipt of a halt request to the time that
the TMS34010 actually halts is the sum of five potential sources of delay:

1) Halt request recognition
2) Screen-refresh cycle
3) DRAM-refresh cycle
4) Host-indirect cycle
5) Instruction completion

In the best case, items 2 through 5 cause no delay. The minimum delay to due
item 1 is one machine state.

• The halt request recognition delay is the time required for the setting
of the H LT bit to be internally synchronized after the low-to-high transi-
tion of the HRDY pin.

• The screen - refresh and DRAM - refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay a halt.

• The likelihood of a delay caused by a host - indirect cycle is small in
most instances, but this depends largely on the application. It would
only occur if the host had written to the data register just prior to writing
to the HLT bit. The delay due to a single host-indirect cycle is two ma-
chine states, assuming no wait states.

• The instruction completion time refers to the time required for an in-
struction that was already executing at the time the halt request was re-
ceived to complete. Note that the TMS34010 halt condition is entered
only on instruction boundaries. This means that a PIXBLT, FILL, or
LINE instruction that is already in progress will run to completion before
the GSP halts.

Table 10-2 shows the minimum and maximum times for each of the five op-
erations listed. The halt latency is calculated as the sum of the numbers in the
five rows. In the best case, the halt latency is only one machine state. The
worst-case latency is six machine states plus the delays due to host-indirect
cycles and instruction completion. Table 10-3 shows instruction completion
times for some of the longer instructions. However, a PIXBLT, FILL, or LINE
instruction may take longer than the times shown in Table 10-3, depending
on the size of the pixel array or line specified. Table 10-3 also shows the in-
struction completion time for a JRUC instruction that jumps to itself — the GSP
may be executing this instruction if the software is simply waiting for a halt.

10-19

Host Interface Bus - Reads and Writes

Table 10-2. Five Sources of Halt Delay

Operation
Latency (In States)

MM Max

Halt recognition 1 2

Instruction completion 0 See Table 10-3

DRAM-refresh cycle 0 2
See Note 2

Screen-refresh cycle 0 2
See Note 2

Host-indirect cycle 0 See Note 1

Notes: 1) The latency due to host-indirect cycles depends
on both the hardware system and the application.
The delay due to a single host-indirect cycle is two
machine states, assuming no wait states.

2) DRAM-refresh and screen-refresh cycle times as-
sume no wait states.

Table 10-3. Sample Instruction Completion Times

Instruction
Worst-Case Instruction

Completion Time (In States)

SP Aligned SP Not Aligned

DIVS A0,A2 43 43

MMFM SP,ALL 72 144

MMTM SP,ALL 73 169

PIXBLT, FILL, and LINE See Note 1 See Note 1

Wait: JRUC wait 1 1

Notes: 1) The worst-case instruction completion time is equal to the in-
struction execution time less one machine state.

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

10-20

Host Interface Bus - Reads and Writes

10.3.5 Accommodating Host Byte-Addressing Conventions

Processor architectures differ in the manner in which they assign addresses to
bytes. The GSP host interface logic can be programmed to accommodate the
particular byte-addressing conventions used by a host processor.

This ability is important in ensuring software compatibility between 8- and
16-bit versions of the same processor, such as the 8088 and 8086 or the
68008 and 68000. The 8088 transfers a 16-bit word as a series of two 8-bit
bytes, low byte first, high byte second. The 68008 transfers the high byte first,
and low byte second.

The HSTCTL register's LBL bit is used to configure the GSP host interface to
accommodate different byte-accessing methods. The host interface is con-
figured to operate according to the following two principles:

1) First, when a host processor with an 8-bit data bus reads from or writes
to the HSTDATA register, it will access the high and low bytes of the
register in separate cycles. The GSP will not initiate its local memory
access until both bytes of HSTDATA have been accessed.

2) Second, when HSTADRH and HSTADRL are loaded by the host, the
GSP must not initiate its read of the local memory until the complete
pointer address has been loaded into HSTADRL and HSTADRH.

When LBL=0:

• A local memory read cycle takes place when the host processor reads the
high byte of HSTDATA, or writes to the high byte of HSTADRH.

• A local memory write cycle takes place when the host processor writes
to the high byte of HSTDATA.

When LBL=1:

• A local memory read cycle takes place when the host processor reads the
low byte of HSTDATA, or writes to the low byte of HSTADRL.

• A local memory write cycle takes place when the host processor writes
to the low byte of HSTDATA.

When the host processor is an 8088, for example, the GSP is typically con-
figured by setting the LBL bit of the HSTCTL register to 0. When configured
in this manner, the GSP expects the HSTADRL register to be loaded first, and
HSTADRH loaded second. Furthermore, the high byte of the HSTADRH re-
gister is expected to be loaded after the low byte. When LBL is set to 0, a local
read cycle is initiated when the upper byte of the HSTADRH register is written
to by the host processor. This permits the lower byte of HSTADRH to be
loaded first without causing side effects.

10-21

Host Interface Bus - Bandwidth

10.4 Bandwidth

One measure of the performance of the host interface is its data rate, or
bandwidth. The bandwidth is the number of bits per second that can be
transferred through the host interface during a block transfer of data to or from
GSP memory. Assume that the host interface address register is programmed
to autoincrement. The maximum data rate through the host interface can be
expected to approach the bandwidth of the GSP's memory. For example, as-
sume a 50-MHz GSP and a memory requiring no wait states. The memory
cycle time is about 320 nanoseconds (bandwidth = 50 megabits/second).
The host's access cycle time at the host interface is somewhat longer than this
due to certain additional delays inherent in the operation of the GSP's internal
host interface logic. Also, the throughput of the host interface may depend
on whether or not the GSP is halted.

The bandwidth is calculated as the width of the host data path (16 bits) times
the frequency of access cycles through the host interface. Given a continuous
series of word accesses, with successive accesses occurring at regular inter-
vals, what is the minimum interval between host accesses that the interface
can sustain without having to send not-ready signals to the host? (The GSP
drives its HRDY output low temporarily to inform the host when the GSP is
not yet ready to complete the host's current access.)

First, when the GSP is halted, the host interface should support continuous
accesses occurring at regular intervals no less than about 400 nanoseconds
apart. As long as the host attempts to maintain a throughput no greater than
this limit, delays due to not-ready signals will occur rarely, if at all. The
bandwidth for this case is calculated in Table 10-4 a as approximately 40
megabits per second. This value can be expected to vary slightly with sys-
tem-dependent conditions such as the frequency of DRAM-refresh and
screen-refresh cycles.

When the GSP is running, the host interface should support continuous ac-
cesses occurring at regular intervals no less than approximately 550 nanose-
conds. The bandwidth for this case is calculated in Table 10-4 as
approximately 29 megabits per second. This value varies slightly with condi-
tions such as the frequency of DRAM-refresh and screen-refresh cycles, and
also with the characteristics of the program being executed by the GSP.

Table 10-4. Host Interface Estimated Bandwidth

Assumptions Approximate Throughput

GSP halted
50-MHz GSP
No wait states

16 bits/transfer
— 40 megabits/s

400 ns/transfer

GSP running
50-MHz GSP
No wait states

16 bits/transfer
— 29 megabits/s

550 ns/transfer

10 - 22

Host Interface Bus - Worst-Case Delay

10.5 Worst-Case Delay
In some applications, designers must determine not only the effective
throughput of the host interface, but also the delays that can occur under
worst-case conditions. These conditions occur too rarely to affect overall
throughput, but the important consideration here is not how often they occur,
but that they can occur at all. First, with the GSP halted, the worst delay is
given by the formula (6 + 2N) T, where N is the number of wait states per GSP
memory cycle, and T is the local clock period (nominally 160 nanoseconds for
a 50-MHz GSP). Second, with the GSP running, the worst delay is given by
the formula (9 + 4N)T. The derivation of these formulas, summarized in Fig-
ure 10-13, may be helpful in illustrating the mechanisms of the host interface.

	

2T
	

Synchronization delay

	

(2 + N)T
	

Screen-refresh cycle

	

+ (2 + N)T
	

DRAM-refresh cycle

	

(6 + 2N)T
	

Worst-case delay (total)

(a) Worst-Case Delay with GSP Halted

	

2T 	Synchronization delay

	

(1 + N)T 	GSP CPU read

	

(2 + N)T 	GSP CPU write

	

(2 + N)T 	Screen-refresh cycle

	

+ (2 + N)T 	DRAM-refresh cycle

	

(9 + 4N)T 	Worst-case delay (total)

(b) Worst-Case Delay with GSP Running

N = Number of wait states per memory cycle
T = Local clock period (nominal 160 nanoseconds for 50-MHz device)

Note: These are worst-case delays and have negligible effect on performance. The case
shown in a, for example, could be expected to occur less than once per thousand
(0.1 percent of) host accesses in a typical system.

Figure 10-13. Calculation of Worst-Case Host Interface Delay

Consider case a, in which the GSP is halted, first; the worst-case delay is cal-
culated as the sum of the three delays. The first of these delays is the time
required to internally synchronize the host interface cycle to the GSP local
clock. The host's signals are generally not synchronous to the GSP local
clocks. A signal from the host must therefore be passed through a synchron-
izer latch (part of the GSP on-chip host interface logic) before being used by
the GSP. The delay through the synchronizer is from one to two local clock
periods (1 T to 2T), depending on the phase of the host clock relative to the
GSP's local clock. The second and third delays in Figure 10-13 represent the
time needed to perform a screen-refresh cycle followed by a DRAM-refresh
cycle. The arbitration logic internal to the GSP assigns these two types of
cycles higher priorities than host-requested indirect accesses. (Screen refresh
has a higher priority than DRAM refresh.) Thus, a host access requested at
the same time as one of these cycles must wait. The worst-case assumption
is that a screen-refresh cycle is generated internal to the GSP on the same
clock edge at which the request for the host access arrives. Furthermore, a
DRAM-refresh cycle is requested during this same clock edge or during the

10-23

Host Interface Bus - Worst-Case Delay

next 1 + N clock edges. An equivalent delay occurs in the case in which a
DRAM refresh and host access are requested on the same clock edge (the
DRAM refresh wins), and a screen refresh is requested on a later clock edge
before the host access can begin. This case is not shown in Figure 10-13, but
the delay in this instance is also (6 + 2N)T. In a typical system, DRAM-re-
fresh cycles consume about 2 percent of the available memory bandwidth, and
screen-refresh cycles take about 1.5 percent (using VRAMs). The probability
of either sequence of events is therefore very small (less than one in a thou-
sand, assuming N = 0; that is, no wait states), and the performance degrada-
tion due to these unlikely events is negligible.

Now consider the case in which the GSP is running. Host accesses are of
higher priority than GSP instruction fetches and data accesses, but still of
lower priority than DRAM-refresh or screen-refresh cycles. The worst-case
delay is calculated as the sum of the five delays indicated in Figure 10-13 b.
This assumes that the GSP begins a read-modify-write operation on a memory
word (this is performed as a read cycle followed by a separate write cycle) just
one clock before the GSP receives the host access request. The GSP CPU
read cycle is actually (2 + N)T in duration, but since it begins one clock before
the host access is requested, only (1 + N)T is left in the cycle. The GSP's
local memory controller treats a read-modify-write operation as indivisible;
once the read has started, no other requet can be granted until the write
completes. The write cycle is (2 + N)T in duration. Again, assume that
sometime before the write cycle does complete, screen-refresh and
DRAM-refresh cycles are also requested. The probability of this case is so-
mewhat more difficult to calculate than that of Figure 10-13 a, since the fre-
quency of read-modify-write operations is very program dependent. This
sequence of events rarely occurs, however.

10-24

11. Local Memory Interface

The TMS34010 local memory interface consists of a triple-multiplexed
address/data bus and associated control signals. Several types of memory
cycles, including read, write, screen-refresh, and DRAM-refresh cycles are
supported. During a memory cycle, the row address, column address, and data
are transmitted over the same physical bus lines. The row and column ad-
dresses necessary to address DRAMs and VRAMs are available directly at the
address/ data pins, eliminating the need for external multiplexing hardware.

The TMS34010 interfaces directly to DRAMs and VRAMs, and can be pro-
grammed to perform DRAM-refresh cycles at regular intervals.
CAS-before-RAS or RAS - only refresh cycles may be selected. The GSP can
also be programmed to perform screen refresh by scheduling VRAM shift-re-
gister transfer cycles to occur at regular intervals,

The local memory interface provides a hold/hold acknowledge capability that
allows external devices to request control of the bus. After acknowledging a
hold request, the GSP releases the bus by driving its address/data bus and
control outputs into high impedance.

Section Page
11.1 Local Memory Interface Pins 	 11 -2
11.2 Local Memory Interface Registers 	 11 -3
11.3 Memory Bus Request Priorities 	 11 -4
11.4 Local Memory Interface Timing 	 11 -5
11.5 Addressing Mechanisms 	 11-23

Local Memory Interface Bus - Local Memory Interface Pins

11.1 Local Memory Interface Pins

TMS34010 pin functions are described in detail in Section 2. This section
briefly summarizes the local memory interface pins.

LADO-LAD15
These pins form the local multiplexed address/data bus.

DEN 	The local data enable signal is driven active low to allow data to
be written to or read from LADO-LAD15. (Connects to the G pins
of a pair of optional '245-type octal bus transceivers.)

DDOUT The local data direction out signal is driven high to enable data to
be output on LADO-LAD15. It is driven low to enable data to be
input on LADO-LAD15. (Connects to the DIR pins of a pair of
optional '245-type octal bus transceivers.)

LAL 	The high-to-low transition of the local address latched signal is
used by an external '373-type latch to capture the column address
from LADO-LAD15.

RAS 	The local row address strobe signal drives the RAS inputs of
DRAMs and VRAMs.

CAS 	The local column address strobe signal drives the CAS inputs of
DRAMs and VRAMs.

W 	The local write strobe signal drives the W inputs of DRAMs and
VRAMs.

TR /QE 	The local shift register transfer/output enable signal connects to
the TR/QE (or DT/OE) pins of a VRAM.

LRDY 	The local ready signal is driven low by external circuitry to inhibit
the TMS34010 from completing a local memory cycle.

INCLK 	TMS34010 processor functions are synchronous to this input
clock signal. (Video timing is controlled by VCLK.)

LCLK1,
LCLK2 	These output clocks are available to the board designer for syn-

chronous control of external circuitry.

LINT 1,
LINT 2 Interrupt requests are transmitted to the GSP on these pins.

11-2

Local Memory Interface Bus - Local Memory Interface Registers

11.2 Local Memory Interface Registers

The local memory interface registers are summarized below. These registers
are a subset of the I/O registers which are detailed in Section 6.

The memory CONTROL register contains several programmable parameters
that provide control of the local memory interface:

RM. DRAM refresh mode, bit 2. Selects RAS-only or CAS-before-RAS
refresh cycles.

RR. DRAM refresh rate, bits 3 and 4. Controls the frequency of DRAM
refresh cycles.

T. Transparency enable, bit 5. Enables or disables the pixel attribute of
transparency.

W. Window violation detection mode, bits 6 and 7. Selects the course
of action the GSP will follow when it detects a window violation.

PBH. PixBlt horizontal direction, bit 8. Determines the horizontal direc-
tion (increasing X or decreasing X) for pixel operations.

PBV. PixBlt vertical direction, hit 8. Determines the vertical direction
(increasing Y or decreasing Y) for pixel operations.

PROP. Pixel processing operation select, bits 10-14. Selects among
several Boolean and arithmetic pixel processing options.

CD. Instruction cache disable, bit 15. Enables or disables the instruction
cache.

The CONVDP register contains the destination pitch conversion factor that
is used during XY-to-linear conversion of a destination pixel address.

The CON VSP register contains the source pitch conversion factor that is used
during XY-to-linear conversion of a source pixel address.

The PMASK (plane mask) register selectively disables or enables various
planes in a multiple-bit-per-pixel bit map display.

The PSIZE (pixel size) register specifies the number of bits per pixel.

The REFCNT (refresh count) register generates the addresses output during
DRAM-refresh cycles and counts the intervals between successive
DRAM-refresh cycles.

11-3

Local Memory Interface Bus - Memory Bus Request Priorities

11.3 Memory Bus Request Priorities

The GSP's local memory interface controller assigns priorities to requests from
various sources, both on and off chip, for local memory cycles. Table 11-'1
lists these priorities (priority 1 is highest).

Table 11-1. Priorities for Memory Cycle Requests

Priority Memory Cycle Requested

1 Hold request from external bus master device

2 Screen-refresh cycle

3 DRAM-refresh cycle

4 Host-initiated indirect read or write cycle

5 GSP CPU memory cycle

A GSP CPU memory cycle is a read or write performed by the GSP's on-chip
32-bit processor. Insertion of a field (or a portion of a field spanning multiple
words) into a word requires two CPU memory cycles when the field does not
begin and end on word boundaries. The two cycles are a read followed by a
write. This sequence is called a read-modify-write operation. The read and
write are performed as separate memory cycles, but are treated as indivisible;
that is, the memory controller will not permit another memory request to be
serviced between the read and its accompanying write. The only exception to
this statement is the hold request.

While a read-modify-write operation on an individual memory word is indi-
visible, the accesses necessary to extract or insert a field spanning multiple
memory words are not. For example, if a field spans portions of two memory
words, a higher priority access such as a host-indirect cycle can occur be-
tween the two read-modify-write operations required to insert the field.

The hold request has the highest priority. An external device requests control
of the bus by signalling a hold request to the GSP. The external device may
perform multiple memory cycles following acknowledgment from the GSP.
However, the device should not control the bus for so long that necessary
screen-refresh and DRAM-refresh cycles are prevented from occurring. Indi-
rect accesses initiated by a host processor will be blocked as long as the ex-
ternal device continues to control the bus. If the host processor attempts to
initiate another indirect access during this time, the host will be forced to wait
at the host interface (the GSP sends it a not-ready signal) until the external
device releases the local bus.

A memory cycle already in progress will always be permitted to complete, even
if a higher priority request is received while the cycle is still in progress.

11 -4

GSP

LAD 15

LAD 14

LAD 13

LAD 12

LAD 11

LAD 10

LAD 9

LAD 8

LAD 7

LAD 6

LAD 5

LAD 4

LAD 3

LAD 2

LAD 1

LAD 0

Local Memory Interface Bus - Local Memory Interface Timing

11.4 Local Memory Interface Timing

The TMS34010 memory interface contains a triple-multiplexed address/data
bus on which row addresses, column addresses and data are transmitted.
Figure 11-1 illustrates multiplexing of addresses and data.

Row
A :ne , :ts

1: ,:...L•nn
Adf.•uss Data

RF Wu 15

26 TR 14

25 29 13

24 28 12

23 27 11

22 14 10

21 13 9

1 20 12 	I 8

19 11 	j 7

18 10 6

17 9 	1 5

18 8 	i 4

1 15 7 	1 3

14 6 	f 2

1 13 ________5 1

12 	 4 0

...... - - 	
KR. r -

Fifa .4:i4 r.„...7 irvc, 1,4.6
32-Bit Memory Address

.._:!-,2A

I 	

...< 	.4, 	- ,..
1 1b -bit ;Jdtei Word I

1.. 	 t 	t 	 t
Btt 31 	 Bit 0 Bit 15 	 Bit 0
(MSB) 	 (LSB) (MSB) 	 (LSB)

RF = DRAM-Refresh bus status bit
lAa = instruction acquisition bus status bit
TR = VRAM Shift-Register-Transfer bus status bit

Figure 11-1. Triple Multiplexing of Addresses and Data

The TMS34010 LAD pins directly provide the multiplexed row and column
addresses needed to drive dynamic RAMs and video RAMs. Any eight adja-
cent pins in the range LADO-LAD10 provide 16 contiguous logical address
bits; the eight MSBs are output as part of the row address, and the eight LSBs
are output as part of the column address. For example, Figure 11-1 shows
that logical address bits 5-20 are output at LAD1-LAD8.

The control signals output to memory support direct interfacing to DRAMs
and VRAMs. At the beginning of a memory cycle, the address is output in
multiplexed fashion as a row address followed by a column address. The re-
mainder of the cycle is used to transfer data between the TMS34010 and
memory. Figure 11-2 (page 11 -6) illustrates general timing (the local
address/data pins are identified as the LAD Bus)

11-5

Local Memory Interface Bus - Local Memory Interface Timing

LAD Bus

RAS

CAS

Figure 11-2. Row and Column Address Phases of Memory Cycle

Figure 11-3 through Figure 11-8 show functional timing of the local memory
interface. Several timing features are common to the memory read and write
cycles in Figure 11 -3 and Figure 11 -4, and to the shift-register-transfer cycles
in Figure 11-6 and Figure 11-7. A row address is output on LADO-LAD15 at
the start of the cycle, and is valid before and after FV-CS falls. A column address
is then output on LADO-LAD1 5. The column address is valid briefly before
and after the falling edge of LAL, but is not valid at the falling edge of CAS.
The column address is clocked into an external transparent latch (such as a
74AS373 octal latch) on the falling edge of —LAL to provide the hold time on
the column address required for DRAMs and VRAMs. A transparent latch is
required so that the row address is available at the outputs of the latch during
the start of the cycle.

Data

11 -6

01 1 02 1 03 I 04 1 01 1 02 I 03 1 04 I 01 I
I 	 I 	I

(Hlgh)

Local Memory Interface Bus - Local Memory Interface Timing

11.4.1 Local Memory Write Cycle Timing

Figure 11-3 illustrates a memory write cycle. 	Data are output on
LADO-LAD15 following the latching of the column address. DEN goes active
low at the same time the data become valid, and remains low as long as the
data remain valid. In a large system that requires buffering of the data bus to
memory, DEN is typically used as the enable signal to an external bidirectional
buffer (such as a 74AS245 octal buffer). DDOUT is used as the direction
control signal to the buffer. The write strobe, W, goes active low after the data
have become valid and CAS is low. This is interpreted as a "late write" cycle
by the DRAMs and VRAMs, which are prevented by the inactive-high TR/QE
signal from enabling their read drivers. Because the data are valid on both
sides of the W write strobe, external devices can latch the data on either the
high-to-low or low-to-high edge of W.

LCLK1

LCLK2

LADO-LAD15

12 ■S

LAL

CAS

TR/DE

DEN

DDOUT

LRDY

Figure 11-3. Local Bus Write Cycle Timing

11 -7

LCLK1

LCLK2

LADO-LAD15

CAS

w

ift/OE

DEN

DDOUT

LRDY

01 I 02 I 03 I 04 I 01
I 	, 	I

HI-Z —
,--

Data 	S._

(High)

. 	I 	I

01

Local Memory Interface Bus - Local Memory Interface Timing

11.4.2 Local Memory Read Cycle Timing

Figure 11-4 illustrates a memory read cycle. LADO-LAD15 are forced to high
impedance following the latching of the column address. DEN and TR/QE both
go active low after CAS becomes low in order to enable read data from the
memory to the LAD pins. TR/QE enables the output drivers of the DRAMs and
VRAMs. DEN enables the external bidirectional buffers needed with memories
so large that external buffering (using a device such as a 74AS245 octal buf-
fer) of the data bus is required. The DDOUT signal serves as the direction
control for the external bidirectional buffers, and is low well in advance of the
high-to-low transition of DEN, and remains low well after the low-to-high
transition of DEN. The data that is read from memory must be valid during the
middle of the Q4 clock phase, as indicated in Figure 11-4. The low-to-high
transitions of TR/QE and DEN occur well in advance of the time at which the
LAD drivers turn on to output the row address of the next cycle. This prevents
bus conflicts.

Figure 11-4. Local Bus Read Cycle Timing

11-8

01 1 02 1 03 1 04 1 01 102 103 I 04 I 01

LCLK1

LCKL2

LADO-LAD15

RAS

LAL

(rn
L--1\

CAS

TR/OE

DEN

DDOUT

LRDY

Local Memory Interface Bus - Local Memory Interface Timing

11.4.3 Local Shift-Register-to-Memory Cycle Timing

A shift-register-to-memory cycle is a special type of cycle used in systems
with VRAMs. The cycle transfers the contents of the VRAM's internal shift
register to a selected row of its internal memory array. The cycle typically af-
fects all VRAMs in the system.

During the shift-register-to-memory cycle shown in Figure 11-5, both TR/QE
and W are low during the fall of RAS. VRAMs will recognize this timing as the
beginning of a shift-register-to-memory cycle. Conventional DRAMs may
need to be de-selected (by withholding the row or column address strobe, for
example) to prevent them from interpreting the cycle as a conventional read
cycle. Alternately, the output enable signal required by a DRAM such as the
TMS4464 can be synthesized by connecting DEN and DDOUT to the inputs
of a two-input OR gate. (In fact, any pair of the 	als DEN, DDOUT, and
TR/QE will work.) The low-to-high transition of TR, 	occurs after the fall of
CAS but prior to the rising edge of RAS. This timing provides compatibility
with a variety of VRAMs.

The GSP performs a shift-register-to-memory cycle when writing to a pixel
while the DPYCTL register's SRT bit is set to 1. For example, the instruction
PIXT AO , *A1 writes the pixel in AO to the address pointed to by A1. The
PSIZE register should contain the value 16 so that the write cycle is not pre-
ceded by a read cycle. When SRT is set to 1, this write is converted to the
shift-register-to-memory cycle shown in Figure 11-5. The row address is se-
lected from bits 12-26 of Al, which are output on LADO-LAD14 during the
cycle.

Figure 11 - 5. Local Bus Shift Register to Memory Cycle Timing

1 1-9

I 01 1 02 103 1 04 1 01 j 02 1 03 1 04 1 01

LCLK1

LCLK2

LADO-LAD15

LAL

CAS

W 	 (HI h)

TR/OE

DEN

DDOUT

LRDY

Local Memory Interface Bus - Local Memory Interface Timing

11.4.4 Local Memory-to-Shift-Register Cycle Timing

A memory-to-shift-register cycle is a special type of cycle used in systems
with VRAMs. The cycle transfers the contents of a selected row of a video
RAM's memory array to its internal shift register.

VRAM memory-to-shift-register cycles are primarily used to refresh the screen
of a CRT monitor. The cycles referred to elsewhere in this document as
screen - refresh cycles are in fact memory-to-shift-register cycles. The GSP
also performs a memory-to-shift-register cycle when reading a pixel (for ex-
ample, by executing a PIXT *AO,A1 instruction) while the SRT bit of the
DPYCTL register is set to 1.

During the memory-to-shift-register cycle shown in Figure 11-6, TR/QE is low
during the fall of RAS, but W remains high. VRAMs will recognize this timing
as the beginning of a memory-to-shift-register cycle, and their data outputs
will remain in high impedance. Conventional DRAMs may need to be de-
selected to prevent them from interpreting the cycle as a memory read cycle.
Alternately, the output enable signal required by a DRAM such as the
TMS4464 can be synthesized by connecting TETI and DDOUT to the inputs
of a two-input OR gate. The low-to-high transition of TR/QE occurs after the
fall of CAS but prior to the rising edge of RAS. This timing provides compat-
ibility with a variety of VRAMs.

Figure 11-6. Local Bus Memory to Shift Register Cycle Timing

11-10

LADO-LAD15

Local Memory Interface Bus - Local Memory Interface Timing

11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing

During the RAS -only DRAM refresh cycle shown in Figure 11-7, RAS and LAL
are the only active control signals. All other signals, including CAS, W, and
TR/QE, remain inactive high through the cycle. The row address, output on the
LAD pins during the high-to-low transition of RAS, is generated by the
REFCNT (DRAM-refresh counter) register.

1 01 	02 I 03 104 1 01 I 02 I 03 I 04 I 01

LCLK1

I
LCLK2

I 	I 	I 	 I

RAS 1--- 1\ 	

(High)

(High)

(High)

CAE

w

TR/OE

DEN

DDOUT

LRDY
	

USW.M.4.8%.

Figure 11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.6 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing

During the -E-A-before-RAS DRAM-refresh cycle shown in Figure 11-8, CAS
goes low before RAS goes low. Certain types of DRAMs and VRAMs recog-
nize this as the beginning of a DRAM-refresh cycle in which the address of
the row to be refreshed is generated by a counter on the RAM chip itself,
rather than by an external device such as the GSP. The row address output
by the GSP during the cycle is the same as would be output if the GSP were
configured to perform a RAS-only refresh cycle rather than a CAS-before-RAS
cycle. The address bits output on LADO-LAD13 remain stable from the start
of the row address time (start of 02) to the end of the column address time
(end of Q4). During row address time, LAD14 will be the same value as
LAD6. LAD15, on which the RF bus status bit is output, will be low during
the row address times. LAD14 and LAD15 are both high during column ad-
dress time. In contrast to other types of cycles in which RAs goes low, the LAL
output goes low at the start of Q3, after the fall of CAS and before the fall of
RAS. The timing of LAL is designed to support the use of decode circuitry
which latches the state of selected address/data pins during the fall of TT,
and which recognizes a CAS-before-RAS cycle by detecting a high level at the
RAS output during the fall of LAL.

01 	02 I 03 I 04 I 01 I 02 I 03 	N I 01 1 02 I

1 	
■

I LCLK1 	 ,

, 	1 	I 	I 	I 	: 	 1

LCLK2 	I 	I 	I 	 I 	 1
1 	 i 	I 	 I
1 	I 	I 	I 	I 	,

1 	I 	I 	I

LADO–LAD13

LAD14–LAD15

RAS

LAL

Undefined 	 ^- Row (

CAS

vw

DEN

DDOUT

LRDY
	

`-
 n

Figure 11-B. Local Bus CAS-Before-RAS DRAM-Refresh Cycle
Timing

(High)

(Nigh)

11 -12

(High)

(High)

(High)

(High)

1
1

(

Local Memory Interface Bus - Local Memory Interface Timing

11.4.7 Local Memory Internal Cycles

When the GSP is not performing one of the memory operations shown in
Figure 11 -3 through Figure 11 -8, its memory interface control signals remain
inactive, as shown in Figure 11 -9. This is called an internal cycle. Figure 11 -9
shows two sequential internal cycles. During internal cycles, the LRDY input
is ignored.

LCLK1

LCLK2

LADO-LAD15

RAS

LAL

CAS

w

TT:I/OE

DEN

DDOUT

LRDY

1 01 1 02 1 03 I Q4 1 01 1 02 1 03 1 Q4 1 Q1 ,

I,

Figure 11 - 9. Local Bus Internal Cycles Back to Back

11-13

1 1 - 1 4

01 I 02 I 03 I Q4 I 01

LCLK1 I

LCLK2 I

I 	I
02 I 03 04

LADO-LAD15

RAS

LAL

CAS

TR/OE

DEN

DDOUT

LRDY

Figure 11-10. I/O Register Read Cycle Timing

(High)

(High)

(High)

01

Local Memory Interface Bus - Local Memory Interface Timing

11.4.8 I/O Register Access Cycles

A special memory read or write cycle is performed when the GSP addresses
an on-chip I/O register. During this cycle, the external RAS signal falls, but the
external CAS remains inactive high for the duration of the cycle. I/O register
locations begin at address >C000 0000, and all 32 bits of the I/O register
address are decoded internally. The two MSBs of the 32-bit logical address
are not output at the LADO-LAD15 pins.

Figure 11-10 shows an I/O register read cycle and Figure 11-11 shows an
I/O register write cycle. These cycles occur when one of the TMS34010's
on-chip I/O registers is accessed by the on-chip processor or by the host
processor via a host-indirect access. An address in the range >C000 0000 to
>C000 01 FF is interpreted as an I/O register access by on-chip decode logic,
and the read or write cycle is modified as shown in Figure 11-10 or Figure
11-11. The two MSBs of the internal address (bits 30 and 31) are available
internally and are included in the internal decoding operation.

An I/O register read or write cycle is always two clock periods in duration, and
LRDY is ignored. The • • control out . 1.111. that are active low during the cycle
are RAS and LAL. The W, TR/QE, and DDOUT outputs all remain in-
active high. The row and column addresses output at the LADO-LAD15 pins
are all Os. All three bus status bits are inactive (RF is high, IAQ is low, and TR
is high). During the read cycle shown in Figure 11-10, the LADO-LAD15 pins
are driven to high impedance during the data phase of the cycle. During the
write cycle shown in Figure 11-11, the LADO-LAD15 pins contain the valid
data being written to the I/O register.

01 02 03
I
 04 01 02 03 04 01

I 	,

•

MIBIZEMEMI LRDY

LCLK1

LCLK2

LADO-LAD15

RAS 1-1-1\

LAL

(High)CAS

W (High)

WOE

DEN

DDOUT

Local Memory Interface Bus - Local Memory Interface Timing

Figure 11-11. I/O Register Write Cycle Timing

11.4.9 Read-Modify-Write Operations

The GSP's read-modify-write operation, which consists of separate read and
write cycles, is not the same as the read-modify-write cycle specified for some
DRAMs. As explained in Section 5, when inserting a field into memory that
is not aligned to 16-bit word boundaries, the GSP memory interface logic may
be required to perform read-modify-write (RMW) operations on one or more
words in memory. A RMW operation consists of the following sequence of
steps:

1) A word is read from memory.

2) The portion of that word corresponding to the field being inserted is
loaded with the new value.

3) The modified word is written back to memory.

The read cycle is as shown in Figure 11 -4 (page 11-8), and the write cycle is
as shown in Figure 11 -3 (page 11 -7).

1 1 -1 5

Local Memory Interface Bus - Local Memory Interface Timing

11.4.10 Local Memory Wait States

The timing shown in Figure 11 -3 through Figure 11 -8 assumes that the LRDY
input remains high during the cycle. The LRDY pin is pulled low by slower
memories requiring a longer cycle time. The GSP samples the LRDY input at
the end of Q1, as indicated in the figures. If LRDY is low, the GSP inserts an
additional state, called a wait state, into the cycle. Wait states continue to be
inserted until LRDY is sampled at a high level. The cycle then completes in
the manner indicated in Figure 11 -3 through Figure 11 -8.

The LRDY input is ignored by the GSP during internal cycles, as indicated in
Figure 11 - 9.

Figure 11-12 shows an example of a read cycle extended by one wait state.
The first time LRDY signal is sampled, a low level is detected by the GSP,
causing the cycle to be delayed by a wait state. When LRDY is sampled again
one local clock period later, a high level is detected, permitting the cycle to
complete. The time during which RAS, CAS, LAL, TR/QE, DEN, and DDOUT
remain low is extended by one state (one local bus clock period).

14—Walt State —p.1

011021031 041 01102103104101 102 103104101102

LCLK1

LCLK2

LADO—LAD7 	Row

LAL

(HIP)

'4" iV.441.414
4 .4 W4Atn. Do :C1 ouzo

Figure 11-12. Local Bus Read Cycle with One Wait State

CAS

w

TR/OE

DEN

DDOUT

LRDY

1 1 -1 6

Local Memory Interface Bus - Local Memory Interface Timing

Figure 11-13 is an example of a write cycle extended by one wait state. The
first time LRDY signal is sampled, a low level is detected by the GSP, causing
the cycle to be delayed by a wait state. When LRDY is sampled again one
local clock period later, a high level is detected, permitting the cycle to com-
plete. The time during which RAS, CAS, LAL, W and DEN remain low is ex-
tended by one state.

14—Walt State -4

I 01 I 02 I 03 I 04 I 01 I 02103 I 04 I 01 1021 03 I 041 Q1 I 02 I

LCLK1

LCLK2

LADO-LAD15
C311: 	 Data

LAL

CAS

%If

TR/OE 	 (High)

DEN

DDOUT

LRDY

Figure 11-13. Local Bus Write Cycle with One Wait State

Figure 11-14 (page 11 -18) is an example of a shift-register-to-memory cycle
extended by one wait state. The first time the LRDY signal is sampled, a low
level is detected by the GSP, causing the cycle to be delayed by a wait state.
When LRDY is sampled again one local clock period later, a high level is de-
tected, permitting the cycle to complete. The time during which RAS, CAS, and
17.-a-: remain low is extended by one state. The W and TR/QE low times are not
extended, however. Similarly, during a memory - to - shift - register cycle, TR/QE
is not extended.

1 1 - 1 7

Local Memory Interface Bus - Local Memory Interface Timing

i4— Walt State —ol

I011021031041011021031041011021031041011021

LCLK1

LCLK2

LADO-LAD15 	R=4 EL

Undefined

	I

CAS

TR/oE

DEN

DDOUT

LRDY

 11-14. Local Bus Shift-Register-to-Memory Cycle with One
Wait State

11.4.11 Hold Interface Timing

The TMS34010 contains a hold interface through which external bus-master
devices can request control of the local memory bus. When the GSP grants a
hold request, it drives its local memory address/data bus and control outputs
to high impedance, and the requesting device becomes the new bus master.
When the requesting device no longer requires the bus, it removes its hold
request, and the GSP again assumes control of the local bus.

Figure 11-15 shows the GSP releasing control of the local bus in response to
a hold request. The GSP samples the state of the HOLD input at each LCLK2
rising edge (at the end of the Q1 phase of the clock). The state of the hold
acknowledge signal (active or inactive) is output on the HLDA/EMUA pin dur-
ing the Q3 and Q4 clock phases (LCLK1 low). During the first (or leftmost)
LCLK2 rising edge, the hold request is inactive. Consequently, the hold ac-
knowledge signal remains inactive during the first LCLK1 low phase. By the
second LCLK2 rising edge, the hold request has been activated, and the GSP
responds by acknowledging the hold request during the next LCLK1 low
phase. The address/data lines and majority of the control lines are driven to
high impedance at the start of the next Q2 phase (LCLK2 rising edge). The
DDOUT and DEN pins are driven to high impedance a quarter clock later.

11-18

Local Memory Interface Bus - Local Memory Interface Timing

Figure 11-16 shows the GSP resuming control of the local bus after deacti-
vation of the hold request. Again, the GSP samples the state of the HOLD in-
put at each LCLK2 rising edge. During the first LCLK2 rising edge, the hold
request is still active, and the GSP responds during the next LCLK1 low phase
with an active hold acknowledge signal. By the second LCLK2 rising edge,
the hold request has been removed. The GSP responds by outputting an in-
active hold acknowledge signal during the next LCLK1 low phase. At the next
LCLK2 rising edge, the GSP begins to drive its address/data pins and the
majority of its control pins to logic-high or logic-low levels. The DEN and
DDOUT signals remain in high impedance for one additional quarter clock
before they too begin to be driven.

1 01 02 03 04 1 al 1 02 03 04 1 01 02 03 04 1

LCLK1

LCLK2

LADO-LAD15

F ■S

CAS

112:11140 Data --- HI-Z --

TR/eit. 	

DDJ

DDOUT

LRDY

--HI-Z-

\ --HI-Z-

HOLD
Reg

FZIOER_Mn_ifina_ Rag

HLDA/EMUA 14_ No _01 Ack

Figure 11-15. TN/1534010 Releases Control of Local Bus

In Figure 11 -15, the first active-low pulse of the HLDA/EMUA output is an early
acknowledgment, and the bus will not be released for another three quarters
of a clock. The early acknowledgment gives advance warning to the device
requesting the hold that the bus is about to be released by the GSP, allowing
the device time to prepare to become the new bus master. The GSP outputs
the active hold acknowledge signal only when it is prepared to release the bus
within the next clock period. If the GSP must Wait longer than this to release
the bus, its hold acknowledgment will be withheld until it can release the bus.

11-19

Local Memory Interface Bus - Local Memory Interface Timing

For instance, if the LRDY signal in Figure 11-15 were low instead of high at
the second rising edge of LCLK2, the GSP would be forced to wait, and would
therefore not acknowledge the hold request until later, when the not-ready
condition was removed. Also, if the hold request in Figure 11-15 was asserted
initially during the first LCLK2 rising edge rather than the second, the GSP
would delay its hold acknowledgment until the second LCLK1 low clock
phase, knowing that the cycle in progress would not be completed until the
third Q2 phase in the diagram.

A hold request has a higher priority than any internally generated memory cy-
cle requests, including:

• Screen refresh

• DRAM refresh

• Indirect access by the host processor

• GSP instruction fetch or data access

A hold request will be delayed only to allow a memory cycle already in pro-
gress to complete.

External devices can activate or deactivate the HOLD input at any time, as long
HOLD is at a valid logic level during each rising edge of LCLK2, and meets the
required setup and hold times with respect to this edge. After the GSP grants
the bus to an external device (via an active-low level on the HLDA/EMUA out-
put during the Q3 clock phase), it will continue to acknowledge the hold re-
quest during the Q3 phases of subsequent clock cycles. The external device
will retain control of the bus until it deactivates its hold request.

External devices should avoid placing the GSP in hold for long periods. While
the GSP is in hold, it can perform neither screen-refresh nor DRAM-refresh
cycles. Furthermore, a host processor attempting to access the GSP's local
memory through the host interface registers while the GSP is in hold may re-
ceive a not-ready signal. When this occurs, the host will be forced to wait to
complete its access until the GSP leaves the hold state.

If a request for a DRAM-refresh or screen-refresh cycle is generated within the
GSP while an external device controls the bus, the GSP will retain the request
and perform the DRAM-refresh or screen-refresh cycle after the external de-
vice has returned control of the bus to the GSP. However, if a requested
DRAM-refresh cycle is prevented from occurring for so long that a second
DRAM-refresh cycle is requested before the first DRAM-refresh cycle can oc-
cur, the first DRAM-refresh request will be lost. Similarly, if a screen-refresh
request is prevented from occurring for so long that a second screen-refresh
cycle is requested before the first screen-refresh cycle can occur, the first
screen-refresh request will be lost.

The HLDA/EMUA output is multiplexed between the hold acknowledge
(HLDA) and emulate acknowledge (EMUA) signals. The HLDA signal is output
during the LCLK1 low phase, and the EMUA signal is output during the LCLK1
high phase.

11-20

LADO- LAD15 — — —HI-Z

— — —HI-Z

LAL — — —HI-Z

CAS —

W — —HI-Z

111/0E — — - HI-Z —

DEN 	—HI-Z•

DDOUT —

LRDY

HOLD

HLDA/EMUA 	 O Ack ki___1400k _01

No
Req

Local Memory Interface Bus - Local Memory Interface Timing

1 01 1 02 03 04 1 01 X 02 03 04 1 01 02 03 04 1

LCLK1

LCLK2

Figure 11-16. TMS34010 Resumes Control of Local Bus

11-21

LCLK1

LCLK2

BESET

LADO-LAD15 • — HI-Z

R 	(HIGH)

LAL 	(HIGH)

DER, ()Dour 	(HIGH)

Local Memory Interface Bus - Local Memory Interface Timing

11.4.12 Local Bus Timing Following Reset

Figure 11-17 shows the timing of the local bus signals following reset. At the
end of reset, the TMS34010 automatically performs a series of eight RAS - on ly
refresh cycles, as required to initialize certain DRAMs (such as the TMS4256
and TMS4464) and VRAMs (such as the TMS4461) following power-up.
The asynchronous low-to-high transition of RESET is sampled at the second
high-to-low LCLK1 transition in Figure 11-17. In less than two local clock
periods following this LCLK1 transition, the first of the eight RAS-only cycles
begins, as shown at the right side of Figure 11-17.

Each of the eight ITAT cycles following reset is two clock periods in duration,
but can be extended by a not-ready signal (LRDY low). The timing for each
cycle is identical to that of a RAS-only DRAM-refresh cycle, including the bus
status codes output during the row and column address times. The row ad-
dress for each of the eight RAS-only cycles is all Os.

	

NEVEr aI.H -EVEL 	 FIRST OF 812M-ONLY

	

IS LATC I •ED •1TE?NALLY 	 7t0 	 CICLES BEGINS

01102103104101102103104101102103104101102103104I

Figure 11-17. Local Bus Timing Following Reset

11-22

Local Memory Interface Bus - Addressing Mechanisms

11.5 Addressing Mechanisms

The GSP addresses memory by means of a 32-bit logical address. As ex-
plained in Section 3, each 32-bit logical address points to a bit in memory.

Logical address bits are numbered from 0 to 31, where bit 0 is the LSB and
bit 31 is the MS B. Figure 11-18 illustrates the manner in which address bits
4-29 are output to physical memory. Each column in the figure indicates an
address/data bus pin, LADO-LAD15, and below it is the corresponding bit of
the logical address output at the LAD pin during the fall of RAS and during the
fall of b- P. Bus status bits RF, TM and IAQ are output on LAD14-LAD15.

LAD Pin Numbers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GSP
Logical

Address
Bitst

At Fall RF 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
of RAS

At Fall IA0 TR 29 28 27 14 13 12 11 10 9 8 7 6 5 4
of CAS

Bus status signals:
RF — DRAM refresh cycle
IAQ — Instruction acquisition cycle
TR — Shift-register-transfer cycle

Figure 11-18. External Address Format

Key features of the local bus addressing mechanism include the following:

• The two MSBs of the 32-bit logical address (bits 30 and 31) are not
output.

• The four LSBs of the 32-bit logical address (bits 0 to 3) are not output,
but are used internally to designate a bit boundary within a 16-bit word
accessed in the external memory.

• The address bits output on LADO-LAD10 during the falling edges of FTAZ
and CAS are aligned so that 16 consecutive bits from the logical address
are available at any eight consecutive pins in the range LADO to LAD10.
The address bits are output in this way in order that the 8-bit row ad-
dress and 8-bit column address presented to the dynamic RAMs can al-
ways be taken from the same eight address/data pins. This eliminates
the need for external address multiplexers.

• Logical address bits 12-14 are output twice during a memory cycle -
during both the RAS and CAS falling edges - but at different pins. This
allows a variety of memory organizations and decoding schemes to be
used, as will be explained shortly.

Pins LADO-LAD10 form an 11 -bit zone in which logical address bits 12-14
are overlapped (that is, they are issued in both cycles, but on different pins).
The row and column address bus is connected to any eight consecutive pins
within this zone. The actual position is determined by the bank-decoding
scheme selected for a particular memory organization.

11-23

Local Memory Interface Bus - Addressing Mechanisms

Output along with the address are three bus status signals:

• The RF (DRAM refresh) bit is output on LAD15 during the fall of RTg.
It is low if the cycle that is just beginning is a DRAM-refresh cycle (ei-
ther RAS-only or CAS-before-RAS); otherwise, RF is high.

• The TR (VRAM shift-register-transfer) bit is output on LAD14 during the
fall of CAS, and is low if the cycle in progress is a video RAM shift-re-
gister transfer. Otherwise, TR is high. In either event, the state of the TR
bit reflects the state of the TR/QE output during the falling edge of RAS
within the same cycle.

• The IAQ bit is output on LAD15 during the fall of CAS, and is high if the
cycle is an instruction fetch; otherwise, IAQ remains low. The term in-
struction fetch includes not only reads of opcodes, but also immediate
data, immediate addresses, and so on. The instruction cache may or may
not be disabled.

IAQ is active high when words are fetched from memory to load the instruc-
tion cache. A block (or subsegment) of words is fetched in a series of read
cycles, during which IAQ is active high. The PC points to an instruction word
within the block, but the block may contain data as well as instruction words
(opcodes, immediate addresses, immediate data, and so on). Only during ex-
ecution will the GSP distinguish instruction words from data words residing
in the cache. Instruction words will be fetched from the cache as they are
needed, but data inadvertently loaded into the cache will be ignored and all
memory data reads or writes will result in accesses of the memory rather than
the cache.

When the cache is disabled, IAQ is active high only during a cycle in which
an instruction word (a word pointed to by the PC) is fetched.

11.5.1 Display Memory Hardware Requirements

The minimum number of bits of memory required to implement the display
memory is the product of the total number of pixels (on-screen and off-screen
areas combined) and the number of bits per pixel. The minimum number of
VRAMs required to contain the display memory is calculated as follows:

Number of VRAMs = (pixels per line) x (lines per frame) x (bits per pixel)

Number of bits per VRAM

This calculation yields the minimum number of VRAMs needed, but additional
VRAMs may be required in some applications. For instance, XY addressing
can be supported by making the number of pixels per line of the display me-
mory a power of two, but this may require more than the minimum number of
VRAMs needed to contain the display.

11-24

Local Memory Interface Bus - Addressing Mechanisms

11.5.2 Memory Organization and Bank Selecting

During a single local memory cycle, one data word (16 bits) is transferred
between the GSP and the selected bank of memory. The memory is parti-
tioned into a number of banks, where each bank contains the number of me-
mory devices that can be accessed in a single memory cycle. The number of
devices per bank is therefore determined by dividing the width of the data bus
by the number of data pins per device. The GSP data bus is 16 bits wide, and
can access 16 memory data pins during a single cycle. This means, for ex-
ample, that a bank composed of 64K-by-1 RAMs contains 16 RAM devices.
A bank composed of 64K-by-4 RAMs contains 4 RAM devices.

In a typical system, the local memory is divided into two parts, one consisting
of the display memory and the other consisting of additional DRAMs needed
to store programs and data. This additional RAM can be called the system
memory. A high-order address bit is typically used to select between the dis-
play memory and system memory. Within the display memory or system me-
mory, some address bits are provided as the row and column addresses to the
selected bank, while other address bits are used to select one of the banks.

The number of banks of VRAM needed for the display memory is calculated
by dividing the total number of VRAMs by the number of VRAMs per bank.
This in turn determines how many bank select bits must be decoded.

11.5.3 Dynamic RAM Refresh Addresses

DRAMs (and VRAMs) require periodic refreshing to retain their data. The
GSP automatically generates DRAM-refresh cycles at regular intervals. The
interval between refresh cycles is programmable, and DRAM refreshing can
be disabled in systems that do not require it.

The GSP can be configured to generate one of two types of DRAM-refresh
cycle timing: RAS-only or CAS-before-RAS. Figure 11-7 shows RAS-only tim-
ing, and Figure 11-8 shows CAS-before-RAS timing. During a RAS-only re-
fresh cycle, the GSP provides the 8-bit row address needed to refresh a
particular row within each of the DRAMs in the memory system. DRAMs that
support CAS-before-RAS cycles each contain an on-chip counter which gen-
erates the row address needed during the cycle. In other words, these devices
do not rely on the GSP to provide the row address during the CAS-before-RAS
cycle.

The row address output by the GSP during a DRAM-refresh cycle is the same
regardless of whether the GSP is configured for RAS-only or CAS-before-RAS
refresh timing. The fact that the GSP outputs a valid row address during a
cAS-before-RAs cycle makes possible a hybrid system in which some DRAMs
use CAS-before-RAS refresh timing while others use RAS-only timing. This
hybrid approach configures the GSP to perform CAS-before-RAS refresh, and
relies on external decode logic to prevent the active-low column address
strobe from reaching those DRAMs that require RAS-only refreshing. The de-
code logic detects the fact that 'TA-S. falls before 1-3-Kg during a rA—g-before-RAS
cycle, and uses this to inhibit transmitting the CAS signal to the RAS-only, ,
DRAMs.

11-25

GSP

LAD15E

LAD14[

LAD13E

LAD12[

LAD11E

LAD1O[

LADS E
LAD8 [
LAD7 [
LAD8

LADS [
LAD4

LADS [
LAD2

LAD1 E
LADO E

Local Memory Interface Bus - Addressing Mechanisms

Several bits in the CONTROL register determine the manner in which the GSP
performs DRAM refreshing. The RM bit selects the type of DRAM-refresh
cycle:

• RM=0 selects RAS - only cycles
• R M=1 selects CAS - before - RAS cycles

The RR bits determine the interval between DRAM-refresh cycles:

• RR=00 selects refreshing every 32 local clock periods
• RR=01 selects refreshing every 64 local clock periods
• RR=10 is a reserved code
• RR=11 inhibits DRAM refreshing

At reset, internal logic forces the RM bit to 0 and the RR field to 00. While the
RESET signal to the GSP is active, no DRAM-refresh cycles are performed.
Following reset, the GSP begins to automatically perform DRAM-refresh cy-
cles at regular intervals.

Both the interval between DRAM-refresh cycles and the addresses output
during the cycles are generated within the REFCNT (DRAM-refresh count)
register. Bits 2-15 of REFCNT form a continuous binary counter. The RINTVL
field occupies bits 2-7, and counts the length of the interval between succes-
sive internal requests for DRAM-refresh cycles. The eight MSBs of REFCNT
form the ROWADR field, containing the row address output to memory during
the DRAM-refresh cycle.

— (DRAM Refresh
RF BUS Status Bit)
ROWADR6 = REFCNT14

ROWADR5 = REFCNT13

ROWADR4 = REFCNT12, etc.

ROWADR3

ROWADR2

ROWADR1

ROWADRO

ROWADR7
Example:

ROWADR6 LAD2-LADO provide the
8-bit row ar.I Tess to a ROWADR5 block of l'if.VOr or VRAMs.

ROWADR4

ROWADR3

ROWADR2

ROWADR1

ROWADRO

Figure 11-19. Row Address for DRAM-Refresh Cycle

11 -26

Local Memory Interface Bus - Addressing Mechanisms

During a DRAM-refresh cycle, the 8-bit row address in the ROWADR field of
the REFCNT register is output on the LAD pins during the high-to-low tran-
sition of Tag. As shown in Figure 11-19, the eight bits of ROWADR are
output on LADO-LAD7. The seven LSBs of ROWADR are also output on
LAD8-LAD14. LADI 5 transmits the F7 bus status signal, low during the fall
of RAS.

Assume that LAD2-LAD9 are used as the 8-bit row address by a bank of
DRAMs, as indicated in Figure 11-19. The address bits output on
LAD2-LAD9 are the same eight bits output on LADO-LAD7, but in a different
order. During a series of 256 DRAM-refresh cycles, the row addresses output
on LADO-LAD7 and LAD2-LAD9 contain the same bits. Thus, if the ad-
dresses output on LADO-LAD7 cycle through all 256 row addresses then the
addresses output on LAD2-LAD9 will also cycle through all 256 row ad-
dresses, but in a different order.

11.5.4 An Example - Memory Organization and Decoding

As an example, consider a memory organization based on the address decod-
ing scheme shown in Figure 11-20. Three logical address bits (4, 21, and 26)
are used as bank-select bits. Logical address bits 5-12 are used as the 8-bit
column address, and bits 13-20 are used as the 8-bit row address. Referring
to Figure 11-18, the row and column addresses are multiplexed out on the
same eight pins, LAD1-LAD8. The total number of address bits used to ad-
dress external memory is 19, for a total address reach of one megabyte. The
remaining address bits output by the GSP are not used for this example.

32 Bit Logical Address

31 30 29 28 27 28 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
I 	I 	 I 	I 	 I 	I

Don't 	I 	Don't 	 8-Bit Row 	 8-Bit Column 	 Bit
Care 	 Care 	 Address 	 Address 	 Select

Bank 	 Bank 	 Bank
i..• • :t 	Select 	 Select

i:hi. 	 Bit 1 	 Bit 0
(362) 	 (BS1) 	 (B60)

Figure 11-20. Address Decode for Example System

Bank select bit 2 (BS2) in Figure 11-20 selects between the display memory
(BS2=0) and the system memory (BS2=1). System memory is a block of
conventional DRAM used for program and data storage. BS2 becomes valid
before RAS falls, and thus can be used to determine whether the row-address
strobe is gated to the display memory or to the system memory. The average
power dissipation is reduced because only one or the other (the display me-
mory or the system memory) is enabled during a particular memory read or
write cycle.

Figure 11-21 shows the structure of the display memory. Its dimensions are
1024 by 1024 at four bits per pixel. Bank select bit 1 (BS1) selects between
the top (BS1 =0) and bottom (BS1 =1) halves of the display memory. Since
BS1 becomes valid before the fall of RAS, it can be used to gate RAS to either
the upper or lower half of the display memory during a memory read or write

11 -27

E'en Word 	Word
= 	(BSC = 1)

T
•4 . Lines

= 0)

• •. Lines
l! , 	= 1)

1024 Pixels per Line 4 Bits
per Pixel

Figure 11-21. Display Memory Dimensions for the Example

Local Memory Interface Bus - Addressing Mechanisms

cycle. By transmitting the row address strobe to only half of the display me-
mory, the power dissipation for the cycle is significantly reduced.

Bank select bit 0 (BSO) selects between the even word and odd word of each
pair of adjacent words in the display memory. Each word contains four adja-
cent pixels. Odd and even words are stored in two separate banks of VRAMs,
and the decode logic gates the column address strobe to the selected bank
only. The row address strobe is gated to both banks (odd and even words).
This increases the power dissipation over that required if only one bank were
active. A compensating benefit of this organization, however, is that it reduces
the rate at which each VRAM must supply serial data to refresh the screen.
During screen refresh, the bank containing the even words and the bank con-
taining the odd words alternately provide data to the video monitor. Alter-
nating between the two banks in this fashion reduces the data bandwidth
requirements of each bank to about 10 MHz, which is an eighth of the video
bandwidth.

The decode logic must be capable of more than just selecting a particular bank
of the display memory or system memory during a memory read or write cycle.
It must also be capable of enabling all DRAMs and VRAMs during a
DRAM-refresh cycle, and enabling all VRAMs during a screen-refresh (me-
mory-to-shift-register) cycle. This means that the decode logic must distin-
guish DRAM-refresh and screen-refresh cycles from memory access cycles,
and during a refresh cycle broadcast the row and column address strobes to
all devices that require them. The timing of the RF and TR bus status bits has
been designed to make these signals convenient for the design of the decode
logic.

11-28

Local Memory Interface Bus - Addressing Mechanisms

During a read or write cycle, the value of BS2, output with the row address,
determines whether RAS is gated to the display memory or to system memory.
During a DRAM-refresh cycle, the decode logic must broadcast the row-ad-
dress strobe to all dynamic RAMs (including the VRAMs). The decode logic
must be able to determine prior to the fall of the row address strobe whether
the cycle that is beginning is a DRAM-refresh cycle, or a memory read or write
cycle. This is the reason the GSP outputs the RF bus status signal prior to the
fall of RAS.

The decode logic uses the value of BS1 to determine whether the top or bot-
tom half of the display memory receives an active row-address strobe during
a memory read or write cycle. The same logic must also be capable of broad-
casting RAS to all VRAMs during either a DRAM-refresh cycle or a shift-
register-transfer cycle. The decode logic therefore monitors the state of the
GSP's TR/QE output prior to the fall of RAS. A low level on TR/QE indicates
that the cycle just beginning is a shift-register-transfer cycle, and that RAS
should be broadcast.

While the decode logic uses the value of BSO to determine whether the even
or odd word receives a column-address strobe during a read or write cycle
involving the display memory, the same logic must be capable of broadcasting
CAS to all VRAMs during a screen-refresh cycle. Rather than require an ex-
ternal latch to capture the state of the 173/07E during the fall of T, the GSP
outputs the same information a second time in the form of the TR bus status
signal, which is valid prior to and during the fall of CAS.

11 -29

This page intentionally left blank.

12. The TMS34010 Instruction Set

This section contains the TMS34010 instruction set (in alphabetical order).
Related subjects, such as addressing modes, are presented first.

Section Page
12.1 Symbols and Abbreviations 	 12-2
12.2 Addressing Modes 	 12-3
12.3 Move Instructions Summary 	 12-8
12.4 PIXBLT Instructions Summary 	 12-14
12.5 PIXT Instructions Summary 	 12-14

- TMS34010 Instruction Set Summary 	 12-15
- Example Instruction 	 12-21

12-1

TMS34010 Instruction Set - Symbols and Abbreviations

12.1 Symbols and Abbreviations

The symbols and abbreviations in Table 12-1 are used in the addressing
modes discussion, the instruction set summary, and in the individual instruc-
tion descriptions.

Table 12-1. TMS34010 Instruction Set Symbol and Abbreviation Definitions

Symbol Definition Symbol Definition

Register File A Registers AO—A14, including SP Register File B Registers BO—B14, including SP

Rs Source register Rd Destination register

RsX X half of source register RsY Y half of source register

RdX X half of destination register RdY Y half of destination register

An Register n in register file A Bn Register n in register file B

PC Program counter PC' PC prime. Specifies the PC of the
next instruction (PC + instruction
length)

ST Status register N Status sign bit

C Status carry bit Z Status zero bit

V Status overflow bit IE Global interrupt enable bit

SP Stack pointer TOS Top of stack

SAddress Source address DAddress Destination address

MSW Most significant word LSW Least significant word

LSB Least significant bit MSB Most significant bit

> Hexadecimal number K 5-bit constant

IW 16-bit immediate value IL 32-bit immediate value

W 16-bit immediate value L 32-bit immediate value

F Field select. F=0 selects FSO, FE0
in the status register, F=1 selects
FS1, FE1

R Register file select. Indicates
which register file (A or B) the
operand registers are in. R --=0
specifies register file A, R=1
specifies register file B

() In 	instruction syntax, contents
of. For example, (Rd) specifies
the contents of the destination
register

. • Concatenation. For example,
Rd:Rd + 1 means the concatena-
tion of one register and the next
into a 64-bit value, as in AO:A1

Becomes the contents of — l's complement

I 	I Absolute value [] Optional parameter

Indirect addressing @ Absolute addressing

<text> In instruction syntax, indicates a "fill in the blank" — substitute an actual value,
address, or register for the text enclosed in the ang e brackets. For example, substitute
an actual source register for <Rs>; substitute an actual destination address for
<DAddress>.

12-2

TMS34010 Instruction Set - Addressing Modes

12.2 Addressing Modes

The TMS34010 supports a variety of addressing modes. Most instructions
use only one addressing mode; however, the MOVB, MOVE, and PIXT in-
structions each support several addressing modes. The following subsections
describe the TMS34010 addressing modes.

12.2.1 Immediate Addressing

In this addressing mode, the source operand may be one of the following:

• A 16-bit immediate value (designated as IW)

• A 32-bit immediate value (designated as IL)

• A constant (designated as K)

Figure 12-1 shows an example of the movi <IL> , <Rd> instruction. A 32-bit
immediate value, >FC00, is loaded into the destination register, A3.

	

Execution Unit
	

Program Memory

31
	

0
	

15
	

0
AO

A3

ST

SP

PC

MOVI >FC00, A3

Figure 12-1. Immediate Addressing Mode

12.2.2 Indirect XY

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs.XY - The register contains the XY address of the data.

• *Rd.XY - The register contains the XY address where the data will be
moved.

12-3

0

Execution Unit

31

Program Memory

15 	 0

N V C

N

15

AO

A4

ST

SP

PC

>07E4

FADDR (LSW)

FADDR (MSW)

Data Memory

MOVB •MDR, A4
N

N+1

N+2

N+3

0

I

B-File

TMS34010 Instruction Set - Addressing Modes

12.2.3 Absolute Addressing

A source operand or a destination operand can be specified as an absolute
address.

• @SAddress - The specified address contains the data.

• @DAddress - The data will be moved into the specified address.

Figure 12-2 shows an example of the MOVB @<SAddress>, <Rd> instruction.
In this example, the symbol FADDR represents a memory address; the data at
this address are loaded into register A4.

Figure 12-2. Absolute Addressing Mode

12.2.4 Register Direct

A source operand or a destination operand can be specified using register di-
rect addressing mode.

• Rs - The source register contains the data.

• Rd - The data will be moved into the destination register.

Figure 12-3 shows an example of the MOVE <Rs> , <Rd> instruction. The
contents of the source register, A3, are moved into the destination register,
B2.

12 - 4

N

N+1

MOVE A3, B2

>FC00 >OC

V C

N

A3

B2

ST

SP

PC

TMS34010 Instruction Set - Addressing Modes

Execution Unit
	

Program Memory

31 	 0
	

15
	

0

Figure 12-3. Register Direct Addressing Mode

12.2.5 Register Indirect

A source operand or a destination operand can be specified using register in-
direct addressing mode.

• *Rs - The register contains the address of the data.

• *Rd- The register contains the address where the data will be moved.

Figure 12-4 shows an example of the MOVE <Rs> , * <Rd> , [<F>] instruction.
Register A4 contains the source operand. Register A3 contains an address
(represented by the symbol FADDR) where the data in A4 will be moved.

Execution Unit

31

Program Memory

31 	 0
(Default) • •

>8083 •
A3 FADDR N

A4 FDATP
MOVE A4, *A3, 0

(Indirection)
B-File

ST
Data Memory

FADDR NI 	I 	I 	I
15 SP Memory Address

PC FDATA •

Figure 12 - 4. Register Indirect Addressing Mode

12-5

>8083 N

N+1

N+2

>10

FADDR+18 Data Memory

0

FDATA

15

AO • • •

67

SP

PC

(Displacement)

MOVE M, ■A3(18), 0

(Indirection)

Memory Address

1

A3 	FADDR

A4 DATA

B-Ale

NI cl Zl

TMS34010 Instruction Set - Addressing Modes

12.2.6 Register Indirect with Displacement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs(Displacement) - The address of the data is found by adding the re-
gister contents to the signed displacement.

• *Rd(Displacernent) - The data will be moved to the address specified
by the sum register contents and the signed displacement.

Figure 12 - 5 shows an example of the MOVE <Rs> , * <Rd> (<Displacement>)
instruction. Register A4 contains the source operand. Register A3 contains
an address (represented by the symbol FADDR). The displacement, 16, is
added to FADDR, to point to the location where the data in A4 will be moved.
FS0 contains the field size.

Execution Unit 	 Program Memory

31 	 0

Figure 12-5. Register Indirect with Displacement Addressing Mode

12.2.7 Register Indirect with Predecrement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• -*Rs - The address of the data is found by decrementing the register
contents by the field size of the move.

• -*Rd - The data will stored at the address found by decrementing the
register contents by the field size of the move.

Figure 12-6 shows an example of the MOVE <Rs> , * - <Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by the symbol FADDR). This address is decremented by the field
size of the move, so that it points to the location where the data in A4 will be
moved. FS1 contains the field size.

12-6

AO
•

A3 	FA!)DR
A4 1-----FO■ T4

•

•

FADDR + FS

B-File
Data Memory

15 	 0

FADDR V N C z ST

SP

PC FDATA

0 15 31 	 0

FS=Fleld Size

TMS34010 Instruction Set - Addressing Modes

Execution Unit Program Memory

ST

SP

PC

31
	

0

FS=Field Size

15

>A0843

Data Memory

0 15 L

N

N+1

MOVE A4, ■-A3, 1

Memory Address

AO

A3

A4

0 	
Predecrement

Figure 12-6. Register Indirect with Predecrement Addressing Mode

12.2.8 Register Indirect with Postincrement

A source operand or a destination operand can be specified using this ad-
dressing mode.

• *Rs+ - The register contains the address of the data. The register con-
tents are incremented after the move.

• *Rd+ - The register contains the address where the data will be moved.
The register contents are incremented after the move.

Figure 12-7 shows an example of the MOVE <Rs> , * - <Rd> instruction. Reg-
ister A4 contains the source operand. Register A3 contains an address (re-
presented by FADDR) where the data in A4 will be moved. The register
contents are incremented after the move. FSO contains the field size.

Execution Unit 	 Program Memory

Postincrement

N

N+1

MOVE A4, ■A3+, 0

Memory Address

Jr
Figure 12-7. Register Indirect with Postincrement Addressing Mode

12-7

TMS34010 Instruction Set - Move Instructions Summary

12.3 Move Instructions Summary

The move instructions use the GSP's bit-addressing and field operation capa-
bilities to provide flexible memory management. All memory addresses for
move operations are bit addresses. When a field is moved from memory to a
register. Register bits to the left of the field are filled with either Os or the sign
bit, depending on the field extension mode. When a field is moved to memory
from a register, the data for the field is assumed to be right justified within the
register, and the bits to the left of the field are ignored. Table 12-2 summarizes
the GSP move instructions.

Table 12-2. Summary of Move Instructions

Move Type Mnemonic Description

Register MOVE Move register to register

Constant MOVK Move constant (5 bits)

MOVI Move immediate (16 bits)

MOVI Move immediate (32 bits)

XY MOVX Move 16 LSBs of register (X half)

MOVY Move 16 MSBs of register (Y half)

Multiple Register MMFM Move multiple registers from memory

MMTM Move multiple registers to memory

Byte MOVB Move byte (8 bits, 9 addressing modes)

Field MOVE Move field to/from memory/register
(15 addressing modes)

12.3.1 Register-to-Register Moves

The register-to-register MOVE instruction moves data directly between register
files A and B. This is a 32-bit move; the entire contents of the destination re-
gister are replaced.

12.3.2 Constant-to-Register Moves

The MOVK and MOVI instructions load a register with a constant value.
MOVK places a zero-extended value of 1 to 32 in the register. MOVI has two
modes, 16-bit and 32-bit. The 32-bit MOVI uses two extension words which
explicitly define the value to be stored in the register. The extension word for
the 16-bit MOVI contains a value which is sign extended to 32 bits when
moved into the register. Use the CLR instruction to store 0 in a register.

12.3.3 X and Y Register Moves

The MOVX and MOVY instructions move the X and Y halves, respectively; the
other half of the destination register is not affected. These are 16-bit moves
within the register file. XY addressing is discussed in Section 4.

12-8

TMS34010 Instruction Set - Move Instructions Summary

12.3.4 Multiple Register Moves

Multiple-register moves save and restore select members of up to an entire file
of registers to memory. A 16-bit mask specifies which of the 16 registers in
the designated file are to be moved to or from memory. One register from the
selected file acts as a pointer register for the move. Any of the registers in the
file, including the SP, may be used as the pointer register. The selected reg-
isters are input as a list; the assembler checks that they and the pointer register
are all in the same file. The pointer register contains a bit address for the reg-
ister "stack." The stacking operation follows the same conventions as the
system stack, growing in the direction of lower memory. If the SP is used,
both register files may be moved to the same stack area (since SP may be ac-
cessed from both files). MMTM moves multiple registers to the stack while
MMFM moves them from memory back to the register file.

12.3.5 Byte Moves

Byte moves are special 8-bit cases of the field moves described in Section
12.3.6. Byte moves are implicitly 8-bit moves. They transfer data:

• From memory to a register (using field extraction),

• From a register to memory (using field insertion),
or

• From memory to memory (using field extraction and field insertion).

A byte can begin on any bit boundary within a word. When a byte is moved
from memory to a general-purpose register, it is right justified within the reg-
ister so that the LSB of the byte coincides with the rightmost bit (bit 0) of the
register. The byte is sign extended to fill the 24 MSBs of the register.

Table 12-3 lists the possible combinations of source and destination address-
ing modes for MOVBs.

Table 12-3. MOVB Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd *Rd *Rd(disp) @Address

Rs • • •

*Rs • •

*Rs(Disp) • •

@Address • •

Note: The • symbol indicates a valid operation; a blank box indicates an
invalid operation.

Sequences of byte-move operations can be expected to execute more effi-
ciently if the byte address points to an even 8-bit boundary within memory.
This occurs when the three LSBs of the 32-bit starting address of the byte are
0. A byte that straddles a word boundary requires twice as many memory cy-
cles to access.

12-9

TMS34010 Instruction Set - Move Instructions Summary

12.3.6 Field Moves

A field is a configurable data structure in memory. It is identified by two pa-
rameters - size and data address. A field's length can be defined to be any
value from 1 to 32 bits. Field moves manipulate arbitrarily-sized data fields in
memory and the register file.

• Field data in memory is addressed by its bit address and is treated as a
string of contiguous bits; it may start at any bit address in memory.

• Field data in the register file is right justified in the register; the LSB of
the field is stored in the LSB of the register.

When field data is moved into a register, it is right justified within the register.
The register bits to the left of the field are all 1s or all Os, depending on the
values of both the appropriate FE (field extension) bit in the status register,
and sign bit (MSB) of the field. If FE=1, the field is sign extended; if FE=O,
the field is zero extended. When data is moved from a register, these non-field
bits of the register are ignored.

Fields are transferred between the general-purpose registers and memory by
means of the memory-to-register and register-to-memory move instructions.
Fields are transferred from one memory location to another via the memory-
to-memory move instructions.

Table 12-4 lists the possible combinations of source and destination address-
ing modes for MOVEs.

Table 12-4. Field Move Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd *Rd *Rd+ -*Rd *Rd(disp) @Address

Rs • • • • •

*Rs • •

*Rs+ • •

-*Rs • •

*Rs(Disp) • • •

@Addr • • •

Note: The • symbol indicates a valid operation; a blank box indicates an invalid operation.

Two field sizes are simultaneously available for field moves. The lengths of
fields 0 and 1 are defined by two 5-bit fields in the status register, FS0 and
FS1. The status register also contains the FE0 and FE1 parameters, which
define the field extension properties of the data when it is moved into a reg-
ister.

The SETF instruction specifies the size and signed/unsigned condition of ei-
ther field 0 or 1 by placing this data in one of two 6-bit fields located in the

12-10

TMS34010 Instruction Set - Move Instructions Summary

status register. One bit specifies sign/zero extension, and five bits store the
field size (in bits).

The EXGF instruction may also set either of the two field types, while pre-
serving a copy of the previous definition.

The address of a field points to its least significant bit. A field can begin at
an arbitrary bit address in memory. Field data addresses for particular moves
are derived from values in registers and extension words following the in-
struction. Field moves transfer data:

• From memory to a register (using field extraction),

• From a register to memory (using field insertion),
o r

• From memory to memory (using field extraction and field insertion).

12.3.6.1 Register - to - Memory Field Moves

Figure 12-8 illustrates the register-to-memory move operation. In this type
of move, the source register contains the right-justified field data (width is
specified by the field size). The destination memory location is the bit position
pointed to by the destination memory address. The address consists of a
portion defining the starting word in which the field is to be written and an
offset into that word, the bit address. Depending on the bit address within this
word and the field size, the destination location may extend into two or more
words. The field size for the move is one of two indirect values stored in ST,
as selected by the programmer. The field extension bit is not used.

Move from Register to Memory

31
	

4 3
	

0

Destination Memory Address Word Address
	

Bit 	IAddress

31
	

0

Source Register t

Field Data

r_ Field Size •

Word Address + 18 	 Word Address

15 0 	15

Destination Memory Location r--- 	 Reid Data

14--Field Size ► 14

 Field Size =1 to 32 bits

Figure 12 - 8. Register - to - Memory Moves

Bit Address-PI

1 2 - 1 1

Bit 	I
Address I Word Address

10 0 0 0 	 000
	

Field Data

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.2 Memory-to-Register Field Moves

Figure 12-9 shows the memory-to-register move operation. The source me-
mory location is the bit position pointed to by the source memory address.
The address consists of a portion defining the starting word in which the field
is to be written and an offset into that word, the bit address. Depending on
the bit address within this word and the field size, the source location may
extend into two or more words. After the move, the destination register LSBs
contain the right-justified field data (width is specified by the field size). The
MSBs of the register contain either all 1s or all Os. If the sign extension bit
FE0 or FE1 associated with the field size selected is 0, the MSBs are Os. If the
sign extension bit selected is 1, the MSBs contain the value of the sign bit of
the field data (its MSB). The field size for the move is one of two indirect
values stored in ST, as selected by the programmer.

Move from Memory to Register

31 4 3 0

Source Memory Address

15

Source Memory Location 1

Word Address + 18

0 15

Field Data

Word Address

0 _

1
14—Field Size . 101.1 	Bit Address-0i

31 0

Destination Register, FE=0

Sign Bit

31

Destination Register, FE=1 14 	
Field size = 1 to 32 bits

Figure 12-9. Memory-to-Register Moves

	0

Field Data 	1 Sign Bit

12-12

31 4 3 0

Bit 	IAddress Word Address A

Word Address A+18 --\

	

0115 	
Reid Data 	i 	 I

14— Reid Size —.14— Bit Address —1

Source Memory Address

Source Memory Location

Word Address A

31

Destination Memory Address

I

TMS34010 Instruction Set - Move Instructions Summary

12.3.6.3 Memory-to-Memory Field Moves

Figure 12-10 shows a memory-to-memory field move operation. The source
memory location is the bit position pointed to by the source memory address.
The destination memory location is the bit position pointed to by the destina-
tion memory address. Depending on the bit addresses within the respective
words and the field size, either the source location or destination locations
may extend into two or more words. After the move, the destination location
contains the field data from the source memory location. The field size for the
move is one of two indirect values stored in ST, as selected by the program-
mer. The field extension bit is not used.

Move from Memory to Memory

Word Address B+16 	 Word Address B

15 	 0115 0

Destination Memory Location 	I Field Data

Destination Field Size Bit Address

Reid size = 1 to 32 bits

Figure 12 - 10. Memory - to - Memory Moves

12-13

TMS34010 Instruction Set - PIXBLT/PIXT Instructions Summary

12.4 PIXBLT Instructions Summary

The TMS34010 supports 6 different PIXBLT instructions. PIXBLTs vary ac-
cording to the format of the source and destination pixel blocks. Table 12-5
summarizes the PIXBLT instructions.

Table 12-5. PIXBLT Instruction Summary

Syntax Formats Page

PIXBLT B,L Binary to linear 12-157

PIXBLT B,XY Binary to XY 12-162

PIXBLT L,L Linear to linear 12-169

PIXBLT L,XY Linear to XY 12-175

PIXBLT XY,L XY to linear 12-181

PIXBLT XY,XY XY to XY 12-186

12.5 PIXT Instructions Summary

The PIXT instructions move single pixels. The pixel may originate from a reg-
ister or a memory location, and may be moved to a register or a memory lo-
cation. There are 6 variations of the PIXT instruction; each uses a different
combination of the addressing modes described in Section 12.2.

Table 12-6 lists the possible combinations of source and destination address-
ing modes for PIXTs.

Table 12-6. PIXT Addressing Modes

Source
Addressing

Mode

Destination Addressing Mode

Rd • Rd *Rd.XY

Rs • •

• Rs • •

• Rs.XY • •

Note: The • symbol indicates a valid operation; a blank box
indicates an invalid operation.

12 - 14

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary

Graphics Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

ADDXY Rs,Rd
Add registers in XY mode

1 1,4 1110 000S SSSR DDDD

CMPXY Rd,Rd
Compare X and Y halves of registers

1 3,6 1110 010S SSSR DDDD

CPW Rs,Rd
Compare point to window

1 1,4 1110 011S SSSR DDDD

CVXYL Rs,Rd
Convert XY address to linear address

1 3,6 1110 1 00S SSSR DDDD

DRAY Rs,Rd
Draw and advance

1 t 1111 011S SSSR DDDD

FILL L
Fill array with processed pixels, linear

1 # 0000 1111 	1100 0000

FILL XY
Fill array with processed pixels, XY

1 t 0000 1111 	1110 0000

MOVX Rs,Rd
Move X half of register

1 1,4 1110 110S 	SSSR DDDD

MOVY Rs,Rd
Move Y half of register

1 1,4 1110 111S 	SSSR DDDD

PIXBLT B,L
Pixel block transfer, binary to linear

1 ## 0000 1111 	1000 0000

PIXBLT B,XY
Pixel block transfer and expand, binary to XY

1 ## 0000 1111 	1010 0000

PIXBLT L,L
Pixel block transfer, linear to linear

1 § 0000 1111 	0000 0000

PIXBLT L,XY
Pixel block transfer, linear to XY

1 § 0000 1111 	0010 0000

PIXBLT XY,L
Pixel block transfer, XY to linear

1 § 0000 1111 	01 00 0000

PIXBLT XY,XY
Pixel block transfer, XY to XY

1 § 0000 1111 	0110 0000

PIXT Rs,"Rd
Pixel transfer, register to indirect

1 t 1111 100S SSSR DDDD

PIXT Rs,*Rd.XY
Pixel transfer, register to indirect XY

1 t 1111 000S SSSR DDDD

PIXT *Rs,Rd
Pixel transfer, indirect to register

1 t 1111 101S SSSR DDDD

PIXT *Rs,*Rd
Pixel transfer, indirect to indirect

1 t 1111 110S 	SSSR DDDD

PIXT *Rs.XY,Rd
Pixel transfer, indirect XY to register

1 t 1111 001S SSSR DDDD

PIXT *Rs.XY,*Rd.XY
Pixel transfer, indirect XY to indirect XY

1 t 1111 010S SSSR DDDD

SUBXY Rs,Rd
Subtract registers in XY mode

1 1,4 1110 001S SSSR DDDD

LINE Z
Line draw

1 A 1101 1111 	Z001 1010

t See instruction
t See Section 13.3, FILL Instructions Timing
*t See Section 13.5, PIXBLT Expand Instructions Timing

See Section 13.4, PIXBLT Instructions Timing
A See Section 13.6, The LINE Instruction Timing

12-15

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

MOVB Rs,*Rd
Move byte, register to indirect

1 4 1000 110S SSSR DDDD

MOVB *Rs,Rd
Move byte, indirect to register

1 IT 1000 111S SSSR DDDD

MOVB *Rs,*Rd
Move byte, indirect to indirect

1 IT 1001 110S SSSR DDDD

MOVB *Rs,*Rd(Disp)
Move byte, register to indirect with displacement

2 IT 1010 110S SSSR DDDD

MOVB *Rs(Disp),Rd
Move byte, indirect with displacement to register

2 IT 1010 111S SSSR DDDD

MOVB *Rs(Disp),"Rd(Disp)
Move byte, indirect with displacement to indirect
with displacement

3 11 1011 11 OS SSSR DDDD

MOVB Rs,@DAddress
Move byte, register to absolute

3 IT 0000 0101 111R SSSS

MOVB @SAddress,Rd
Move byte, absolute to register

3 Tr 0000 0111 111R DDDD

MOVB @SAddress,@DAddress
Move byte, absolute to absolute

5 1f 0000 0011 01 00 0000

MOVE Rs,Rd
Move register to register

1 1,4 0100 11MS SSSR DDDD

MOVE Rs,*Rd,F
Move field, register to indirect

1 11 1000 OOFS SSSR DDDD

MOVE Rs,-*Rd,F
Move field, register to indirect (predecrement)

1 If 1010 OOFS SSSR DDDD

MOVE Rs,*Rd-E,F
Move field, register to indirect (postincrement)

1 1r 1001 OOFS SSSR DDDD

MOVE *Rs,Rd,F
Move field, indirect to register

1 11. 1000 01FS SSSR DDDD

MOVE -*Fis,Rd,F
Move field, indirect (predecrement) to register

1 1r 1010 01FS SSSR DDDD

MOVE *Rs+,Rd,F
Move field, indirect (postincrement) to register

1 If 1001 01FS SSSR DDDD

MOVE *Rs,*Rd,F
Move field, indirect to indirect

1 IT 1000 10FS SSSR DDDD

MOVE -*Rs,-*Rd,F
Move field, indirect (predecrement) to indirect
(predecrement)

1 IT 1010 10FS SSSR DDDD

MOVE "Rs+,*Rd+,F
Move field, indirect (postincrement) to indirect
(postincrement)

1 11. 1001 1 OFS SSSR DDDD

MOVE Rs,*Rd(Disp),F
Move field, register to indirect with displacement

2 IT 1 011 OOFS SSSR DDDD

MOVE "Rs(Disp),Rd,F
Move field, indirect with displacement to register

2 IT 1011 01 FS SSSR DDDD

IT See Section 13.2, MOVE and MOVB Instructions Timing

12-16

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

Move Instructions (Continued)

Syntax and Description
,

Words
Machine
States MSB

16-Bit Opcode
LSB

MOVE *Rs(Disp),"Rd+,F
Move field, indirect with displacement to indirect
(postincrement)

2 4 1101 OOFS SSSR DDDD

MOVE *Rs(Disp),*Rd(Disp),F
Move field, indirect with displacement to indirect
with displacement

3 11 1011 10FS SSSR DDDD

MOVE Rs,@DAddress,F
Move field, register to absolute

3 11 0000 01 F1 100R DDDD

MOVE @SAddress,Rd,F
Move field, absolute to register

3 4 0000 01 F1 101R DDDD

MOVE @SAddress,`Rd+,F
Move field, absolute to indirect (postincrement)

3 if 1101 01F0 000R DDDD

MOVE @SAddress,@DAddress,F
Move field, absolute to absolute

5 1T 0000 01 F1 1100 DDDD

General Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

ABS Rd
Store absolute value

1 1,4 0000 0011 100R DDDD

ADD Rs,Rd
Add registers

1 1,4 0100 000S SSSR DDDD

ADDC Rs,Rd
Add registers with carry

1 1,4 0100 001S SSSR DDDD

ADDI IW,Rd
Add immediate (16 bits)

2 2,8 0000 1011 000R DDDD

ADDI IL,Rd
Add immediate (32 bits)

3 3,12 0000 1011 001R DDDD

ADDK K,Rd
Add constant (5 bits)

1 1,4 0001 OOKK KKKR DDDD

AND Rs,Rd
AND registers

1 1,4 0101 000S SSSR DDDD

ANDI IL,Rd
AND immediate (32 bits)

3 3,12 0000 1011 100R DDDD

ANDN Rs,Rd
AND register with complement

1 1,4 0101 001S SSSR DDDD

ANDNI IL,Rd
AND not immediate (32 bits)

3 3,12 0000 1011 100R DDDD

BTST K,Rd
Test register bit, constant

1 1,4 0001 11 KK KKKR DDDD

BTST Rs,Rd
Test register bit, register

1 2,5 01 00 1 01 S SSSR DDDD

CLR Rd
Clear register

1 1,4 0101 011 D DDDR DDDD

CLRC
Clear carry

1 1,4 0000 0011 0010 0000

CMP Rs,Rd
Compare registers

1 1,4 0000 1011 010R DDDD

4 See Section 13.2, MOVE and MOVB Instructions Timing

12-17

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

CMPI IW,Rd
Compare immediate (16 bits)

2 2,8 0000 1011 010 R DDDD

CMPI IL,Rd
Compare immediate (32 bits)

3 3,12 0000 1011 011R DDDD

DEC Rd
Decrement register

1 1,4 0001 0100 001 R DDDD

DINT
Disable interrupts

1 3,6 0000 0011 0110 0000

DIVS Rs,Rd
Divide registers signed

1 40,43
39,42

0101 100S SSSR DDDD

DIVU Rs,Rd
Divide registers unsigned

1 37,40 0101 101S SSSR DDDD

EINT
Enable interrupts

1 3,6 0000 1101 0110 0000

EXGF Rd,F
Exchange field size

1 1,4 1101 01 F1 000R DDDD

LMO Rs,Rd
Leftmost one

1 1,4 0110 101S SSSR DDDD

MMFM Rs,List
Move multiple registers from memory

2 t 0000 1001 101R DDDD

MMTM Rs,List
Move multiple registers to memory

2 t 0000 1001 100R DDDD

MODS Rs,Rd
Modulus signed

1 40,43 0110 110S SSSR DDDD

MODU Rs,Rd
Modulus unsigned

1 35,38 0110 111S SSSR DDDD

MOVI IW,Rd
Move immediate (16 bits)

2 2,8 0000 1001 110R DDDD

MOVI IL,Rd
Move immediate (32 bits)

3 3,12 0000 1001 111 R DDDD

MOVK K,Rd
Move constant (5 bits)

1 1,4 0001 10KK KKKR DDDD

MPYS Rs,Rd
Multiply registers (signed)

1 20,23 0101 1105 SSSR DDDD

MPYU Rs,Rd
Multiply registers (unsigned)

1 21,24 0101 111S SSSR DDDD

NEG Rd
Negate register

1 1,4 0000 0011 101R DDDD

NEGB Rd
Negate register with borrow

1 1,4 0000 0011 110R DDDD

NOP
No operation

1 1,4 0000 0011 0000 0000

NOT Rd
Complement register

1 1,4 0000 0011 111R DDDD

t See instruction
$ If F=1, add 1 to cycle time
A Rd even/Rd odd

12-18

TMS34010 Instruction Set - $ummary Table

Table 12-7. TMS34010 Instruction Set Summary (Continued)

General Instructions (Continued)

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

OR Rs,Rd
OR registers

1 1,4 0101 010S SSSR DDDD

ORI L,Rd
OR immediate (32 bits)

3 3,12 0000 1011 101R DDDD

RL K,Rd
Rotate left, constant

1 1,4 0011 OOKK KKKR DDDD

RL Rs,Rd
Rotate left, register

1 1,4 0110 10SS SSSR DDDD

SETC
Set carry

1 1,4 0000 1101 1110 0000

SETF FS,FE,F
Set field parameters

1

	

1,4 	*

	

2,5 	+
0000 01 F1 01 FS SSSS

SEXT Rd,F
Sign extend to long

1 3,6 0000 01F1 000R DDDD

SLA K,Rd
Shift left arithmetic, constant

1 3,6 0010 OOKK KKKR DDDD

SLA Rs,Rd
Shift left arithmetic, register

1 3,6 0110 000S SSSR DDDD

SLL K,Rd
Shift left logical, constant

1 1,4 0010 01 KK KKKR DDDD

SLL Rs,Rd
Shift left logical, register

1 1,4 0110 001S SSSR DDDD

SRA K,Rd
Shift right arithmetic, constant

1 1,4 0010 10KK KKKR DDDD

SRA Rs,Rd
Shift right arithmetic, register

1 1,4 0110 010S SSSR DDDD

SRL K,Rd
Shift right logical, constant

1 1,4 0010 11KK KKKR DDDD

SRL Rs,Rd
Shift right logical, register

1 1,4 0110 011S SSSR DODD

SUB Rs,Rd
Subtract registers

1 1,4 0100 010S SSSR DDDD

SUBB Rs,Rd
Subtract registers with borrow

1 1,4 0100 011S SSSR DDDD

SUBI IW,Rd
Subtract immediate (16 bits)

2 2,8 0000 1011 111R DDDD

SUBI IL,Rd
Subtract immediate (32 bits)

3 3,12 0000 1101 111R DDDD

SUBK K,Rd
Subtract constant (5 bits)

1 1,4 0001 01KK KKKR DDDD

XOR Rs,Rd
Exclusive OR registers

1 1,4 0101 011S SSSR DDDD

XORI IL,Rd
F • 	ive OR immediate value (32 bits)

3 3,12 0000 1011 110D DDDD

Z_•. 	Rd,F
Zero extend to long

1 1,4 0000 01F1 001R DDDD

t See instruction
If F=1, add 1 to cycle time

A Rd even/Rd odd

1 2-1 9

TMS34010 Instruction Set - Summary Table

Table 12-7. TMS34010 Instruction Set Summary (Concluded)

Program Control and Context Switching Instructions

Syntax and Description Words
Machine
States MSB

16-Bit Opcode
LSB

CALL Rs 1 3+(3),9 _ 0000 1001 001R DDDD
Call subroutine indirect 3+(9),15°

CALLA Address 3 4+(2),15,, 0000 1101 0101 1111
Call subroutine address 4+(8),21°

CALLR Address 2 3+(2),11,, 0000 1101 0011 1111
Call subroutine relative 3+(8),17°

DSJ Rd,Address 2 3,9,„ 0000 1101 100R DDDD
Decrement register and skip jump 2,8 "

DSJEQ Rd,Address 2 3,9, 0000 1101 101R DDDD
Conditionally decrement register and skip
jump

2,8 "

DSJNE Rd,Address 2 3,9 0000 1101 11OR DDDD
Conditionally decrement register and skip
jump

2,8 n

DSJS Rd,Address 1 2,5 ,„ 0011 1 DKK KKKR DDDD
Decrement register and skip jump short 3,6 "

EMU 1 6,9 0000 0001 0000 0000
Initiate emulation

EXGPC Rd 1 2,5 0000 0001 001 R DDDD
Exchange program counter with register

GETPC Rd 1 1,4 0000 0001 010R DDDD
Get program counter into register

GETST Rd 1 1,4 0000 0001 100R DDDD
Get status register into register

JAcc Address 3 3,6 1100 code 1000 0000
Jump absolute conditional 4,7 n
JRcc Address 2 3,6 1100 code 0000 0000
Jump relative conditional 1,4 n
JRcc Address 1 2,5 1100 code xxxx xxxx
Jump relative conditional short 2,5 	11

JUMP Rs 1 2,5 0000 0001 011R DDDD
Jump indirect

POPST 1 8,11,, 0000 0001 1100 0000
Pop status register from stack 10,13°

PUSHST 1 2+(3),8 _ 0000 0001 1110 0000
Push status register onto stack 2+(8),13°

PUTST Rs 1 3,6 0000 0001 101R DDDD
Copy register into status

RETI 1 11,14,, 0000 1001 0100 0000
Return from interrupt 15,184'

RETS [N] 1 7,10 0000 1 001 011N NNNN
Return from subroutine 9,124'

TRAP N 1 16,19,, 0000 1001 000N NNNN
Software interrupt 30,33°

0 SP aligned/SP nonaligned
fl Jump/no jump
4' Stack aligned/stack nonaligned

12-20

Example Instruction 	 EXAMPLE EXAMPLE

Syntax

Execution

This line shows you how to enter an instruction. Here are some sample
syntaxes:

• EXAM PLE <source operand>,<destination operand>

If an operand is enclosed in angle brackets (< and >), substitute ac-
tual source and destination operands (such as a register or constant)
for the text that is shown.

• EXAMPLE B,XY

If an operand is not enclosed in angle brackets, then enter it as
shown. In this example, you would actually enter EXAMPLE B,XY.

• EXAMPLE <source operand>[,< destination operand>]

If an operand is enclosed in square brackets ([]), then the operand
is optional. (Do not enter the brackets.) This example could be en-
tered as EXAMPLE source operand, destination operand or
as EXAMPLE source operand.

This section describes instruction execution. The general form is:

<operand> operator <operand> 	<operand>

Encoding
	

15 14 13 12 11 10 9 8
	

7 	6 	5
	

4 3
	

2
	

0

0 	0 	0 	0 	0 	0 	01 	<source opd> I R I , <destination opd>

Operands

Fields

Description

This section displays the contents of the instruction word.

This section describes any instruction operands and elements of the pre-
ceding opcode format. Any assembler exception handling for operands may
be described here.

This line discusses any fields in the opcode that are not explicit operands.

This section describes the instruction execution and its effect on the rest
of the processor or memory contents. Any constraints on the operands
imposed by the GSP or the assembler are also described here. Special in-
struction applications may follow the description.

12-21

EXAMPLE 	 Example Instruction 	 EXAMPLE

Implied
Operands 	This section describes any operands which are implicit inputs to the in-

struction. These operands are usually B file registers and I/O registers and
are described in detail in Sections 5 and 6. You must load these registers
with appropriate values before instruction execution.

B File Registers

Register Name Format Description

. .
•
. .

I/O Registers

Address Name Description and Elements (Bits)

•
. . .

Special Graphics Topics
Graphics instructions (DRAV, PIXBLTs, etc.) may present special topics of
discussion under the following headings:

• Source Array

• Source Expansion

• Destination Array

• Pixel Processing

• Window Checking

• Transparency

• Corner Adjust

• Plane Mask

• Shift Register Transfers

Interrupts 	Discusses the effects of possible interrupts.

Words 	Specifies the number of memory words required to store the instruction and
its extension words.

Machine
States

Status Bits

Cache resident + (Hidden cycles), Cache disabled

Specifies instruction cycle timing for the instruction. Not all instructions
have hidden cycles. Section 13, Instruction Timings, provides a complete
explanation of instruction timing.

N Describes the instruction's effects on the sign bit.
C Describes the instruction's effects on the carry bit.
Z Describes the instruction's effects on the zero bit.
✓ Describes the instruction's effects on the overflow bit.

Examples 	Each instruction description contains sample code, and shows the effects
of the code on memory and/or registers.

12 - 22

ABS 	 Store Absolute Value 	 ABS

Syntax
	

ABS <Rd>

Execution
	

I(Rd)I -4 Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	1 	1 	1 	0 	0 H I
	

Rd

Description 	ABS stores the absolute value of the contents of the destination register
back into the destination register. This is accomplished by subtracting the
destination register data from 0 and storing it if status bit N indicates that
the result is positive. If the result of the subtraction is negative, then the
original contents of the destination register are retained.

Words 	1

Machine
States 	1,4

Status Bits 	N 1 if the original data is positive, 0 otherwise. This status bit is the in-
verse of its normal function; it is the output of the subtract-from-0 op-
eration.

C Unaffected
Z 	1 if the original data is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise. An overflow occurs if Rd con-

tains >8000 0000 (>8000 0000 is returned).

Examples 	Code Before After

Al NCZV Al
ABS Al >7FFF FFFF 1x00 >7FFF FFFF
ABS Al >FFFF FFFF 0x00 >0000 0001
ABS Al >8000 0000 1x01 >8000 0000
ABS Al >8000 0001 Ox00 >7FFF FFFF
ABS Al >0000 0001 1 x00 >0000 0001
ABS Al >0000 0000 0x10 >0000 0000
ABS Al >FFFA0011 Ox00 >0005 FFEF

12-23

ADD 	 Add Registers ADD

Syntax
	

ADD <Rs>,<Rd>

Execution
	

(Rs) + (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3
	

2
	

1
	

0

1 0 	1 	0 	0 	0 	0 0
	

Rs
	

H I 	Rd

Description 	ADD adds the contents of the source register to the contents of the desti-
nation register; the result is stored in the destination register.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status B its N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

Al 	 AO NCZV AO

ADD A1,A0 	>FFFF FFFF 	>FFFF FFFF 1100 >FFFF FFFE
ADD Al ,A0 	>FFFF FFFF 	>0000 0001 0110 >0000 0000
ADD Al , AO 	>FFFF FFFF 	>0000 0002 0100 >0000 0001
ADD Al,A0 	>FFFF FFFF 	>8000 0000 0101 >7FFF FFFF
ADD Al ,A0 	>FFFF FFFF 	>8000 0001 1100 >8000 0000
ADD Al ,A0 	>7FFF FFFF 	>8000 0001 0110 >0000 0000
ADD Al ,A0 	>7FFF FFFF 	>8000 0000 1000 >FFFF FFFF
ADD Al ,A0 	>7FFF FFFF 	>0000 0001 1001 >8000 0000
ADD Al ,A0 	>0000 0002 	>0000 0002 0000 >0000 0004

12-24

ADDC 	 Add Register with Carry 	 ADDC

Syntax
	

ADDC <Rs>,<Rd>

Execution
	

(Rs) + (Rd) + (C) —■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3 2
	

1 0

1 o 	1 	0 	0 	0 	0 	1
	

Rs
	

R
	

Rd

Description 	ADDC adds the contents of the source register and the status carry bit to
the contents of the destination register; the result is stored in the destination
register. Note that the status bits are set on the collective add.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Code Before After

C Al AO NCZV AO
ADDC Al , AO 1 > FFFF FFFF > FFFF FFFF 1 1 00 > FFFF FFFF
ADDC Al ,A0 1 >FFFFFFFF >0000 0001 0100 >00000001
ADDC Al , AO 1 >FFFFFFFF >00000002 0100 >00000002
ADDC Al ,A0 1 >FFFF FFFF > 8000 0000 1 1 00 >8000 0000
ADDC Al ,A0 1 >FFFF FFFF >8000 0001 1 1 00 >8000 0001
ADDC Al ,A0 1 >FFFF FFFF >8000 0001 01 00 >8000 0001
ADDC Al , AO 1 >FFFF FFFF > 8000 0000 011 0 >0000 0000
ADDC Al ,A0 1 > 7FFF FFFF > 0000 0001 1 001 >8000 0001
ADDC Al , AO 1 >0000 0002 >0000 0002 0000 >0000 0005
ADDC Al , AO 0 > FFFF FFFF > FFFF FFFF 11 00 > FFFF FFFE
ADDC Al , AO 0 > FFFF FFFF >0000 0001 01 1 0 >0000 0000
ADDC Al ,A0 0 > FFFF FFFF >0000 0002 01 00 >0000 0001
ADDC A1,A0 0 > FFFF FFFF >8000 0000 01 01 >7FFF FFFF
ADDC Al ,A0 0 >FFFF FFFF >8000 0001 1 1 00 >8000 0000
ADDC A1,A0 0 >7FFF FFFF >8000 0001 0110 >00000000
ADDC Al ,A0 0 >7FFF FFFF >8000 0000 1 000 > FFFF FFFF
ADDC A1,A0 0 >7FFF FFFF >0000 0001 1 001 >8000 0000
ADDC Al , AO 0 >0000 0002 >0000 0002 0 00 0 >0000 0004

12-25

ADDI

Syntax

Execution

Encoding

Add Immediate - 16 Bits 	 ADDI

ADDI <IW>,<Rd>[,W]

1W + (Rd) - ■ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	1 	1 	0 	0 	0 R
	

Rd

IW

Operands 	IW is a 16-bit, sign-extended immediate value.

Description 	ADDI adds the sign-extended, 16-bit immediate value to the contents of
the destination register; the result is stored in the destination register.

The assembler will use the short (16-bit) add if the immediate value has
been previously defined and is in the range -32,768 < IW < 32,767. You
can force the assembler to use the short form by following the instruction
with W:

ADDI <IW>,<Rd>,W

If the IW value is outside the legal range, the assembler will discard all but
the 16 LSBs and issue an appropriate warning message.

Multiple-precision arithmetic can be accomplished by using ADDI in con-
junction with the ADDC instruction.

Words

Machine
States

Status Bits

2

2,8

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After

AO 	 NCZ V AO
ADDI 1,A0 	 >FFFF FFFF 	0110 >0000 0000
ADDI 2 ,A0 	 >FFFF FFFF 	0100 >0000 0001
ADDI 1,A0 	 >7FFF FFFF 	1001 >8000 0000
ADDI 2,A0 	 >0000 0002 	0000 >0000 0004
ADDI 32767,A0 	 >0000 0002 	0000 >0000 8001
ADDI >FFFF0010 ,A0 ,W 	>FFFF FFFO 	0110 >0000 0000

12-26

Syntax

Execution

Encoding

ADDI <IL>,<Rd>[,L]

IL + (Rd) 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	1 	0 	1 	1 	0 	0 	1
	

R
	

Rd

IL (LSW)

IL (MSW)

ADD!
	

Add Immediate - 32 Bits 	 ADDI

Operands 	IL is a 32-bit immediate value.

Description 	ADDI adds the 32-bit, signed immediate data to the contents of the desti-
nation register; the result is stored in the destination register.

The assembler will use the long (32-bit) ADDI if it cannot use the short
form. You can force the assembler to use the long form by following the
instruction with L:

ADDI <IL> , <Rd> ,L

Words 	3

Machine
States 	3,12

Status Bits 	N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After

AO 	 NCZV AO

ADDI >FFFFFFFF ,A0 	>FFFF FFFF 	1100 >FFFF FFFE
ADDI >80000000 , AO 	>FFFF FFFF 	0101 >7FFF FFFF
ADDI >80000000 , AO 	>7FFFFFFF 	1000 >FFFF FFFF
ADDI 32768 , AO 	 >7FFFFFFF 	1001 >8000 7FFF
ADDI 2 ,A0 ,L 	 >FFFF FFFF 	0100 >0000 0001

12-27

ADDK 	 Add Constant (5 Bits) 	 ADDK

Syntax
	

ADDK <K>,<Rd>

Execution
	

K + (Rd) -■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	1 	0 	0
	

K
	

Rd

K is a constant from 1 to 32.

ADDK adds a 5-bit constant to the contents of the destination register; the
result is stored in the destination register. The constant is treated as an
unsigned number in the range 1-32, where K = 32 is converted to 0 in the
opcode. The assembler will issue an error if you try to add 0 to a register.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

Code 	 Before 	After

AO 	 NCZ V AO
ADDK 1 , AO 	>FFFF FFFF 	0110 >0000 0000
ADDK 2 , AO 	>FFFF FFFF 	0100 >00000001
ADDK 1 , AO 	>7FFF FFFF 	1001 >8000 0000
ADDK 1, AO 	>8000 0000 	1000 >8000 0001
ADDK 32 , AO 	>8000 0000 	1000 >8000 0020
ADDK 32 , AO 	>0000 0002 	0000 >0000 0022

12-28

ADDXY 	 Add Registers in XY Mode 	 ADDXY

Syntax 	ADDXY <Rs>,<Rd>

Execution 	(RsX) + (RdX) 	RdX
(RsY) + (RdY) - ■ RdY

Encoding 	15 14 13 12 11 10 9 8 7
	

6
	

5 4 3
	

2
	

1
	

0

1
	

1 	1 	0 	0 	0 	0
	

Rs
	

R
	

Rd

Description 	ADDXY adds the signed source X value to the signed destination X value,
and adds the signed source Y value to the signed destination Y value. The
result is stored in the destination register. The source and destination reg-
isters are treated as if they contained separate X and Y values. When they
are added, the carry out from the lower (X) half of the register does not
propagate into the upper (Y) half.

If you only want to add the X halves together, then the Y value of one of
the operands must be 0 (the method for adding the Y halves is similar).

This instruction can be used for manipulating XY addresses in the register
file and is particularly useful for incremental figure drawing.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if resulting X field is all Os, 0 otherwise.
C 	The sign bit of the Y half of the result.
Z 	1 if Y field is all Os, 0 otherwise.
V 	The sign bit of the X half of the result.

Examples Code 	 Before After

Al 	 AO AO NCZV

ADDXY Al , AO 	>0000 0000 	>0000 0000 >0000 0000 1010
ADDXY Al , AO 	>0000 0000 	>0000 0001 >0000 0001 0010
ADDXY Al , AO 	>0000 0000 	>0001 0000 >0001 0000 1000
ADDXY Al , AO 	>0000 0000 	>0001 0001 >0001 0001 0000
ADDXY A1,AO 	>0000 FFFF 	>0000 0001 >0000 0000 1010
ADDXY Al , AO 	>0000 FFFF 	>0001 0001 >0001 0000 1000
ADDXY Al , AO 	>0000 FFFF 	>0000 0002 >0000 0001 0010
ADDXY Al ,A0 	>0000 FFFF 	>0001 0002 >0001 0001 0000
ADDXY Al , AO 	>FFFF 0000 	>0001 0000 >0000 0000 1010
ADDXY Al , AO 	>FFFF 0000 	>0001 0001 >0000 0001 0010
ADDXY Al ,A0 	>FFFF 0000 	>0002 0000 >0001 0000 1000
ADDXY Al , AO 	>FFFF 0000 	>0002 0001 >0001 0001 0000
ADDXY Al ,A0 	>FFFF FFFF 	>0001 0001 >0000 0000 1010
ADDXY Al , AO 	>FFFF FFFF 	>0001 0002 >0000 0001 0010
ADDXY Al , AO 	>FFFF FFFF 	>0002 0001 >0001 0000 1000
ADDXY Al,A0 	>FFFF FFFF 	>0002 0002 >0001 0001 0000

12-29

Syntax
	

AND <Rs>,<Rd>

Execution
	

(Rs) AND (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	0 	0 	0
	

Rs
	

R
	

Rd

AND bitwise-ANDs the contents of the source register with the contents
of the destination register; the result is stored in the destination register.
The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Description

Words

Machine
States

Status Bits

AND AND Registers AND

Examples Code
	

Before 	 After

Al 	 AO 	 NCZ V
AND Al,AO 	>FFFF FFFF 	>FFFF FFFF 	xx0x
AND A1,A0 	>FFFF FFFF >00000000 	xx1x
AND Al , AO 	>0000 0000 >0000 0000 	xxlx
AND Al , AO 	>AAAAAAAA >55555555 	xxlx
AND Al , AO 	>AAAA AAAA >AAAAAAAA 	xx0x
AND Al , AO 	>5555 5555 >5555 5555 	xx0x
AND Al , AO 	>5555 5555 >AAAAAAAA 	xx 1 x

AO
>FFFF FFFF
>0000 0000
>0000 0000
>0000 0000
> AAAAAAAA
>5555 5555
>0000 0000

12 - 30

H I Rd 0 	0 	0 	0 	1 	0 	1 	1 	1 	0 	0

9 8 7 6 5 4 3 2 1 0

ANDI <IL>,<Rd>

IL AND (Rd) —> Rd

15 14 13 12 11 10

ANDI

Syntax

Execution

Encoding

AND Immediate (32 Bits) 	 ANDI

—IL (LSW)

—IL (MSW)

Operands

Description

Words

Machine
States

Status Bits

Examples

>FFFFFFFF,A0
>FFFFFFFF,A0
>00000000,A0
>AAAAAAAA,A0
>AAAAAAAA,A0
>55555555,A0
>55555555,A0

Before 	After

AO 	 NCZ V
>FFFF FFFF 	xx0x
>0000 0000 	xx1x
>0000 0000 	xx1x
>5555 5555 	xxlx
>AAAA AAAA 	xx0x
>5555 5555 	xx0x
>AAAA AAAA 	xx1x

AO
>FFFF FFFF
>0000 0000
>0000 0000
>0000 0000
> AAAA AAAA
>5555 5555
>0000 0000

IL is a 32-bit immediate value.

AN DI bitwise-AN Ds the value of the 32-bit immediate value, IL, with the
contents of the destination register; the result is stored in the destination
register.

This is an alternate mnemonic for ANDNI IL, Rd. The assembler stores the
l's complement of IL in the two extension words.

3

3,12

N Unaffected
C Unaffected
Z / if the result is 0, 0 otherwise.
V Unaffected

Code

ANDI
ANDI
ANDI
ANDI
ANDI
ANDI
ANDI

12-31

ANDN 	AND Register with Complement 	ANDN

Syntax
	

ANDN <Rs>,<Rd>

Execution
	

NOT(Rs) AND (Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	0 	0 	1
	

As
	

I
	

Rd

Description 	ANDN biwise-ANDs the l's complement of the contents of the source re-
gister with the contents of the destination register; the result is stored in the
destination register.

The source and destination registers must be in the same register file. Note
that ANDN Rn ,Rn has the same effect as CLR Rn.

Words

Machine
States

Status Bits

1

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

Al 	 AO 	 NCZ V AO
ANDN Al , AO 	>FFFF FFFF 	>FFFF FFFF 	x x 1 x > 0000 0000
ANON Al , AO 	>FFFF FFFF >00000000 	x x 1 x >00000000
ANDN Al , AO 	>0000 0000 >0000 0000 	x x1 x >0000 0000
ANON Al , AO 	>AAAAAAAA >5555 5555 	xx0x >5555 5555
ANDN Al , AO 	>AAAA AAAA >AAAA AAAA 	x x 1 x >0000 0000
ANDN Al AO 	>5555 5555 >5555 5555 	xxlx >0000 0000
ANDN Al AO 	>5555 5555 >AAAAAAAA 	xx0x > AAAAAAAA

12 - 32

NOT IL AND (Rd)

15 	14 	13 	12

-■

11

Rd

10 9 8 7 6

1 0 1 1 1 0

5 4 3 2 1 0

0 R
	

Rd

IL (LSW)

IL (MSW)

ANDNI 	AND Not Immediate (32 Bits) 	ANDNI

Syntax 	ANDNI <IL>,<Rd>

Execution

Encoding

Operands 	L is a 32-bit immediate value.

Description 	ANDNI bitwise-ANDs the 1's complement of the 32-bit immediate data
with the contents of the destination register; the result is stored in the des-
tination register. AN DI also uses this opcode.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZV AO
ANDNI >FEFFFFFF ,A0 	>FFFF FFFF 	x x 1 x >0000 0000
ANDNI >FFFFFFFF , AO 	>0000 0000 	x x1 x >0000 0000
ANDNI >00000000 , AO 	>0000 0000 	x x 1 x >0000 0000
ANDNI >AAAAAAAA , AO >5555 5555 	xx0x >5555 5555
ANDN I >AAAAAAAA , AO >AAAAAAAA 	xxlx >0000 0000
ANDNI >55555555 , AO 	>5555 5555 	x x 1 x >0000 0000
ANDNI >55555555 , AO >AAAAAAAA 	xx0x >AAAA AAAA

12-33

BTST

Syntax

Execution

Encoding

Operands

	

Test Register Bit - Constant 	 BTST

BTST <K>,<Rd>

Set status on value of bit K in Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	1 	1 	1
	

—K
	

R
	

Rd

K is a constant in the range of 0 to 31.

31

MSB

	1•1 	

0

	I Rd

LSB

Description 	BTST tests the specified destination register bit, K, and sets status bit Z
accordingly. The K value must be an absolute expression that evaluates to
a value in the range 0 to 31; if the value specified is greater than 31, the
assembler issues a warning and truncates the K operand value to the five
LSBs. The specified bit number is l's complemented by the assembler be-
fore it is inserted into the K field of the opcode.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the bit tested is 0, 0 if the bit tested is 1.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZV
BTST 0,AO 	>5555 5555 	xx0x
BTST 15 , AO 	>55555555 	xx 1 x
BTST 31 , AO 	>5555 5555 	xx1x
BTST 0 , AO 	>AAAAAAAA 	xxix
BTST 15,A0 	>AAAAAAAA 	xx0x
BTST 31,A0 	>AAAAAAAA 	xx0x
BTST 0 T AO 	>FFFFFFFF 	xx0x
BTST 15,A0 	>FFFFFFFF 	xx0x
BTST 31,A0 	>FFFFFFFF 	xx0x
BTST 0 , AO 	>0000 0000 	xx1x
BTST 15 , AO 	>0000 0000 	xxl x
BTST 31 , AO 	>0000 0000 	xx1x

12-34

I Rd

LSB M6B

CEO

BTST

Syntax

Execution

Encoding

Operands

	

Test Register Bit - Register 	 BTST

BTST <Rs>,<Rd>

Set status on value of bit (Rs) in Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	1 	0 	1
	

Rs
	

R
	

Rd

Rs contains the number of the bit in Rd to be tested.

31
	

0
Rs

Description 	BTST tests the specified destination register bit and sets status bit Z ac-
cordingly. The five LSBs of the source register specify the bit to be tested
(the 27 MSBs are ignored).

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

2,5

N Unaffected
C Unaffected
Z 1 if the bit tested is 0, 0 if the bit tested is 1.
V Unaffected

Code Before

AO

After

Al NCZV
BTST Al , AO >0000 0000 >5555 5555 xx0x
BTST Al ,A0 >0000 000F >5555 5555 xx1x
BTST A1,A0 >0000 001F >5555 5555 xx1x
BTST Al , AO >0000 0000 >AAAAAAAA xx1x
BTST Al , AO >0000000F >AAAAAAAA xx0x
BTST Al , AO >0000001F >AAAAAAAA xx0x
BTST A1,A0 >FFFF FF8F >FFFF 7FFF xx0x
BTST A1,A0 >00000000 >FFILT FFFF xx0x
BTST A1,A0 >0000000F >FFFF FFFF xx0x
BTST Al,A0 >0000001F >FFFF FFFF xx0x
BTST Al , AO >0000 0000 >0000 0000 xxl x
BTST Al ,A0 >0000 000F >0000 0000 xx1x
BTST Al ,A0 >0000 001F >0000 0000 xx1x

12-35

CALL
	

Call Subroutine - Indirect 	 CALL

Syntax 	CALL <Rs>

Execution 	(PC') - ■ TOS
(Rs) 	PC
(SP) - 32 -■ SP

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5 4 3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	0 	1 	0 	0 	1
	

R
	

Rs

Description 	CALL pushes the address of the next instruction (PC') onto the stack, then
jumps to a subroutine whose address is contained in the source register.
This instruction can be used for indexed subroutine calls. Note that when
Rs is the SP, Rs is decremented after being written to the PC (the PC
contains the original value of Rs).

The TMS34010 always sets the four LSBs of the program counter to 0, so
instructions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC' is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

Words 	1

Machine
States 	3+(3),9 (SP aligned)

3+(9),15 (SP nonaligned)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	CALL AO

Before 	 After
AO 	PC 	 SP 	 PC 	 SP

>0123 4560 >0444 2210 >0F00 0020 >0123 4560 >0F00 0000

Memory will contain the following values after instruction execution:

Address 	Data
>0F00 0010 	>2220
>0F00 0020 	>0444

12-36

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1

Address (LSW)

Address (MSW)

CALLA 	 Call Subroutine - Absolute 	 CALLA

Syntax 	CALLA <Address>

Execution 	(PC') 	TOS
Address PC

Encoding

Operands 	Address is a 32-bit absolute address.

Description 	CALLA pushes the address of the next instruction (PC') onto the stack,
then jumps to the address contained in the two extension words. This in-
struction is used for long (greater than +32K words) or externally refer-
enced calls.

The lower four bits of the program counter are always set to 0, so in-
structions are always word-aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. PC' is pushed onto the stack and the SP is predecremented by 32
before the return address is loaded onto the stack. Stack pointer alignment
affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

Words

Machine
States

Status Bits

3

4+(2),15 (SP aligned)
4+(8),21 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	CALLA >01234560

Before 	 After

PC 	 SP 	 PC 	 SP
>0444 2210 	>0F00 0020 	>0123 4560 	>0F00 0000

Memory will contain the following values after instruction execution:

Address 	Data
>0F00 0010 	>2240
>0F00 0020 	>0444

12-37

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1

Displacement

CALLR
	

Cali Subroutine - Relative 	 CALLR

Words

Machine
States

Status Bits

Examples

CALLR <Address>

(PC') -* TOS
PC' + (Displacement x16) - ■ PC

Address is a 32-bit address within +32K words (-32,768 to 32,767) of
PC'

CALLR pushes the address of the next instruction (PC') onto the stack,
then jumps to the subroutine at the address specified by the sum of the next
instruction address and the signed word displacement. This instruction is
used for calls within a specified module or section.

The displacement is computed by the assembler as (Address - PC')/16.
The address must be defined within the section and within -32,768 to
32,767 words of the instruction following CALLR. The assembler will not
accept an address value that is externally defined or defined within a dif-
ferent section than PC'.

The lower four bits of the program counter are always set to 0, so in-
structions are always word aligned.

The stack pointer (SP) points to the top of the stack; the stack is located
in external memory. The stack grows in the direction of decreasing linear
address. The PC is pushed on to the stack and the SP is predecremented
by 32 before the return address is loaded onto the stack. Stack pointer
alignment affects timing as indicated in Machine States, below.

Use the RETS instruction to return from a subroutine.

2

3+(2),11 (SP aligned)
3+(8),17 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before After

PC SP PC SP
CALLR >0447FFF0 > 0440 0000 > OF00 0020 >0447 FFFO > OF00 0000
CALLR >04480000 > 0440 0000 > OF00 0020 > 0448 0000 > OF00 0000

Syntax

Execution

Encoding

Operands

Description

Memory will contain the following values after instruction execution:

Address
>0F00 0010
>0F00 0020

Data
>0000
>0440

12-38

Syntax

Execution

Encoding

CLR <Rd>

(Rd) XOR (Rd) - ■ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	1 	0 	1 	0 	1 	1 1
	

Rd
	

R 1
	

Rd

CLR 	 Clear Register CLR

Description 	CLR clears the destination register by XORing the contents of the register
with itself. This is an alternate mnemonic for XOR Rd,Rd.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 1
V Unaffected

Examples 	Code 	Before 	 After

AO 	 AO 	 NCZV
CLR AO 	>FFFF FFFF 	>0000 0000 xx1x
CLR AO 	>0000 0001 	>0000 0000 xx1x
CLR AO 	>8000 0000 	>00000000 xx1x
CLR AO 	>AAAAAAAA 	>0000 0000 xx1x

1

12-39

1

Syntax

Execution

Encoding

CLRC

0 	C

15 14

I o 	0

CLRC 	 Clear Carry CLRC

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 0 0 0 0 0

Description 	CLRC sets the status carry bit (C) to 0. The rest of the status register is
unaffected. The SETC instruction is a counterpart to this instruction.

This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Words

Machine
States

Status Bits

Examples

1

1,4

N Unaffected
C 0
Z Unaffected
V Unaffected

Code Before After

ST NCZV ST NCZV
CLRC > F000 0000 1111 > B000 0000 1011
CLRC >4000 0010 0100 >0000 0010 0000
CLRC > B000 001F 1011 > B000 001F 1011

12-40

CMP 	 Compare Registers CMP

Syntax

Execution

Encoding

CMP <Rs>,<Rd>

Set status bits on the result of (Rd) - (Rs)

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	1 	0 	0
	

Rs
	

R
	

Rd

Description 	CMP subtracts the contents of the source register from the contents of the
destination register and sets the condition codes accordingly. Both the
source and destination registers remain unaffected. This instruction is often
used in conjunction with the JAcc or JRcc conditional jump instructions.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if a there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples
	

Code
	

Before 	 After Jumps Taken

Al 	 AO 	NCZV
CMP A1,A0 > 0000 0001 > 0000 0001 0 01 0 U C, N N, N C,Z, NV, LS,G E, L E, HS
CMP A1,A0 > 0000 0001 > 0000 0002 0 0 0 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMP A1,A0 > 0000 0001 > FFFF FFFF 1 000 U C, N, N C, NZ, NV, P, HI, LT, LE, HS
CMP A1,A0 > 0000 0001 > 8000 0000 0 0 01 U C, NN, N C, NZ, V, H I, LT, LE, HS
CMP A1,A0 > FFFF FFFF > 7FFF FFFF 1101 U C, N, C, NZ,V, LS, G E,GT, LO
CMP A1,A0 > FFFF FFFF > 8000 0000 11 00 U C, N, C, NZ, NV, LS, LT, LE, LO
CMP Al,A0 > 8000 0000 > 7FFF FFFF 1 1 01 U C, N, C, NZ,V, LS,G E,GT, LO

12-41

0 	0 	0 	0 	1 	0 	1 	1 	0 	1 	0 R
	

Rd

— 1W

CM PI

Syntax

Execution

Encoding

	

Compare Immediate - 16 Bits 	 CMPI

CM PI <IW>,<Rd> [,W]

Set status bits on the result of (Rd) - IW

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

Operands 	IW is a 16-bit signed immediate value.

Description 	CMPI subtracts the sign-extended, 16-bit immediate data from the contents
of the destination register and sets the condition codes accordingly. The
destination register remains unaffected.

The assembler places the 1's complement of the specified value into the
extension word (—IW).

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 < IW < 32,767. You can force
the assembler to use the short form by following the register specification
with W:

CMPI <IW> , <Rd> , W

The assembler will truncate the upper bits and issue an appropriate warning
message if the value is greater than 16 bits.

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

Words

Machine
States

Status Bits

2

2,8

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	 Before 	After Jumps Taken

AO 	 NCZ V
CMPI 1, A0 >0000 0002 	0000 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
CMPI 1 , A0 >0000 0001 	0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI 1 , A0 >0000 0000 	1100 U C, N, C, NZ, NV, LS, LT, LE, LO
CMPI 1,A0 >FFFF FFFF 	1000 UC,N,NC,NZ,NV,P,HI,LT,LE,HS
CMPI 1 , AO >8000 0000 	0001 UC,NN,NC,NZ,V,HI,LT,LE,HS
CMPI -2 ,A0 >0000 0000 	0100 UC,N N,C,NZ,NV,P, LS,GE,GT, LO
CMPI -2 , AO >FFFF FFFF 	0000 UC,NN,NC,NZ,NV,P,LI,GE,GT,HS
CMPI -2 , AO >FFFF FFFE 	0010 UC,NN,NC,Z,NV,LS,GE,LE,HS
CMPI -2 , AO >FFFF FFFD 1100 UC,N,C,NZ,NV,LS,LT,LE,L0
CMPI -1 , AO >7FFF FFFF 	1101 UC,N,C,NZ,V,LS,GE,GT,L0

12-42

Operands

Description

	

Compare Immediate - 32 Bits 	 CMPI

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	1 	1 	0 	1 	1 I R
	Rd

—IL (LSW)

—IL (MSW)

IL is a 32-bit immediate value.

CMPI subtracts the signed, 32-bit immediate data from the contents of the
destination register and sets the condition codes accordingly. The desti-
nation register remains unaffected.

The assembler places the 'I's complement of the specified value into the
extension words (—IL).

The assembler will use this opcode if it cannot use the short form. You can
force the assembler to use the long form by following the register specifi-
cation with L:

CMPI <IL>, <Rd> ,L

This instruction is often used in conjunction with the JAcc or JRcc condi-
tional jump instructions.

if the result is negative, 0 otherwise.
if there is a borrow, 0 otherwise.
if the result is 0, 0 otherwise.
if there is an overflow, 0 otherwise.

Before After Jumps Taken

AO NCZ V
>8000,A0 	>0000 8001 000 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
>8000 , A0 	>00008000 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
>8000 , AO 	>0000 7FFF 110 0 UC,N,C,NZ,NV,LS,LT,LE,L0
>8000,A0 	>FFFF FFFF 1 00 0 UC,N,NC,NZ,NV,P,HI,LT,LE,HS
>8000,A0 	>8000 7FFF 000 1 UC,NN,NC,NZ,V,HI,LT,LE,Hs

>FFFF7FFF , AO > 0000 0000 010 0 UC,NN,C,NZ,NV,P,LS,GE,GT,L0
>FFFF7FFE , AO > FFFF 7FFF 000 0 UC,NN,NC,NZ,NV,P,HI,GE,GT,HS
>FFFF7FFE , AO > FFFF 7FFE 001 0 UC,NN,NC,Z,NV,LS,GE,LE,HS
>FFFF7FFE , AO > FFFF 7FFD 110 0 UC,N,C,NZ,NV,LS,LT,LE,L0
>FFFF7FFF , AO > 7FFF 7FFF 11 0 1 UC,N,C,NZ,V,LS,GE,GT,L0

Words

Machine
States

Status Bits

Examples

CMPI

Syntax 	CMPI <IL>,<Rd>[,L.]

Execution 	Set status bits on the result of (Rd) - IL

Encoding

3

3,12

N
C
Z

/

Code

CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI
CMPI

12-43

1 	1 	1 	0 	0 	1 	0
	

Rs
	

R
	

Rd

CMPXY compares the source register to the destination register in XY mode
and sets the status bits as if a subtraction had been performed. The regis-
ters themselves remain unaffected. The source and destination registers are
treated as signed XY registers. Note that no overflow detection is provided.

The source and destination registers must be in the same register file.

1

1,4

N 1 if source X field = destination X field, 0 otherwise.
C Sign bit of Y half of the result.
Z 	1 if source Y field = destination Y field, 0 otherwise.
V Sign bit of X half of the result.

CMPXY 	Compare X and Y Halves of Registers 	CMPXY

Syntax
	

CMPXY <Rs>,<Rd>

Execution
	

Set status bits on the results of:

(RdX) - (RsX)

(RdY) - (RsY)

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5 4
	

3
	

2
	

1
	

0

Description

Words

Machine
States

Status B its

Examples Code

CMPXY A1,A0
CMPXY A1,A0
CMPXY A1,A0
CMPXY Al,A0
CMPXY Al,A0
CMPXY A1,A0
CMPXY Al,A0
CMPXY Al,A0
CMPXY Al,A0

Before

Al
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009
>0009 0009

AO
>0001 0001
>0009 0001
>0001 0009
>0009 0009
>0000 0010
>0009 0010
>0010 0000
>0010 0009
>0010 0010

After Jumps Taken

NCZ V
0101 NN,C,NZ,V,LS,LT
0011 NN,NC,Z,V,LS,LT
1100 N,C,NZ,NV,LS, LT
1010 N,NC,Z,NV,LS,LT
0100 NN,C, NZ, NV,LS,G E
0010 NN, N C,Z, NV, LS, G E
0001 N N, NC, NZ,V,H I, LT
1000 N, NC, NZ, NV, HI, LT
0000 N N, NC, NZ, NV, H I,G E

12 - 44

Window

0000

0100 	0110

0010

1000 	1010

31
	

88
	

54
	

0

1000....000 ! CODE 1000001 Rd

	► +X

0101

0001

1001

CPW 	 Compare Point to Window 	 CPW

Syntax
	

CPW <Rs> ,<Rd>

Execution
	

Point Code 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	11 	001 Rs I R I Rd

Description 	CPW compares a point represented by an XY value in the source register to
the window limits in the WSTART and WEND registers. The contents of
the source register are treated as an XY address that consists of 16-bit
signed X and Y values. WSTART and WEND are also treated as signed
XY-format registers. WSTART and WEND should contain positive values;
negative values produce unpredictable results. The location of the point
with respect to the window is encoded as follows and loaded into the
destination register.

Codes:

Machine
States

Note that the five LSBs of the destination register are set to 0 so that Rd
can be used as an index into a table of 32-bit addresses.

This instruction can also be used to trivially reject lines that do not intersect
with a window. The CPW codes for the two points defining the line are
AN Ded together. If the result is nonzero, then the line must lie completely
outside the window (and does not intersect it). A 0 result indicates that the
line may intersect the window, and a more rigorous test must be applied.

The source and destination registers must be in the same register file.

B File Registers

Register Name Format Description

B5 WSTART XY Window start. 	Defines 	inclusive starting
corner of window (lesser value corner).

B6 WEND XY Window 	end. 	Defines 	inclusive 	ending
corner of window (greater value corner).

1

1,4

Implied
Operands

Words

12-45

CPW Compare Point to Window 	 CPW

Status Bits

Examples

N Unaffected
C Unaffected
Z Unaffected
V 1 if point lies outside window, 0 otherwise.

You must select appropriate implied operand values before executing the
instruction. In this example, the implied operands are set up as follows,
specifying a block of 36 pixels.

WSTART = 5,5
WEND 	= A,A

CPW Al,A0

Before

NCZV

After

NCZ V Al AO
>0004 0004 xxx0 >0000 00A0 xxxl
>0004 0005 xxx0 >0000 0080 xxxl
>0004 000A xxx0 >0000 0080 xxxl
>0004 000B xxx1 >0000 0000 xxxl
>0005 0004 xxxl >0000 0020 xxxl
>0005 0005 xxx0 >0000 0000 xxx0
>0005 000A xxx0 >0000 0000 xxx0
>0005 000B xxx0 >0000 0040 xxxl
>000A 0004 xxx0 >0000 0020 xxxl
>000A 0005 xxxl >0000 0000 xxx0
>000A 000A xxx1 >0000 0000 xxx0
>000A 0008 xxx0 >0000 0040 xxxl
>000B 0004 xxx0 >0000 0120 xxxl
>000B 0005 xxx0 >0000 0100 xxxl
>000B 000A xxx0 >0000 0100 xxxl
>000B 0006 xxx0 >0000 0140 xxxl

12-46

CVXYL 	Convert XY Address to Linear Address 	CVXYL

Syntax
	CVXYL <Rs>,<Rd>

Execution
	

(Rs XY) .- Rd (Linear)

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3
	

2
	

1 0

Implied
Operands

Words

Machine
States

Status Bits

1 1 	1 	1 	0 	1 	0 	0 1
	

Rs
	

1 R
	

Rd
	

1
Rs The source register contents are treated as an XY address that contains

signed 16-bit X and Y values. The X value must be positive.

CVXYL converts an XY address to a linear address. The source register
contains an XY address. The X value occupies the 16 LSBs of the register
and the Y value occupies the 16 MSBs. This is converted into a 32-bit li-
near address which is stored in the destination register. The following
conversion formula is used:

Address = (Y x Display Pitch) OR (X x Pixel Size) + Offset

Since the TMS34010 restricts the screen pitch and pixel size to powers of
two (for XY addressing), the multiply operations in this conversion are ac-
tually shifts. The offset value is in the OFFSET register. The CONVDP value
is used to determine the shift amount for the Y value, while the PSIZE reg-
ister determines the X shift amount.

The source and destination registers must be in the same register file.

B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (location 0,0)

I/O Registers

Address Name Description and Elements (Bits)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

1

3,6

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Operands

Description

12-47

CVXYL Convert XY Address to Linear Address CVXYL

Examples

Code Before 	After

PSIZE CONVDP 	Al AO OFFSET
CVXYL A0,A1 >0040 0030 	>0000 0000 >0010 >0014 >0002 0300
CVXYL A0,A1 >0040 0030 	>0000 0000 >0008 >0014 >0002 0180
CVXYL AO , Al >0040 0030 	>0000 0000 >0004 >0014 >0002 0000
CVXYL AO , Al >0040 0030 	>0000 8000 >0004 >0014 >0002 8000
CVXYL A0,A1 >0040 0030 	>0F00 0000 >0004 >0014 >0F02 0000
CVXYL AO , Al >0040 0030 	>0000 0000 >0002 >0014 >0002 0060
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0014 >0002 0030
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0013 >0004 0030
CVXYL AO , Al >0040 0030 	>0000 0000 >0001 >0015 >0001 0000

CONVDP = >0013 corresponds to DPTCH = >0000 1000
CONVDP = >0014 corresponds to DPTCH = >0000 0800
CONVDP = >0015 corresponds to DPTCH = >0000 0400

12-48

DEC 	 Decrement Register DEC

Syntax
	

DEC <Rd>

Execution
	

(Rd) - 1 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2

1 0 	0 	0 	1 	0 	1 	0 	0 	0 	0 	1 I R I 	Rd

Description 	DEC subtracts 1 from the contents of the destination register; the result is
stored in the destination register. This instruction is an alternate mnemonic
for SUBK 1 ,Rd.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the SUBB instruction.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	Before
	

After

Al 	 Al 	 NCZV
DEC Al 	>0000 0010 	>0000 000F 	0000
DEC Al 	>0000 0001 	>0000 0000 	0010
DEC Al 	>0000 0000 	>FFFF FFFF 	1100
DEC Al 	>FFFF FFFF 	>FFFF FFFE 	1000
DEC Al 	>8000 0000 	>7FFF FFFF 	0001

12-49

DINT 	 Disable Interrupts DINT

Syntax

Execution

Encoding

DINT

0 -0 IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0

Description 	DINT disables interrupts by setting the global interrupt enable bit (IE, status
bit 21) to 0. All interrupts except reset and NMI are disabled; the interrupt
enable mask in the INTENB register is ignored. The remainder of the status
register is unaffected.

The El NT instruction enables interrupts.

Words

Machine
States

Status Bits

1

3,6

N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 0

Examples 	Code 	Before 	 After

ST 	 ST
DINT 	>0000 0010 	>0000 0010
DINT 	>0020 0010 	>0000 0010

12 - 50

DIVS Divide Registers - Signed 	 DIVS

Syntax 	DIVS <Rs>,<Rd>

Execution 	Rd Even: (Rd):(Rd+1)/(Rs) 	Rd, remainder -4 Rd+1
Rd Odd: (Rd)/(Rs) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	1 	0 	0
	

Rs
	

R
	

Rd

Operands 	Rs is a 32-bit signed divisor.

Rd is a 32-bit signed dividend, or the most significant half of a 64-bit
signed dividend.

Description 	There are two cases:

Rd Even DIVS performs a signed divide of the 64-bit operand contained
in the two consecutive registers, starting at the specified desti-
nation register, by the 32-bit contents of the source register.
The specified even-numbered destination register, Rd, contains
the 32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). The re-
mainder is always the same sign as the dividend (in Rd:Rd +1).
Avoid using Al 4 or B14 as the destination register, since this
overwrites the SP; the assembler will issue a warning in this
case.

Rd Odd DIVS performs a signed divide of the 32-bit operand contained
in the destination register by the 32-bit value in the source re-
gister. The quotient is stored in the destination register; the re-
mainder is not returned.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	40,43 (Rd even)

39,42 (Rd odd)
41,44 if result = >80000000
7,10 if (Rd) > (Rs) or (Rs) < 0

Status Bits 	N 1 if the quotient is negative, 0 otherwise.
C Unaffected
Z 	1 if the quotient is 0, 0 otherwise.
V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise.

The following conditions will set the overflow flag:

Divisor is 0

• 	Quotient cannot be contained within 32 bits

12-51

DIVS 	 Divide Registers - Signed 	 DIVS

Examples

DIVS A2 ,A0

Before

Al
>8765 4321
>789A BCDF
>789A BCDF

A2
>8765 4321
>8765 4321
>789A BCDF

After

Al
>15CA 1 DD7
>EA35 E229
>EA35 E229

A2
>8765 4321
>8765 4321
>789A BCDF

NCZV
1 x00
Ox 00
1 x00

AO
>1234 5678
>EDCB A987
>EDCB A987

AO
>D95B C60A
>26A4 39F6
>D95B C60A

>1234 5678 >8765 4321 >789A BCDF >26A4 39F6 >15CA 1DD7 >789A BCDF Ox 00
>1234 5678 >8765 4321 >0000 0000 >1234 5678 >8765 4321 >0000 0000 Ox 01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 Ox 01
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321 0 x 1 0
>8765 4321 >0000 0000 >8765 4321 >8765 4321 >0000 0000 >8765 4321 Ox 01

DIVS A2,A1

Before After

AO Al A2 AO Al A2 NCZV
>0000 0000 >8765 4321 >1234 5678 >0000 0000 >FFFF FFFA >1234 5678 1x00
>0000 0000 >8765 4321 >EDCB A988 >0000 0000 >0000 0006 >EDCB A988 Ox 00
>0000 0000 >789A BCDF >EDCB A988 >0000 0000 >FFFF FFFA >EDCB A988 1 x00
>0000 0000 >789A BCDF >1234 5678 >0000 0000 >0000 0006 >1234 5678 Ox 00
>0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321 >0000 0000 Ox 01
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 0 x 01

12-52

DIVU 	 Divide Registers - Unsigned 	 DIVU

Syntax 	DIVU <Rs>,<Rd>

Rd Even: (Rd):(Rd+1)/(Rs) -■ Rd, remainder 	Rd+1
Rd Odd: (Rd)/(Rs) -* Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	1 	1 	0 	1
	

Rs
	

R
	

Rd

Rs is a 32-bit unsigned divisor.

Rd is a 32-bit unsigned dividend or the most significant half of a 64-bit
unsigned divisor.

Description 	There are two cases:

Rd Even DIVU performs an unsigned divide of the 64-bit operand con-
tained in the two consecutive registers, starting at the destina-
tion register, by the 32-bit contents of the source register. The
specified even-numbered destination register, Rd, contains the
32 MSBs of the dividend. The next consecutive register
(which is odd-numbered) contains the 32 LSBs of the divi-
dend. The quotient is stored in the destination register, and the
remainder is stored in the following register (Rd+1). Avoid
using Al 4 or B14 as the destination register, since this over-
writes the SP; the assembler will issue a warning in this case.

Rd Odd 	DIVU performs an unsigned divide of the 32-bit operand con-
tained in the destination register by the 32-bit value in the
source register. The quotient is stored in the destination regis-
ter; the remainder is not returned.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	37,40 (Rd even)

37,40 (Rd odd)
5,8 if (Rd) > (Rs) or (Rs) < 0

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the quotient is 0, 0 otherwise.
V 1 if quotient overflows (cannot be represented by 32 bits), 0 otherwise.

The following conditions set the overflow flag:

• Divisor is 0

• Quotient cannot be contained within 32 bits

Execution

Encoding

Operands

12-53

DIVU Divide Registers - Unsigned 	 DIVU

Examples

DIVU A2 ,A0

Before

Al A2

After

Al A2 AO AO
>1234 5678 >8765 4321 >789A BCDF >26A4 39F6 >15CA 1 DD7 >789A BCDF
>1234 5678 >8765 4321 >0000 0000 >1234 5678 >8765 4321 >0000 0000
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321
>8765 4321 >0000 0000 >8765 4321 >8765 4321 >0000 0000 >8765 4321

DIVU A2 ,A1

Before After

AO Al A2 AO Al A2
>0000 0000 >789A BCDF >1234 5678 >0000 0000 >0000 0006 >1234 5678
>0000 0000 >1234 5678 >0000 0000 >0000 0000 >1234 5678 >0000 0000
>0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000 >0000 0000
>0000 0000 >0000 0000 >8765 4321 >0000 0000 >0000 0000 >8765 4321
>0000 0000 >8765 4321 >8765 4321 >0000 0000 >0000 0001 >8765 4321

NCZV
x x 00
xx 01
xx 01
x x 1 0
x x 01

NCZV
x x 00
x x 01
xx 01
xx10
x x 00

12-54

DRAV 	 Draw and Advance 	 DRAV

Syntax 	DRAV <Rs>,<Rd>

Execution 	(pixel)COLOR1 -+ *Rd
(RsX) + (RdX) 	RdX
(RsY) + (RdY) 	RdY

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

IR 	 Rd

Description 	DRAV writes the pixel value in the COLOR1 register to the location pointed
to by the XY address in the destination register. Following the write, the
XY address in the destination register is incremented by the value in the
source register: the X half of As is added to the X half of Rd, and the Y half
of Rs is added to the Y half of Rd. Any carry out from the lower (X) half
of the register will not propagate into the upper (Y) half.

COLOR1 bits 0-15 are output on data bus lines 0-15, respectively. The
pixel data used from COLOR1 is that which aligns to the destination lo-
cation, so 16-bit patterns can be implemented. The source and destination
registers must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (location 0,0)

85 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B9 COLOR1 Pixel Pixel color

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
W —Window checking operation
T 	—Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Pixel
Processing 	Set the PPOP field in the CONTROL register to select a pixel processing

operation. This operation will be applied to the pixel as it is moved to the
destination location. At reset, the default pixel processing operation is re-
place (S D). For more information, see Section 7.7, Pixel Processing, on
page 7-15.

Window
Checking 	Select a window checking mode by setting the W bits in the CONTROL

register. If you select an active window checking mode (W = 1, 2, or 3),
the WSTART and WEND registers will define the XY starting and ending
corners of a rectangular window. The X and Y values in both WSTART and
WEND must be positive.

12-55

DRAV 	 Draw and Advance 	 DRAV

When the TMS34010 attempts to write a pixel inside or outside a defined
value, the following actions may occur:

W=0 No window operation. The pixel is drawn and the WVP and V bits
are unaffected.

W=1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies
within the window; otherwise, it is set to 1.

W=2 Window miss. If the pixel lies outside the window, the WVP and V
bits are set to 1 and the instruction is aborted (no pixels are drawn).
Otherwise, the pixel is drawn and the V bit is set to 0.

W=3 Window clip. If the pixel lies outside the window, the V bit is set to
1 and the instruction is aborted (no pixels are drawn). Otherwise, the
pixel is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0-valued (transparent)
pixels resulting from the combination of the source and destination pixels,
according to the selected pixel processing operation. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	When this instruction is executed and the SRT bit is set, normal memory

read and write operations become SRT reads and writes. Refer to Section
9.9.2, Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States The states consumed depend on the operation selected, as indicated below.

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

7+(3),13
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

5,8
5,8

3,6
3,6

5,8
5,8

Status Bits N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise; unaffected if window

clipping is not used.

12 - 56

DRAV 	 Draw and Advance 	 DRAV

Examples 	These DRAV examples use the following implied operand setup.

Register File B:
DPTCH (B3)
OFFSET (B4)
WSTART (B5)
WEND (B6)
COLOR1 (B9)

= >200
= >0001 0000
= >0010 0000
= >003C 0040
= >FFFF FFFF

I/O Registers:
CONVDP = >0016

Assume that memory contains the following values before instruction exe-
cution:

Code

>0001

Before

Address
8040 	>8888

Al

Data

PSIZE PP W

After

AO @>18040 AO PMASK

DRAV Al,AO >0040 0040 >0010 0010 >0001 00000 00 >0000 >0050 0050 >8889
DRAV Al, AO >0040 0020 >0010 0010 >0002 00000 00 >0000 >0050 0030 >888B
DRAV Al ,A0 >0040 0010 >0010 0010 >0004 00000 00 >0000 >0050 0020 >888F
DRAV Al ,AO >0040 0008 >0010 0010 >0008 00000 00 >0000 >0050 0018 >88FF
DRAV Al , AO >0040 0004 >0010 0010 >0010 00000 00 >0000 >0050 0014 >FFFF
DRAV Al, AO >0040 0004 >0000 FFFF >0010 01010 00 >0000 >0040 0003 >0000
DRAV Al , AO >0040 0004 >FFFF 0000 >0010 10011 00 >0000 >003F 0004 >0000
DRAV Al ,A0 >0040 0004 >0001 0001 >0010 00000 11 >0000 >0041 0005 >0000
DRAV Al ,A0 >0040 0004 >0040 0004 >0010 00000 00 >00FF >0080 0008 >FFOO

12-57

DSJ 	Decrement Register and Skip Jump 	DSJ

Syntax 	DSJ <Rd>,<Address>

Execution 	(Rd) - 1 —> Rd
If (Rd) # 0, then (Displacement x16) + (PC') — ■ PC
If (Rd) = 0, then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 	7 	6
	

5
	

4 3 2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	0 	0 R
	

Rd

Displacement

Operands 	Rd
	

contains the operand to be decremented.

Address 	is a 32-bit address (within 32K words).

Description 	DSJ decrements the contents of the destination register by 1. If this result
is nonzero, then a jump is made relative to the current PC. The current
PC points to the instruction word that immediately follows the second word
of the DSJ instruction. The signed word displacement is converted to a
bit displacement by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement (Displacement x 16)
to the address of the next instruction.

If the result of the destination register decrement is 0, then no jump is per-
formed and the program continues execution at the next sequential in-
struction.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction is useful for large loops involving a counter. For shorter
loops, the assembler will translate this into a DSJS instruction.

Words 	2

Machine
States 	3,9 (Jump)

2,8 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code Before After

Jump taken? A5 A5
DSJ A5 , LOOP >0000 0009 >0000 0008 Yes
DSJ A5 , LOOP > 0000 0001 >0000 0000 No
DSJ A5 , LOOP > 0000 0000 >FFFF FFFF Yes

12-58

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	0 	1
	

R
	

Rd

Displacement

Encoding

DSJEQ

Syntax

Execution

Conditionally Decrement Register
and Skip Jump 	 DSJEQ

DSJEQ <Rd>,<Address>

If (Z) = 1 then (Rd) - 1 —) Rd
If (Rd) 	0 then PC' + (Displacement x16) —) PC
If (Rd) = 0 then go to next instruction

If (Z) = 0 then go to next instruction

Operands
	

Rd
	

contains the operand to be conditionally decremented.

Address 	is a 32-bit address (within 32K words).

Description
	

The DSJEQ instruction performs a conditional jump, based on an evalu-
ation of the status Z bit.

• If Z = 1, the contents of the destination register are decremented by

If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

If the result is 0, then the jump is skipped and the program
continues execution at the next sequential instruction.

• If Z = 0, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit or implicit compare to 0. Ad-
ditional information on these types of compares can be obtained in the
CMP and CMPI, and MOVE-to-register instructions, respectively.

Words

Machine
States

Status Bits

2

3,9 (Jump)
2,8 (No jump)

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

12-59

DSJEQ
Conditionally Decrement Register

and Skip Jump DSJ EQ

Examples 	Code Before After

A5 NCZV A5 Jump taken?
DSJEQ A5,LOOP >0000 0009 xx1x >0000 0008 Yes
DSJEQ A5,LOOP >0000 0001 xx1x >0000 0000 No
DSJEQ A5,LOOP >0000 0000 xxlx >FFFF FFFF Yes
DSJEQ A5,LOOP >0000 0009 xx0x >0000 0009 No
DSJEQ A5,LOOP >0000 0001 xx0x >0000 0001 No
DSJEQ A5,LOOP >0000 0000 xx0x >0000 0000 No

12-60

Conditionally Decrement Register
DSJNE 	 and Skip Jump 	 DSJNE

Syntax 	DSJNE <Rd>,<Address>

Execution 	If (Z) = 0 then (Rd) - 1 -. Rd
If (Rd) 	0 then PC' + (Displacement x 16) 	PC
If (Rd) = 0 then go to next instruction

If (Z) = 1 then to to next instruction

Encoding
	

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	1 	0 	1 	1 	1 	0 R
	

Rd

Displacement

Operands 	Rd
	

contains the operand to be conditionally decremented.

Address 	is a 32-bit address (within 32K words).

Description 	The DSJ NE instruction performs a conditional jump, based on an evalu-
ation of the Z bit.

• If Z = 0, the contents of the destination register are decremented by

If this result is nonzero, then a jump is made relative to the
current PC. The current PC points to the instruction word that
immediately follows the second word of the DSJ instruction.
The signed word displacement is converted to a bit displace-
ment by multiplying by 16. The new PC address is then ob-
tained by adding the resulting signed displacement
(Displacement x 16) to the address of the next instruction.

If the result is 0, then the jump is skipped and the program
continues execution at the next sequential instruction.

• If Z = 1, the jump is skipped, the program counter is advanced to the
next sequential instruction, and the instruction completes.

The displacement is computed by the assembler as (Address - PC')/16.
The resulting jump range is -32,768 to +32,767 words. The specified
32-bit address is converted by the assembler into the value required for the
displacement field.

This instruction can be used after an explicit compare or an implicit compare
to 0. Additional information on these types of compares can be obtained
in the CM P, CMPI, and MOVE-to-register instructions.

Words 	2

Machine
States 	3,9 (Jump)

2,8 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-61

Conditionally Decrement Register
DSJNE 	 and Skip Jump 	 DSJNE

Examples 	Code Before

AS
DSJNE A5, LOOP >0000 0009
DSJNE A5, LOOP >0000 0001
DSJNE A5, LOOP >0000 0000
DSJNE A5, LOOP >0000 0009
DSJNE A5, LOOP >0000 0001
DSJNE A5, LOOP >0000 0000

After

NCZV 	A5 	Jump taken?
xx1x >0000 0009 	No
x x 1 x >0000 0001 	No
x x 1 x >0000 0000 	No
xx0x >0000 0008 	Yes
xx0x >0000 0000 	No
xx0x 	> FFFF FFFF 	Yes

12-62

P

DSJS Decrement Register and Skip Jump - Short DSJS

Syntax 	DSJS < Rd>, <Address>

Execution 	(Rd) - 1 -■ Rd
If (Rd) # 0 then PC' + (Displacement x16) - ■ PC
If (Rd) = 0 then go to next instruction

Encoding
	

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

10 	0 	1 	1 	1
	

D
	

Displacement
	

R
	

Rd

Operands 	Rd
	

contains the operand to be decremented.

Address 	is a 32-bit address (within 32K words).

Description 	DSJS performs a conditional jump; first, it decrements the contents of the
destination register by 1.

• If this result is nonzero, then a jump is made relative to the current
PC. The current PC points to the instruction word that immediately
follows the second word of the DSJ instruction. The 5-bit displace-
ment is converted to a bit displacement by multiplying by 16.

- If the direction bit D is 0, the new PC address is then obtained
by adding the resulting displacement to PC'.

- If the direction bit D is 1, the new PC address is obtained by
subtracting the resulting displacement from PC'. This provides
a jump range of -32 to 32 words, excluding 0.

• If the result of the decrement is 0, then the jump is skipped and pro-
gram execution continues at the next sequential instruction.

The specified 32-bit address is converted by the assembler into the value
required for the displacement field. The displacement is computed by the
assembler as (Address - PC')/16. This instruction is useful for coding tight
loops for cache-resident routines.

Words
	

1

Machine
States 	2,5 (Jump)

3,6 (No jump)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Examples 	Code 	 Before 	 After

A5 	 A5 	 Jump taken?
DSJS A5 ,LOOP 	>0000 0009 	>0000 0008 	Yes
DSJS A5 ,LOOP 	>0000 0001 	>0000 0000 	No
DSJS A5 , LOOP 	>0000 0000 	>FFFF FFFF 	Yes

12-63

EINT

1 -, IE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0

Syntax

Execution

Encoding

1 1

EINT 	 Enable Interrupts EINT

Description 	EINT sets the global interrupt enable bit (IE) to 1, allowing interrupts to be
enabled. When IE=1, individual interrupts can be enabled by setting the
appropriate bits in the INTENB interrupt mask register. The rest of the sta-
tus register is unaffected.

The DINT instruction disables interrupts.

Words 	1

Machine
States 	3,6

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected
IE 1

Examples 	Code 	Before 	After

ST 	 ST
EINT 	>00000010 	>00200010
EINT 	>00200010 	>00200010

12 - 64

EMU 	 Initiate Emulation
	

EMU

Syntax

Execution

Encoding

EMU

ST -■ Rd and conditionally enter emulator mode

15 14 13 12 11 10 9 	8 	7 	6 	5 	4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	0 	0 	0 	0 	0 	0 	0 0

Description 	The EMU instruction pulses the EMUA pin and samples the RUN/EMU pin.
If the RUN/EM pin is in the RUN state, the EMU instruction acts as a NOP.
If the pin is in the EMU state, emulation mode is entered. This instruction
is not intended for general use; refer to the TMS34010 XDS/22 User's
Guide for more information.

Words 	1

Machine
States 	6,9 (or more if EMU mode is entered)

Status Bits 	N Indeterminate
C Indeterminate
Z Indeterminate
V Indeterminate

12-65

EXGF 	 Exchange Field Size 	 EXGF

Syntax 	EXGF <Rd>[,<F>]

Execution 	(Rd) 	FSO, FEO or (Rd) 	FS1, FE1
FSO, FE0 	(Rd) or FS1, FE1 —■ (Rd)

Encoding
	

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

1 	0 	1 	0 	1 1F 1 1 	0 	0 	0 1 	 Rd

Operands 	F is an optional operand; it defaults to 0.
F=0 selects FSO, FEO to be exchanged.
F=1 selects FS1, FE1 to be exchanged

Description 	EXGF exchanges the six LSBs of the destination register with the selected
six bits of field information (field size and field extension). Bit 5 of the 6-bit
quantity in Rd is exchanged with the field extension value. The upper 26
bits of Rd are cleared.

313020 29 27 	2322zi,E1D 	17 1%5 1.5 a 43 t1 1D 9 0 7 0 0-4 3 2 1' 0

IN e Z v 	-Ree F 	RuerVed 	
F
E 	FS1 FS0
	ut—h-

Status Register

Words
Machine
States

Status B its

1

1,4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Before 	 After

A5 	 ST 	 A5 	 ST
EXGF A5 , 0 >FFFF FFCO >F000 OFFF >0000 003F >F000 OFCO
EXGF A5 , 1 >FFFF FFCO >F000 OFFF >0000 003F >F000 003F

12-66

EXGPC Exchange Program Counter with Register EXGPC

Syntax
	

EXGPC <Rd>

Execution
	

(Rd) --■ PC, (PC') -÷ Rd

Encoding
	

15 14 13 12 11 10 9
	

8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

° 	0 	0 	0 	0 	0 	0 	1 	0 	0 	1 R
	

Rd

Description 	EXGPC exchanges the next program counter value with the destination re-
gister contents. After this instruction has been executed, the destination
register contains the address of the instruction immediately following the
EXGPC instruction.

Note that the TMS34010 sets the four LSBs of the program counter to 0
(word aligned).

This instruction provides a "quick call" capability by saving the return ad-
dress in a register (rather than on the stack). The return from the call is
accomplished by repeating the instruction at the end of the "subroutine."
Note that the subroutine address must be reloaded following each call-re-
turn operation.

Words 	1

Machine
States 	2,5

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Before 	 After

Al 	 PC 	 Al 	 PC
EXGPC Al >0000 1C10 >0000 2080 >0000 2090 >0000 1C10
EXGPC Al >0000 1050 >0000 2080 >0000 2090 >0000 1050

12-67

FILL Fill Array with Processed Pixels - Linear 	FILL

Syntax

Execution

Encoding

Operands

Description

Implied
Operands

Destination
Array

FILL L

pixel(COLOR1) -■ Pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

L 	specifies that the pixel array starting address is in linear format.

FILL processes a set of source pixel values (specified by the COLOR1 reg-
ister) with a destination pixel array. This instruction operates on a two-di-
mensional array of pixels using pixels defined in the COLOR1 register. As
the FILL proceeds, the source pixels are combined with destination pixels
based on the selected graphics operations.

Note that the instruction is entered as FILL L. The following set of im-
plied operands govern the operation of the instruction and define both the
source pixels and the destination array.

B File Registers

Register Name Format Description

B2t DADDR Linear Pixel array starting address

B3 DPTCH Linear Pixel array pitch

B7 DYDX XY Pixel array dimensions (rows:columns)

B9 COLOR1 Pixel Fill color or 16-bit pattern

B1 0—B1 41. Reserved registers

I/O Registers

Address Name Description and Operations

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t Changed by FILL during execution.

The contents of the DADDR, DPTCH, and DYDX registers define the lo-
cation of the destination pixel array:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

During instruction execution, DADDR points to the next pixel (or
word of pixels) to be modified in the destination array. When the ar-
ray transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16, exept when a single pixel-width line is drawn (DX=1). In this
case, DPTCH may be any value.

12-68

FILL
	

Fill Array with Processed Pixels - Linear 	FILL

Pixel
Processing

• 	DYDX specifies the dimensions of the destination array in pixels. The
DY portion of DYDX contains the number of rows in the array, while
the DX portion contains the number of columns.

Set the PPOP field in the CONTROL register to select a pixel processing
operation. This operation will be applied to the pixel as it is moved to the
destination location. There are 16 Boolean and 6 arithmetic operations; the
default operation at reset is replace (S D). Note that the destination data
is read through the plane mask and then processed. The 6 arithmetic op-
erations do not operate with pixel sizes of one or two bits per pixel. For
more information, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking
	

Window checking cannot be used with this instruction. The contents of
the WSTART and WEND registers are ignored.

Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is
fixed as increasing linear addresses.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels
after it processes the source data. At reset, the default case for transparency
is off.

Interrupts This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FILL cor-
rectly. You can inhibit the TMS34010 from resuming the FILL by executing
an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and
B10-B14 will contain indeterminate values.

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	If the SRT bit in the DPYCTL register is set, each memory read or write in-

itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.) See Section 9.9.2,
Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States
	

See Section 13.3, FILL Instructions Timing.

12-69

FILL 	Fill Array with Processed Pixels - Linear 	FILL

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	These FILL examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DADDR (B2) = >00002010 	PSIZE 	= >0008
DPTCH (B3) 	= >00000080
DYDX (B7) 	= >0002000D
COLOR1 (B9) = >30303030

Assume that memory contains the following values before instruction exe-
cution.

Example 1

Example 2

Example 3

Linear
Address 	 Data
>02000 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE
>02080 >1100, >3322, >5544, >7766, >9988, >BBAA,>DDCC,>FFEE

This example uses the pixel processing rep/ace (S 	DJ operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3030, >3030, >3030, >3030, >3030, >3030, >FF30
>02080 >1100, >3030, >3030, >3030, >3030, >3030, >3030, >FF30

This example uses the (-S and D) 	D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >2C00 (T=0,
PP=01010).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >0302, >4544, >4746, >8988, >8B8A,>CDCC? FFCE
>02080 >1100, >0302, >4544, >4746, >8988, >8B8A,>CDCC>FFCE

This example uses transparency and the (S and DJ --■ D pixel processing
operation. Before instruction execution, PMASK = > 0000 and CONTROL
= > 0420 (T=1, PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3020, >1044, >3020, >1088, >3020, >10CC,>FF20
>02080 >1100, >3020, >1044, >3020, >1088, >3020, >10CC,>FF20

12 - 70

FILL 	Fill Array with Processed Pixels - Linear 	FILL

Example 4 	This example uses plane masking; the four MSBs are masked. Before in-
struction execution, PMASK • = >FOFO and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>02000 >1100, >3020, >5040, >7060, >9080, >BOAO,>DOCO,>FFEO
>02080 >1100, >3020, >5040, >7060, >9080, > BON:3c> DOCO,> FFEO

12-71

B File Registers

Register Name Format Description

B211 DADDR XY Pixel array starting address

B3 DPTCH Linear Pixel array pitch

B4 OFFSET Linear Screen origin (address of 0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7t$ DYDX XY Pixel array dimensions (rows:columns)

B9 COLOR1 Pixel Fill color or 16-bit pattern

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window checking operation
T 	— Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Implied
Operands

r

Fill Array with Processed Pixels - XY 	FILL FILL

FILL XY

pixel(COLOR1) -* Destination pixel array (with processing)

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

XY Specifies that the pixel array starting address is given in XY format.

FILL processes a set of source pixel values (specified by the COLOR1 reg-
ister) with a destination pixel array.

This instruction operates on a two-dimensional array of pixels using pixels
defined in the COLOR1 register. As the FILL proceeds, the source pixels
are combined with destination pixels based on the selected graphics oper-
ations.

Note that the instruction is entered as FILL L,XY. The following set of
implied operands govern the operation of the instruction and define both
the source pixels and the destination array.

Syntax

Execution

Encoding

Operands

Description

Destination
Array

t Changed by FILL during execution.
t Used for common rectangle function with window hit operation (W=1).

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers. At the outset
of the instruction, DADDR contains the XY address of the pixel with the
lowest address in the array. It is used with OFFSET and CONVDP to cal-
culate the linear address of the starting location of the array. DPTCH con-
tains the linear difference in the starting addresses of adjacent rows of the
destination array (typically this is the screen pitch). DPTCH must be a
power of two (greater than or equal to 16) and CONVDP must be set to

12-72

FILL
	

Fill Array with Processed Pixels - XY 	FILL

correspond to the DPTCH value. CONVDP is computed by operating on
the DPTCH register with the LMO instruction; it is used for the XY calcu-
lations involved in XY addressing and window clipping. DYDX specifies
the dimensions of the destination array in pixels. The DY portion of DYDX
contains the number of rows in the array, while the DX portion contains the
number of columns. During instruction execution, DADDR points to the
next pixel (or word of pixels) to be modified in the destination array. When
the array transfer is complete, DADDR points to the linear address of the
pixel following the last pixel written. This is that pixel on the last row that
would have been written had the array transfer been wider in the X dimen-
sion.

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL register specifies the pixel processing operation that will be ap-
plied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the destination data is read through the
plane mask and then processed. The 6 arithmetic operations do not operate
with pixel sizes of one or two bits per pixel. For more information, see
Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	The window operations described iri Section 7.10, Window Checking, on

page 7-25. can be used with this instruction. Window pick, violation de-
tect, or preclipping can be selected by setting the W bits in the CONTROL
register to 1, 2, or 3, respectively. Window pick modifies the DADDR and
DYDX registers to correspond to the common rectangle formed by the
destination array and the clipping window defined by WSTART and WEND.
DADDR is set to the XY address of the pixel with the lowest address in the
common rectangle, while DYDX is set to the X and Y dimensions of the
rectangle. If no window operations are selected, the WSTART and WEND
registers are ignored. At reset, no window operations are enabled.

Corner Adjust There is no corner adjust for this instruction. The direction of the FILL is
fixed as increasing linear addresses.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL register to 1. The TMS34010 checks for 0 (transparent) pixels
after it processes the source data. At reset, the default case for transparency
is off.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the FILL is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this tine, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SAD DR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed .

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the FILL cor-
rectly. You can inhibit the TMS34010 from resuming the FILL by executing
an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH, and
B10-B14 will contain indeterminate values.

12-73

FILL 	Fill Array with Processed Pixels - XY 	FILL

Plane Mask 	The plane mask is enabled for this instruction.

Shift Register
Transfers 	If the SRT bit in the DPYCTL register is set, each memory read or write in-

itiated by the FILL generates a shift register transfer read or write cycle at
the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.) See Section 9.9.2,
Video Memory Bulk Initialization, on page 9-27 for more information.

Words 	1

Machine
States 	See Section 13.3, FILL Instructions Timing.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V 1 if a window violation occurs, 0 otherwise. Unaffected if window

clipping is not enabled.

Examples 	These FILL examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DADDR (B2) = >0052 0007 CONVDP 	= >0017
DPTCH (B3) 	>0000 0100 PSIZE 	= >0004
OFFSET (B4) 	>0001 0000 PMASK 	= >0000
WSTART (B5) 	>0030 000C CONTROL = >0000
WEND (B6) 	= >0053 0014 	 (W=00, T=0, PP=00000)
DYDX (B7) 	>0003 0012
COLOR1 (B9) 	>FFFF FFFF

Example 1

Assume that memory contains the following values before instruction exe-
cution.

Linear
Address 	 Data
>15200 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>15300 >3210, >7654, > BA98, > FEDC,> 3210, >7654, > BA98,> FEDC
>15400 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC

This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory contains the following values:

Linear
Address 	 Data
>15200 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC
>15300 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC
>15400 >3210, >F654, >FFFF, >FFFF, >FFFF, >FFFF, >BA9F,>FEDC

12-74

FILL 	Fill Array with Processed Pixels - XY 	FILL

XY Addressing
X Address

Y 	00 000000000000001111111111111111
O 1 23456789ABCDEF01 2345678 9ABCDEF

A
d 52 0 123456FFFFFFFFFFFFFFFFFF9ABCDEF
d
✓ 53 0123456FFFFFFFFFFFFFFFFFF9ABCDEF
e
s 54 0123456FFFFFFFFFFFFFFFFFF9ABCDEF

Example 2
	

This example uses the (D XOR S) D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >2800 (T=0,
W=00, PP=01 01 0).

After instruction execution, memory contains the following values:

X Address
Y 	00000000000000001111111111111111

O '1 2 3456789ABCDEF01 23456789ABCDEF
A
d 52 0'1 23456876543210FEDCBA9879ABCDEF
d
✓ 53 0123456876543210FEDCBA9879ABCDEF
e
s 54 0123456876543210FEDCBA9879ABCDEF

Example 3 This example uses transparency, the (D subs S) 	D pixel processing op-
eration. 13efore instruction execution, COLOR1 = >88888888, PMASK =
>0000, a -id CONTROL = >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory contains the following values:

X Address
Y 00000000000000001111111111111111

01 2 3456789ABCDEF01 23456789ABCDEF
A
d
d
r
e
s

52

53

54

0 1 23456781 23456701 23456789ABCDEF

0123456781 2345670123456789ABCDEF

01 23456781 23456701 23456789ABCDEF
I

1 2-75

FILL 	Fill Array with Processed Pixels - XY 	FILL

Example 4 	This example uses window operation 3; the destination is clipped. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP=00000).

After instruction execution, memory contains the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDE F 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 0 23456789ABFFFFFFFFF56789ABCDEF
d
✓ 53 0123456789ABFFFFFFFFF56789ABCDEF
e
s 54 0 23456789ABCDEF0123456789ABCDEF

Example 5 This example uses plane masking; the most significant bit is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP-00000).

After instruction execution, memory contains the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 0 1234567FFFFFFFF77777777F9ABCDEF
d
r 53 0 1234567FFFFFFFF77777777F9,ABCDEF
e
s 54 01234567FFFFFFFF77777777F9ABCDEF

12-76

GETPC 	Get Program Counter into Register 	GETPC

Syntax

Execution

Encoding

GETPC <Rd>

(PC') —■ Rd

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1 	0

1 o 	0 	0 	0 	0 	0 	0 	1 	0 	1 	OIRI 	Rd

Description 	GETPC increments the PC contents by 16 to point past the GETPC in-
struction, and copies the value into the destination register. Execution
continues with the next instruction. This instruction can be used with the
EXG PC and JUMP instructions for quick call on jump operations. GETPC
can be used to access relocatable data areas whose position relative to the
code area is known at assembly time.

Words

Machine
States 1,4

Status Bits N 	Unaffected
C 	Unaffected
Z 	Unaffected
V 	Unaffected

Examples Code Before After

PC Al

GETPC Al >0000 1 BDO >0000 1 BE0
GETPC Al >0000 1C10 >0000 1 C20

12-77

313029 28 27 28 25 24 23 22 212019 18 17 18 15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

[N

C

V

P

X

E Raaerded
. 	,

F
E
1

FS1
F
E
0

FS0

GETST 	Get Status Register into Register 	GETST

Syntax
	

G ETST <Rd>

Execution
	

(ST) 	Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	0 	0 	0 	0 	1 	1 	0 	0 R
	

Rd

Description 	GETST copies the contents of the status register into the destination regis-
ter.

Status Register

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	 After

PC 	 Al
GETST Al 	>2020 0010 	>2020 0010
GETST Al 	>0000 0010 	>0000 0010

12-78

Syntax

Execution

Encoding

INC <Rd>

(Rd) + 1 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 	0 	0 	1 	0 	0 	0 	0 	0 	0 	1 I Rd

INC 	 Increment Register INC

Description 	INC adds 1 to the contents of the destination register and stores the result
in the destination register. This instruction is an alternate mnemonic for
ADDK 1 ,Rd.

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the ADDC instruction.

Words

Machine
States

Status Bits

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a carry, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow, 0 otherwise.

Examples 	Code 	Before 	 After

Al 	 Al 	 NCZV
INC Al 	>0000 0000 	>0000 0001 0000
INC Al 	>0000 000F 	>0000 0010 0000
INC Al 	>FFFF FFFF 	>0000 0000 0110
INC Al 	>FFFF FFFE 	>FFFF FFFF 	1000
INC Al 	>7FFF FFFF 	>8000 0000 1001

12-79

1 	1 	0 	0 Code 1 	0

Address (LSW)

Address (MSW)

5 4 3 2 1 0

0 0 0 0 0 0

15 14 13 12 11 10 9 	8 	7 	6 Encoding

JAcc 	 Jump Absolute Conditional 	 JAcc

Syntax 	JAcc <Address>

Execution 	If condition true, then Address —■ PC
If condition false, then go to next instruction

Operands 	cc 	is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

Address is a 32-bit absolute address.

Fields 	Code 	is a 4-bit digit (see condition codes table below).

Description 	If the specified condition is true, jump to the address contained in the two
words of extension and continue execution from that point. If the specified
condition is false, continue execution at the next sequential instruction.
Note that the lower four bits of the program counter are set to 0 (word
aligned). These instructions are usually used in conjunction with the CMP
and CM PI instructions. The JAV and JANV instructions can also be used
to detect window violations or CPW status.

Condition
Codes Mnemonict Code Condition Status Bits

JAUC 0000 Unconditional No conditions

Unsigned Compare

JALO (JAC) 1000 Lower than C

JALS 0010 Lower or same C + Z

JAHI 0011 Higher than C • Z

JAHS (JANC) 1001 Higher or same C

JAEQ (JAZ) 1010 Equal Z

JANE (JANZ) 1011 Not equal Z

Signed Compare

JALT 0100 Less than (N • V) + (ICI • V)

JALE 0110 Less than or equal (N • V) + (N • V) + Z

JAGT 0111 Greater than (N • V • 2) 	+ (N • V • 2)

JAGE 0101 Greater than or equal (N • V) + (N • V)

JAEQ (JAZ) 1010 Equal Z

JANE (JANZ) 1011 Not equal 7

Compare to Zero

JAZ 1010 Zero Z

JANZ 1011 Nonzero 2

JAP 0001 Positive N • Z

JAN 1110 Negative N

JANN 1111 Nonnegative N

12-80

JAcc 	 Jump Absolute Conditional JAcc

Condition Codes
(continued) Mnemonict 	Code 	Condition 	 Status Bits

General Arithmetic

JAZ 1010 Zero Z

JANZ 1011 Nonzero Z

JAC 1000 Carry C

JANC 1001 No carry C

JAB (JAC) 1000 Borrow C

JANB (JANC) 1001 No borrow T

JAV* 1100 Overflow V

JANV* 1101 No overflow V

t Jump instructions in parentheses indicate equivalent instructions
Also window clipping

+ Logical OR
Logical AND
Logical NOT

3

3,6 (Jump)
4,7 (No jump)

Words

Machine
States

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples
	

Code 	Flags for Branch

NCZV NCZV NCZV
JAUC HERE xxxx
JAP HERE Ox Ox
JALS HERE xx 1 x x1 xx
JAHI HERE x 00x
JALT HERE Ox x1 1x x0
JAGE HERE Ox x0 1x x1
JALE HERE Oxx1 1 xx0 xx1x
JAGT HERE Ox 00 1x01
JAC HERE x1 xx
JANC HERE xOxx
JAZ HERE xx 1 x

Code
	

Flags for Branch

NCZV NCZV NCZV
JAV HERE x x x 1
JANZ HERE xxOx
JANN HERE Oxxx
JANV HERE xxx0
JAN HERE 1 xxx
JAB HERE x1 xx
JANB HERE xOxx
JALO HERE x1 xx
JAHS HERE x00x xx1x
JANE HERE xxOx
JAEQ HERE xx1x

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-81

JRcc Jump Relative Conditional - ±127 Words 	JRcc

Syntax

Execution

JRcc <Address>

If condition True then Displacement + (PC') 	PC
If condition False then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 7 	6 5 4 3 2 1 0

I
 1 	

1 	0 	0I
	

code
	

Displacement

is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

is a 32-bit relative address, ±127 words (excluding 0).

is a 4-bit digit (see condition codes table below).

Operands
	

CC

Address

Fields
	

Code

Description

Condition
Codes

If the condition specified is true, then jump to the location at the address
specified by the sum of the next instruction address (PC') and the signed
word displacement. If the specified condition is false, then continue exe-
cution at the next sequential instruction.

The displacement is the number of words relative to the PC and is com-
puted by the assembler as (Address - PC')/16. The assembler will use this
opcode if the address in the range -127 to 127 words (except for 0). If the
displacement is outside the legal range, the assembler will automatically use
the longer JRcc instruction. If the displacement is 0, the assembler will
automatically substitute a NOP opcode instead. The assembler will not
accept an address which is externally defined or an address which is relative
to a different section than the PC. Note that the four LSBs of the program
counter are always 0 (word aligned).

These instructions are usually used in conjunction with the CM P and CMPI
instructions. The JRV and JRNV instructions can also be used to detect
window violations or CPW status.

Mnemonict Code Condition Status Bits

JRUC 0000 Unconditional No conditions

Unsigned Compare

JRLO (JRC) 1000 Lower than C

JRLS 0010 Lower or same C + Z

JRHI 0011 Higher than C • 2-

JRHS (JRNC) 1001 Higher or same C

'JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

Signed Compare

JRLT 0100 Less than (N • V) + (17 • V)

JRLE 0110 Less than or equal (N • V) + (N • V) + Z

JRGT 0111 Greater than (N • V • 7) 	+ (N • V • 7)

JRGE 0101 Greater than or equal (N • V) + (N • \7)

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal '2

12-82

JRcc 	Jump Relative Conditional - ±127 Words 	JRcc

Condition Codes
(continued)

Words

Mnemonict 	Code 	Condition 	 Status Bits

Compare to Zero

J RZ 1010 Zero Z

JRNZ 1011 Nonzero Z

JRP 0001 Positive N • 7

JRN 1110 Negative N

JRNN 1111 Nonnegative N
General Arithmetic

JRZ 1010 Zero Z

JRNZ 1011 Nonzero 7
JRC 1000 Carry C

JRNC 1001 No carry Z

JRB (JRC) 1000 Borrow C

JRNB (JRNC) 1001 No borrow -E
JRV* 1100 Overflow V

JRNV* 1101 No overflow V

t Jump instructions in parentheses indicate equivalent instructions
t Also window
+ Logical OR

Logical AND
Logical NOT

1

Machine
States 	2,5 (Jump)

1,4 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code 	Flags for Branch

NCZV NCZV NCZV
JRUC HERE xxxx
JRP HERE Ox Ox
JRLS HERE xx1x x1 xx
JRHI HERE x00x
JRLT HERE Ox x1 1 x x0
JRGE HERE Ox x 0 1 xx1
JRLE HERE Ox x1 1 x x 0 x x1 x
JRGT HERE Ox 00 1x01

Code 	Flags for Branch

NCZV NCZV NCZV
JRC HERE x 1 xx
JRNC HERE x Oxx
JRZ HERE xx1 x
JRNZ HERE xx Ox
JRV HERE xxxl
JRNV HERE xx x0
JRN HERE 1 xx x
JRNN HERE Oxxx

1

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-83

JRcc Jump Relative Conditional - ±32K Words 	JRcc

Syntax

Execution

JRcc <Address>

If condition True then Address 	PC
If condition False then go to next instruction

Encoding
	

15 14 13 12 11 10 9 8 7 	6
	

5 4 3 2 1
	

0

Operands

Fields

Description

Condition
Codes

1 	1 	0 	0
	

code
	

0 	0 	0 	0 	0 	0 	0 0

Displacement

CC
	

is a condition mnemonic such as UC, LO, etc. (see condition
codes table).

Address is a 32-bit relative address, ±32K words (excluding 0).

Code 	is a 4-bit digit (see condition codes table below).

If the specified condition is true, then jump to the location at the address
specified by the sum of the next instruction address (PC') and the signed
word displacement. If the specified condition is false, then continue exe-
cution at the next sequential instruction.

The displacement is the number of words relative to the PC and is com-
puted by the assembler as (Address - PC')/16. The assembler will use this
opcode if the displacement is in the range -32,768 to 32,767 words (except
for 0). If the displacement is 0, the assembler will automatically substitute
a NOP opcode instead. If the address is out of range, the assembler will
use the JAcc instruction instead. The assembler will not accept an address
which cannot be resolved at assembly time, that is, an address which is
externally defined or which is relative to a different section than the current
PC. Note that the four LSBs of the program counter are always 0 (word
aligned).

These instructions are usually used in conjunction with the CMP and CMPI
instructions. The JRV and JRNV instructions can also be used to detect
window violations or CPW status.

Mnemonict Code Condition Status Bits

JRUC 0000 Unconditional No conditions

Unsigned Compare

JRLO (JRC) 1000 Lower than C

JRLS 0010 Lower or same C + Z

JRHI 0011 Higher than T • 7
JRHS (JRNC) 1001 Higher or same C

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

Signed Compare

JRLT 0100 Less than (N • V) + (N • V)

JRLE 0110 Less than or equal (N • V) + (Fl• V) + Z

JRGT 0111 Greater than (N • V • Z) 	+ (N • V • Z)

JRGE 0101 Greater than or equal (N • V) + (Ti • V)

JREQ (JRZ) 1010 Equal Z

JRNE (JRNZ) 1011 Not equal 7

12-84

JRcc 	Jump Relative Conditional - ±32K Words 	JRcc

Condition Codes
(continued) Mnemonict 	Code 	Condition 	 Status Bits

Compare to Zero

J RZ 1010 Zero Z

JRNZ 1011 Nonzero 7

JRP 0001 Positive N • 7

JRN 1110 Negative N

JRNN 1111 Nonnegative N

General Arithmetic

JRZ 1010 Zero Z

JRNZ 1011 Nonzero 7

JRC 1000 Carry C

JRNC 1001 No carry C
JRB (JRC) 1000 Borrow C

JRNB (JRNC) 1001 No borrow C
J Mit 1100 Overflow V

J R NVT 1101 No overflow V

t
t

Jump instructions in parentheses indicate equivalent instructions
Also window clipping
Logical OR
Logical AND
Logical NOT

Words 	2

Machine
States 	3,6 (Jump)

2,5 (No jump)

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	Flags for Branch Code 	Flaqs for Branch

NCZV NCZV NCZV 	 NCZV NCZV NCZV
JRUC HERE xxxx 	 JRZ HERE xx1x
JRP HERE OxOx 	 JRNZ HERE xx0x
JRLS HERE xx1x xlxx 	 JRV HERE xxx1
JRHI HERE x00x 	 JRNV HERE xxx0
JRLT HERE Oxx1 1xx0 	JRN HERE lxxx
JRGE HERE OxxO 1xx1 	 JRNN HERE Oxxx
JRLE HERE Oxxl 1xx0 xx1x JRB HERE xlxx
JRGT HERE Ox00 1x01 	 JRNB HERE x0xx
JRC HERE xlxx 	 JRLO HERE xlxx
JRNC HERE x0xx 	 JRHS HERE x00x xxlx

Note:

The TMS34010 assembler will take the jump when any one or more of
the Flags for Branch listed above are set as indicated.

12-85

JUMP 	 Jump Indirect JUMP

Syntax
	

JUMP <Rs>

Execution
	

(Rs) — PC

Encoding
	

15 14 13 12 11 1 0 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

o 0 	 0 0 	0 	0 	0 	1 	0 	1 	1 I R I 	Rs 	1

Rs contains the new PC value.

JUMP jumps to the address contained in the source register. The
TMS34010 sets the four LSBs of the program counter to 0 (word aligned).
This instruction can be used in conjunction with the GETPC and/or EXGPC
instructions.

1

2,5

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code Before

PC

After

Al PC
JUMP Al >0000 1 EEO >0055 5550 >0000 1 EEO
JUMP Al >0000 1 EE5 >0055 5550 >0000 1 EEO
JUMP Al >FFFF FFFF >0055 5550 >FFFF FFFO

12-86

LINE 	 Line Draw with XY Addressing 	 LINE

Syntax 	LINE {0,1}

Execution 	The two execution algorithms for the LINE instruction are explained below.
These algorithms are similar, varying only in their treatment of d=0.

Encoding

Operands

Description

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3 	2 	1
	

0

1 	0 	1 	1 	1 	1 	11Z10 	0 	1 	1 	0 	1 	01

Z is the algorithm select bit:
Z=0 selects algorithm 0.
Z=1 selects algorithm 1.

LINE performs the inner loop of Bresenham's line-drawing algorithm. This
type of line draw plots a series of points (xi,yi) either diagonally or laterally
with respect to the previous point. Movement from pixel to pixel always
proceeds in a dominant direction. The algorithm may or may not also in-
crement in the direction with the smaller dimension (this produces a diag-
onal movement). Two XY-format registers supply the XY increment values
for the two possible movements. The LINE instruction maintains a decision
variable, d, that acts as an error term, controlling movement in either the
dominant or diagonal direction. The algorithm operates in one of two
modes, depending on how the condition d=0 is treated. During LINE ex-
ecution, some portion of a line [(xo,yo)(xi,yi)] will be drawn. The line is
drawn so that the axis with the largest extent has dimension a and the axis
with the least extent has dimension b. Thus, a is the larger (in absolute
terms) of yi - yo or x1 - x0 and b is the smaller of the two. This means that
a > b > 0.

The following values must be supplied to draw a line from (xo,y0) to
(x1 ,y1):

1) Set the XY pointer (xi,yi) in the DADDR register to the initial value
of (x0,y0)•

2) Use the line endpoints to determine the major and minor dimensions
(a and b, respectively) for the line draw; then set the DYDX register
to this value (b:a).

3) Place the signed XY increment for a movement in the diagonal (or
minor) direction (d > 0 for Z=0, d > 0 for Z=1) in the INC1 register.

4) Place the signed XY increment for a movement in the dominant (or
major) direction (d < 0 for Z=0, d 5 0 for Z=1) in the INC2 register.

5) Set the initial value of the decision variable in register BO to 2b - a.

6) Set the initial count value in the COUNT register to a + 1.

7) Set the LINE color in the COLOR1 register.

8) Set the PATTRN register to all 1s.

12-87

LINE 	 Line Draw with XY Addressing 	 LINE

The LINE instruction may use one of two algorithms, depending on the
value of Z.

Algorithm 0 (Z=0):

While COUNT > 0
Draw the next pixel
If d > 0

d= d + 2b - 2a
POINTER = POINTER + INC1

Else d = d + 2b;
POINTER = POINTER + INC2

Algorithm 1 (Z=1):

While COUNT > 0
Draw the next pixel
If d > 0

d= d + 2b - 2a
POINTER = POINTER + INC1

Else d = d + 2b;
POINTER = POINTER + INC2

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Integer Decision variable, d

B2t DADDR XY Starting point (yrxi), usually (y0:x0)

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7 DYDX XY b:a minor :major line dimensions

B9 COLOR1 Pixel Pixel color to be replicated

BlOt COUNT Integer Loop count

B11 INC1 XY Minor axis (diagonal) increment, INC1

B12 INC2 XY Major axis (dominant) increment, INC2

B131" PATTRN Pattern Future pattern register, must be set to all 1s

B15 TEMP — Temporary register

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations
W —Window clipping operation
T —Transparency operation

>C0000140 CONVDP ' XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by instruction execution

12-88

LINE 	 Line Draw with XY Addressing 	 LINE

Pixel
Processing 	The PP field in the CONTROL I/O register specifies the operation to be

applied to the pixel as it is written. There are 22 operations; the default case
at reset is the pixel processing replace (S D) operation. For more infor-
mation, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	Window clipping or pick is selected by setting the W bits in the CONTROL

I/O register to the appropriate value. The WSTART and WEND registers
define the window in XY-coordinate space.

Options include:

0 No window clipping. LINE draws the entire line. Neither the WVP or
V bit are affected. WSTART and WEND are ignored.

1 	Window hit. The instruction calculates points but no pixels are actually
drawn. As soon as the pixel to be drawn lies inside the window, the
WVP bit is set, the V bit is cleared, and the instruction is aborted. If the
line lies entirely outside the window, then the WVP bit is not affected,
the V bit in the status is set, and the instruction completes execution.

2 Clip and set WVP. LINE draws pixels until the pixel to be drawn lies
outside the window. At this point, the WVP bit is set, the V bit is set,
and the instruction is aborted. If the entire line lies within the window,
then the WVP bit is not affected, the V bit is cleared and the in-
struction completes execution. The initial value of WVP does not affect
instruction execution.

3 Clip. LINE calculates all the points, but only draws the points that lie
inside the window. The V bit tracks the state of the last pixel. If the
pixel was outside the window, V is set to 1; otherwise, it is 0. The in-
struction will traverse the entire line.

The default case at reset is no window clipping. For more information, see
Section 7.10, Window Checking, on page 7-25.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	LINE may be interrupted after every pixel in the line draw except for the last
pixel. If the instruction is interrupted, the PC is decremented by 16 to point
back to the LINE instruction (the one being executed) before the PC is
pushed on the stack. Thus, the LINE instruction will be resumed upon re-
turn from the interrupt. In order for the LINE to be resumed correctly, any
B-file registers that are modified by the interrupting routine must be re-
stored, and the RETI or RETS instruction must be executed. Note that a
LINE instruction that is aborted because of window checking options 1 or
2 does not decrement the PC before pushing it on the stack. In this case,
the LINE is not resumed after returning from the interrupt service routine.

Words 	1

12-89

LINE 	 Line Draw with XY Addressing 	 LINE

Machine
States 	See Section 13.6, The LINE Instruction.

Status Bits 	N 	Undefined
C 	Undefined
Z 	Undefined
V 	Set depending upon window operation.

Linedraw Code

The following code segment shows setup and execution of the LINE in-
struction.

.file 	'LineDraw'

.globl _draw_line

.globl _xyorigin

—draw_line:
MMTM 	SP,B2,137,B10,B11,B12,B13,B14

MOVE 	A14,B14
MOVE 	*-B14,B2,1 	; Get starting x
MOVE 	*-B14,B11,1 	; Get starting y
SLL 	16,B11
MOVY 	B11,B2 	 ; B2 = (y0,x0)
MOVE 	*-B14,B10,1 	; Get ending x
MOVE 	*-B14,B11,1 	; Get ending y
SLL 	16,311
MOVY 	B11,B10 	; B10 = (yl,xl)
MOVE 	B14,A14

B11,B2
B11,B10

;
;

;

Add viewport offset
Add viewport offset

Draw line from (y0,x0) to (yl,xl)
B7 ; B2 = (y0,x0), 	B10 	= 	(yl,xl)
B2,B10
horiz_line
vert_line
bpos
bneg_apos

; B10 = (y1-y0,x1-x0) = 	(b,a)

B10,B7 ; B7 = (1 10 1,1a1)
-1,B11
cmp_b_a

; B11 = (-1,-1)

B10,B7
B10,B7 ; B7 = (Ib1,1a1)
>FFFF0001,B11
cmp_b_a
bpos_apos

; B11 = (-1,1)

B10,B7
B10,B7 ; B7 = (lbl,lal)
>0001FFFF,B11
cmp_b_a

; B11 = (1,-1)

B10,B7 ; B7 = (Ibl,lal)
>00010001,B11 ; B11 = (1,1)

MOVE 	@—xyorigin,Bli,i
ADDXY
ADDXY

draw_line:
CLR
SUBXY
JRZ
JRN
JRNC
JRNV

bneg_aneg: SUBXY
MOVI
JRUC

bneg_apos: SUBXY
MOVX
MOVI
JRUC

bpos: 	JRNV
bpos_aneg: 	SUBXY

MOVY
MOVI
JRUC

bpos_apos: 	MOVE
MOVI

12-90

LINE 	 Line Draw with XY Addressing 	 LINE

cmp_b_a: 	CLR 	B12
MOVI 	-1,B13 	 ; B13 = FFFFFFFF (set pattern to

; all 1s)

a_it_b:

line0:

a_ge_b:

linel:

MOVE 	B7,B0
SRL 	16,B0 	 ; BO = b
CLR 	B10
MOVX 	B7,B10 	 ; B10 = a
CMP 	BO,B10
JRGT 	a_ge_b
MOVE 	BO,B10
MOVX 	87,130
RL 	16,87 	 ; a and b swapped
MOVY 	B11,312
SLL 	1,B0
SUB 	B10,B0 	 ; BO 	2b - a
ADDK 	1,B10
MOVE 	B11,1311 	 ; If drawing in +Y direction, use
JRN 	linel 	 ; LINE 0, otherwise use LINE 1
LINE 	0
JRUC 	done

MOVX 	B11,B12
SLL 	1,130
SUB 	B10,B0 	 ; BO = 2b - a
MOVE 	B11,B11 	 ; If drawing in -Y direction, use
JRNN 	line° 	 ; LINE 1, otherwise use LINE 0
LINE 	1
JRUC 	done

horiz_line: JRN 	pixel
JRNV 	do_fill
SUBXY 	B10,B7
MOVE 	B7,B10
ADDXY 	B10,B2

vert_line: 	JRNC 	do_fill
NEG 	B10
ADDXY 	B10,B2

; Make DX positive

; Change start to (yl,xl)

; Make DY positive
; Change start to (yl,xl)

do_fill: 	MOVE 	B10,B7
ADDI 	>10001,B7
FILL 	XY
JRUC 	done

pixel: 	DRAV 	B12,B2

done: 	MMFM 	SP,B2,B7,B10,B11,B12,B13,B14
RETS 	2 	 ; Return to calling routine

12-91

LINE 	 Line Draw with XY Addressing 	 LINE

Example 1 	This example draws a line from (3,52) to (19,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = >FFFF FFF1 	Decision variable d = 2b - a = -15
B2 = >0052 0003 DADDR
B3 = >0000 0800 DPTCH (CONVDP=13)
B4 = >0000 0100 OFFSET
B5 = >0030 0003 WSTART
B6 = >0055 0025 WEND
B7 = >0003 0016 b:a; b=3 and a=22
B9 = >4444 4444 COLOR1 (color of the line)
B10 = >0000 0017 COUNT (a+1)
B11 = >0001 0001 	Diagonal increment (+1,+1)
B12 = >0000 0001 	Nondiagonal increment (0,+1)
B13 = >FFFF FFFF PATTRN (all 1s)

This line is shown in Figure 12-11, represented by es.

Before LINE execution, DADDR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR will equal
>0055 001 A. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that will be drawn; if you want
the endpoint to be drawn (in this case, (19,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (6,52) to (7,53); it
is incremented by 1 in both the X and the Y dimensions. B12 contains the
XY increment for nondiagonal moves. You can see the line progressing in
a nondiagonal direction when it moves from (3,52) to (4,52); it is incre-
mented by 1 in the X dimension.

10 10 1112 13 14 16:1 18 18.1A:
51
02
53 	
54
55

a=22

x
b=3

Figure 12 - 11. LINE Examples

12-92

LINE 	 Line Draw with XY Addressing 	 LINE

Example 2 	This example draws a line from (19,52) to (3,55). Window checking is off,
transparency and the pixel processing replace operation are selected, and
plane masking is disabled. Assume the following registers have been
loaded with these values:

BO = >FFFF FFF1 	Decision variable d = 2b - a = -15
B2 = >0052 0019 DAD DR
B3 = >0000 0800 DPTCH (CONVDP=13)
B4 = >0000 0100 OFFSET
B5 = >0030 0003 WSTART
B6 = >0055 0025 WEND
B7 = >0003 0016 b:a; b=3 and a=22
B9 = >2222 2222 COLOR1 (color of the line)
B10 = >0000 0017 COUNT (a+1)
B11 = >0001 FFFF 	Diagonal increment (+1,-1)
B12 = >0000 FFFF 	Nondiagonal increment (0,-1)
B13 = >FFFF FFFF PATTRN (all 1s)

This line is shown in Figure 12-11, represented by Xs.

Before LINE execution, DAD DR contains the first pixel to be drawn. During
LINE execution, DADDR is updated so that it always points to the next
pixel to be drawn. After this example is completed, DADDR will equal
>0055 0002. Register B7 contains the X and Y dimensions of the line.
Register B10 indicates the number of pixels that will be drawn; if you want
the endpoint to be drawn (in this case, (3,55)), B10 should equal a+1.

B11 contains the XY increment for diagonal moves. You can see the line
progressing in a diagonal direction when it moves from (F,53) to (E,54); it
is decremented by 1 in the X dimension and incremented by 1 in the Y di-
mension. B12 contains the XY increment for nondiagonal moves. You can
see the line progressing in a nondiagonal direction when it moves from
(14,53) to (13,53); it is decremented by 1 in the X dimension.

12-93

LMO
	

Leftmost One
	

LMO

Words

Machine
States

Status Bits

Examples

LMO <Rs>,<Rd>

31 - (Bit number of leftmost 1 hit in Rs) - Rd

15 14 1.3 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	1 	1 	0 	1 	0 	1
	

Rs
	

R I 	Rd

Rs is the register to be evaluated.

LMO locates the leftmost (most significant) 1 in the source register. It then
loads the l's complement of the bit number of the leftmost-1 bit into the
five LSBs of the destination register. The 27 MSBs of the destination reg-
ister are loaded with Os. Bit 31 of Rs is the MSB (leftmost) and bit 0 is the
LSB. If there are no 1 bits in the source register, then the destination result
is 0 and status bit Z is set.

The source register contents can be normalized by following this instruction
by executing the RL Rs ,Rd instruction, where Rs is the destination register
of the LMO instruction and Rd is the source register.

The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Unaffected

1 if the source register contents are 0, 0 otherwise.
V Unaffected

Code 	 Before 	After

AO 	 NCZV 	Al
LMO AO , A1 	>0000 0000 	xxix >0000 0000
LMO AO , Al 	>0000 0001 	xx0x >0000 001F
LMO AO,A1 	>0000 0010 	xx0x >0000 001B
LMO AO , Al 	>0800 0000 	xx0x >0000 0004
LMO AO,A1 	>8000 0000 	xx0x >0000 0000

Syntax

Execution

Encoding

Operands

Description

12 - 94

MMFM Move Multiple Registers from Memory MMFM

MMFM <Rs>,[<register list>-]

If Register n in <register list> then *Rs+ 	Rn
Repeat for n = 0 to 15

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	1 	0 	0 	1
	

1 	0 	1
	

R
	

Rs

Mask

Rs 	 points to the first location in a block of memory.

Register list is a list of registers to be moved (such as A0,A1,A9).

Mask is a binary representation of the register list.

MMFM loads the contents of a specified list of either A or B file registers
(not both) from a block of memory. Rs points to the first location in the
memory block. Rs and the registers in the list must be in the same register
file.

The MMFM and MMTM instructions can be thought of as "stack" in-
structions for storing and retrieving multiple registers in memory. MMTM
stores the registers in memory, using Rs as a "stack pointer." The stack
"shrinks" in the direction of increasing linear address, with Rs containing
the bit address of the top of the stack. MMFM reverses the action of the
MMTM instruction. Rs is postincremented by 32 when popping off the
stack. Each register is removed from the stack LSW first, with higher order
registers moved first. (The alignment of Rs affects the instruction timing
as indicated in Machine States, below.) If a 0 mask is supplied, the SP
will be popped from memory and loaded. Note that including Rs in the
register list produces unpredictable results.

The bit assignments in the mask are:

Syntax

Execution

Encoding

Operands

Fields

Description

If Rs is in file A:

I SP I A141A13I Al21 All IA10 I A9 1 A8 I A7 1 A6 I A5 I A4 I A3 I A2 1 Al I AO

15(MSB)
	

0(LSB)

If Rs is in file B:

SP1B141B131B121B111B101 B9 I B8 I B7 1 B6 I B51 B4 I B3 I B2 I B1 'BO

15(MSB)
	

0(LSB)

Words
	

2

Machine
States
	

Cache Enabled
	

Cache Disabled
Aligned: 	3 + 4n + (2) extended states

	
9 + 4n

Nonaligned: 	3 + 8n + (6) extended states
	

9 + 8(n + 1)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-95

MMFM Move Multiple Registers from Memory MMFM

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>000100F0 >1111 >00010070 >CCCC
>000100E0 >B1B1 >00010060 >BCBC
>000100 DO >2222 >00010050 >DDDD
>00010000 > B2B2 >00010040 >BDBD
>000100B0 >3333 >00010030 >EEEE
>000100A0 > B3B3 >00010020 >BEBE
>00010090 >7777 >00010010 >FFFF
>00010080 >B7B7 >00010000 >BFBF

Register BO = >0001 0000

MMFM BO ,B1 ,B2 ,B3 ,B7 , 812 ,B13 ,B14 , SP
or
MMFM BO ,>710F

Register contents after instruction execution:

BO = >0010 0100
B1 = >1111 B1B1
B2 = >2222 B2B2
B4 = >3333 B3B3
B8 = >7777 B7B7

B12 = >CCCC BCBC
B13 = >DDDD BDBD
B14 = >EEEE BEBE
SP = >FFFF BFBF
Others unchanged

12-96

MMTM 	Move Multiple Registers to Memory 	MMTM

Syntax 	M MTM <Rd>, <register list>

Execution 	If Register n in <register list> then Rn 	-*Rd
Repeat for n = 0 to 15

Encoding 	15 14 13 12 11 10 9 8 7 	6 	5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	1 	0 	0 	1 	1 	0 	0
	

Rd

Mask

Operands 	Register list is a list of registers to be moved (such as A0,A1,A9).

Fields 	Mask is a binary representation of the register list.

Description 	MMTM stores the contents of a specified list of either A or B file registers
(not both) from a block of memory. Rs points to the first location in the
memory block. Rs and the registers in the list must be in the same register
file.

The MMFM and MMTM instructions can be thought of as "stack" in-
structions for storing and retrieving multiple registers in memory. MMTM
stores the registers in memory, using Rs as a "stack pointer." The stack
"shrinks" in the direction of increasing linear address, with Rs containing
the bit address of the top of the stack. MMFM reverses the action of the
MMTM instruction. Rs is postincremented by 32 when popping off the
stack. Each register is removed from the stack LSW first, with higher order
registers moved first. (The alignment of Rs affects the instruction timing
as indicated in Machine States, below.)

When execution of the MMTM instruction is complete, the contents of the
lowest-numbered register in the list will reside at the highest address in the
memory block. Rd will have been decremented to point to the contents of
the highest-numbered register in the list.

If a register list is not specified, the GSP will store all the registers of a re-
gister file, starting at the location specified by Rs. Rs indicates the register
file that will be affected. For example, MMTM A3 stores the A-file registers
in memory, beginning at the address in register A3. Similarly, MMTM BO
stores the B-file registers in memory, beginning at the address in register
BO. If you use SP as the pointer register in this manner, the GSP will as-
sume you want to store the A-file registers inm memory. If you want to use
the stack pointer but intend to store the B-file registers, use B15 instead of
S P.

12-97

MMTM 	Move Multiple Registers to Memory 	MMTM

The GSP uses a mask to indicate which registers will be affected. Registers
in the list are indicated by a 1 in the appropriate location within the mask.
If a 0 mask is supplied, AO or BO will be pushed on the stack. The bit as-
signments in the mask are:

If Rs is in file A:

1A01 Al 1 A2 1 A3 1- A4 1 A51 A6 1 A7 1 A8 1 A9 1A101A111Al21A131A141SP1

15(MSB)
	

0(LSB)

If Rs is in file B:

1 BOI B1 1 B2 1 B31 B4 1 B51 B6 1 B7 1 B8 1 B9 1B1011311113121813113141SP

15(MSB)

Words 	2
Machine
States 	Cache Enabled

Aligned: 	2 + 4n + (2)
Nonaligned: 	2 + 10n + (8)

0(LSB)

Cache Disabled
8 + 4n + 2
10(n + 1)

Status Bits
	

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that these registers contain the following values before instruction
execution:

Al = >0010 0000
AO = >0000 AOAO
A2 = >2220 A2A2
A4 = >4444 A4A4
A8 = >8888 A8A8

Al2 = >CCCC ACAC
A13 = >DDDD ADAD
A14 = >EEEE AEAE
SP = >FFFF AFAF

MMTM Al,A0 ,A2 ,A4 ,A8 ,Al2 ,A13 ,A14 SP
Or
MMTM Al , >A88F

After instruction execution, register Al = >000F FF00. The other registers
are not changed.

Memory will contain the following values after instruction execution:

Address Data Address Data
>000FFFOO >AFAF >000FFF80 >A8A8
>000FFF10 >FFFF >000FFF90 >8888
>000FFF20 >AEAE >000FFFAO >A4A4
>000FFF30 >EEEE >000FFFB0 >4444
>000FFF40 >ADAD >000FFFC0 >A2A2
>000FFF50 >DDDD >000FFFDO >2222
>000FFF60 >ACAC >000FFFE0 >A0A0
>000FFF70 >CCCC >000FFFF0 >0000

12-98

Syntax

Execution

Encoding

MODS <Rs>,<Rd>

(Rd) mod (Rs) --+ Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	1 	1 	0 	1 	1 	0
	

Rs
	

IR I
	

Rd

MODS 	 Modulus - Signed MODS

Description 	MODS performs a 32-bit signed divide of the 32-bit dividend in the desti-
nation register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The remainder is the same sign
as the dividend. The original contents of the destination register will always
be overwritten.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	40,43 (normal case)

41,44 if result = 80000000
3,6 if Rs = 0

Status Bits 	N 1 if the remainder is negative, 0 otherwise.
C Unaffected
Z 1 if the remainder is 0, 0 otherwise.
V 1 if the quotient overflows (cannot be represented by 32 bits), 0 oth-

erwise. The following conditions set the overflow flag:

Examples

•
•

The divisor is 0
The quotient cannot be contained within 32 bits

Code Before After

AO Al NCZ V AO
MODS AO,A1 >0000 0000 >0000 0000 Ox01 >0000 0000
MODS AO,A1 >0000 0000 >0000 0007 Ox01 >0000 0007
MODS AO,A1 >0000 0000 >FFFF FFF9 Ox01 >FFFF FFF9
MODS AO,A1 >0000 0004 >0000 0008 Ox10 >0000 0000
MODS AO,A1 >0000 0004 >0000 0007 Ox00 >0000 0003
MODS AO,A1 >0000 0004 >0000 0000 Ox10 >0000 0000
MODS AO,A1 >00000004 >FFFF FFF9 1x00 >FFFF FFFD
MODS AO,A1 >0000 0004 >FFFF FFF8 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >0000 0008 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >0000 0007 Ox00 >0000 0003
MODS AO,A1 >FFFF FFFC >0000 0000 Ox10 >0000 0000
MODS AO,A1 >FFFF FFFC >FFFF FFF9 1x00 >FFFF FFFD
MODS AO,A1 >FFFF FFFC >FFFF FFF8 Ox10 >0000 0000

12-99

MODU Modulus - Unsigned 	 MODU

Syntax
	

MODU <Rs>,<Rd>

Execution
	

(Rd) mod (Rs) -+ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

I 	I
	Rd

Description 	MODU performs a 32-bit unsigned divide of the 32-bit dividend in the
destination register by the 32-bit value in the source register, and returns a
32-bit remainder in the destination register. The original contents of the
destination register will always be overwritten.

The source and destination registers must be in the same register file.

Words

Machine
States

1

35,38
3,6 if Rs = 0

Status Bits N 	Unaffected
C 	Unaffected
Z 	1 if the remainder is 0, 0 otherwise.
V 	1 if divisor (Rs) equals 0, 0 otherwise.

Examples Code 	 Before After

AO 	 Al NCZ V Al
MODU AO ,A1 	>0000 0000 	>0000 0000 xx01 >0000 0000
MODU AO , Al 	>0000 0000 	>0000 0007 x x 01 >0000 0007
MODU AO ,A1 	>0000 0000 	>FFFF FFF9 xx01 >FFFF FFF9
MODU AO ,A1 	>0000 0004 	>0000 0008 x x10 >0000 0000
MODU AO , Al 	>0000 0004 	>0000 0007 xx00 >0000 0003
MODU AO , Al 	>0000 0004 	>0000 0000 xx10 >0000 0000
MODU AO ,A1 	>0000 0004 	>FFFF FFF9 x x00 >0000 0001

12 - 100

Move Byte - Register to Indirect 	MOVB

MOVB <Rs>,.<Rd>

Rs --0 *Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	0 	0 	0 	1 	1 	0
	

Rs
	I R I 	Rd

Rs 	The source byte is the eight LSBs of the register.

*Rd The destination location is the memory address contained in the
specified register:

Description 	MOVB moves a byte from the source register to the memory address con-
tained in the destination register. The source operand byte is right justified
in the source register and it is the eight LSBs of the register which are
moved. The memory address is a bit address and the field size for the move
is eight bits. The source and destination registers must be in the same re-
gister file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples
	

Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010

Code

Data
>0000
>0000

Before After

AO Al @>5000 @>5010
MOVB A0,*A1 >89AB CDEF >0000 5000 > 00 EF >0000
MOVB A0,*A1 >89AB CDEF >0000 5001 >01 DE >0000
MOVB A0,*A1 >89AB CDEF >0000 5009 >DE00 >0001
MOVB A0,*A1 >89AB CDEF >0000 500C >F000 >000E

MOVB

Syntax

Execution

Encoding

Operands

12-101

Move Byte -
MOVB 	Register to Indirect with Displacement 	MOVB

Syntax

Execution

Encoding

Operands

MOVB 	<Rs>,*<Rd(Displacement)>

Rs 	--■ 	*(Rd + Displacement)

15 	14 	13 	12 	11 	10 	9 	8 	7 	6 	5 	4 3 2 1 	0

1 	0 	1 	0 	1 	1 	0 	 Rs 	 R Rd

Displacement

Rs 	The source byte is the eight LSBs of the register.

*Rd(Displacement)
The destination location is the memory address formed by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the extension word following the opcode.

Description 	MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register; it
is the eight LSBs of the register which are moved. The destination memory
address is a bit address and is formed by adding the contents of the speci-
fied register to the signed 16-bit displacement. This is a field move, and the
field size for the move is eight bits. The source and destination registers
must be in the same register file.

Words 	2

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010

Code

Data
>0000
>0000

Before

Al

After

AO @>10000@>10010
MOVB AO , *A1 (0) >89AB CDEF >0001 0000 >00EF >0000
MOVB A0, *A1 (1) >89AB CDEF >0001 0000 >01DE >0000
MOVB A0, *A1 (9) >89AB CDEF >0001 0000 >DE00 >0001
MOVB AO , *A1 (12) >89AB CDEF >0001 0000 >F000 >000E
MOVB AO ,*A1 (32767) >89AB CDEF >0000 8001 >00EF >0000
MOVE AO , *A1 (—32768) >89AB CDEF >0001 8000 >00EF >0000

12-102

0 	0 	0 	0 	0 	1 	0 	1 	1 	1 	1 I R I 	Rs

Destination Address (LSW)

Destination Address (MSW)

MOVB 	Move Byte - Register to Absolute 	MOVB

Syntax
	

MOVB <Rs>,@<DAddress>

Execution
	

Rs -4 @DAddress

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands 	Rs 	The source byte is the eight LSBs of the register.

DAddress
The destination location is the linear memory address contained in
the two extension words following the instruction.

Description 	MOVB moves a byte from the source register to the destination memory
address. The source operand byte is right justified in the source register and
it is the eight LSBs of the register which are moved. The specified desti-
nation memory address is a bit address and the field size for the move is
eight bits. The source and destination registers must be in the same register
file.

Words

Machine
States

Status Bits

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data

	

>5000 	>0000

	

>5010 	>0000

Code Before After

@>5010 AO @>5000
MOVB A0,@>5000 >89AB CDEF >00EF >0000
MOVB A0,@>5001 >89AB CDEF >01DE >0000
MOVE A0,@>5009 >89AB CDEF >DE00 >0001
MOVB A0,@>500C >89AB CDEF >F000 >000E

12-103

MOVB Move Byte - Indirect to Register 	MOVB

Syntax
	

MOVB *<Rs>,<Rd>

Execution
	

*Rs -0 Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

1 	0 	0 	0 	1 	1 	1
	

Rs
	

R
	

Rd

*Rs The source byte location is the memory address contained in the
specified register.

MOVB moves a byte from the memory address contained in the source re-
gister to the destination register. The source memory address is a bit ad-
dress and the field size for the move is eight bits. When the byte is moved
into the destination register, it is right justified and sign extended to 32 bits.
This instruction also performs an implicit compare to 0 of the field data.
The source and destination registers must be in the same register file.

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.
C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Operands

Description

Examples
	

Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010

Code

Data
>00EF
>89AB

Before After

AO Al NCZV
MOVB *AO , Al >0000 5000 >FFFF FFEF 1x00
MOVB *AO ,A1 >0000 5001 >0000 0077 Ox00
MOVB *AO , Al >0000 5008 >0000 0000 Ox10
MOVB *AO , Al >0000 500C >FFFF FFBO 1x00

12-104

MOVB 	Move Byte - Indirect to Indirect 	MOVB

Syntax
	

MOVB *<Rs>,*<Rd>

Execution
	

*Rs -■ *Rd

Encoding
	

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1
	

0 	0 	1 	1 	1 	0
	

Rs
	

I R I 	Rd

*Rs The source byte location is the memory address contained in the
specified register.

*Rd The destination location is the memory address contained in the
specified register.

MOVB moves a byte from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is eight bits. The source and destination registers must
be in the same register file.

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Operands

Description

Words

Machine
States

Status Bits

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>5000
>5010
>6000
>6010

Code

Data
>CDEF
>89AB
>0000
>0000

Before After

AO Al @>6000 @>6010
MOVB *AO , *Al >0000 5000 >0000 6000 >00EF >0000
MOVB *A0, *A1 >0000 5000 >0000 6001 >01 DE >0000
MOVB *AO , *A1 >0000 5000 >0000 6009 >DE00 >0001
MOVE *AO , *Al >0000 5000 >0000 600C >F000 >000E
MOVB *A0 , *A1 >0000 5001 >0000 6000 >00F7 >0000
MOVE *AO *A1 >0000 5001 >0000 6001 >01 EE >0000
MOVB *AO , *A1 >0000 5001 >0000 6009 >EE00 >0001
MOVE *AO , *A1 >0000 5001 >0000 600C >7000 >000F
MOVB *A0 , *A1 >0000 5009 >0000 6000 >00E6 >0000
MOVB *AO , *A1 >0000 5009 >0000 6001 >01CC >0000
MOVE *AO, *Al >0000 5009 >0000 6009 >CCOO >0001
MOVB *AO , *A1 >0000 5009 >0000 600C >6000 >000E
MOVE *AO , *Al >0000500C >0000 6000 >OOBC >0000
MOVB *AO , *Al >0000500C >0000 6001 >0178 >0000
MOVB *AO , *Al >0000 500C >0000 6009 >7800 >0001
MOVE *AO , *Al >0000 500C >0000 600C >C000 >000B

12-105

Move Byte -
MOVB 	Indirect with Displacement to Register 	MOVB

Syntax

Execution

Encoding

MOVB *<Rs(Displacement)>,<Rd>

*(Rs + Displacement) -+ Rd

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Rs
	

R
	

Rd

Displacement

Operands 	*Rs(Displacement)
The source byte location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the extension word following the opcode.

Description 	MOVB moves a byte from the source memory address to the destination
register. The source memory address is a bit address and is formed by ad-
ding the contents of the specified register to the signed 16-bit displace-
ment. The field size is eight bits. When the byte is moved into the
destination register, it is right justified and sign extended to 32 bits. This
instruction also performs an implicit compare to 0 of the field data. The
source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.
C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data

	

>10000 	>00EF

	

>10010 	>89AB

Code Before After

NCZV AO Al
MOVB *AO (0) ,A1 >0001 0000 >FFFF FFEF 1x00
MOVE *A0(1) ,A1 >0001 0000 >0000 0077 Ox 00
MOVB *A0(8) ,A1 >0001 0000 >0000 0000 Ox 10
MOVB *A0(12) ,A1 >0001 0000 >FFFF FFBO 1x00
MOVB *AO (32767) ,A1 >0000 8001 >FFFF FFEF 1x00
MOVE *AO (-32768) ,A1 >0001 8000 >FFFF FFEF 1x00

12-106

Move Byte - Indirect with Displacement
MOVB 	to Indirect with Displacement 	 MOVB

Syntax

Execution

Encoding

MOVB *<Rs(Displacement)>, *<Rd(Displacement)>

*(Rs + Displacement) —■ *(Rd + Displacement)

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

1
	

0

Rs
	

R
	

Rd

Source Displacement

Destination Displacement

Operands 	*Rs(Displacement)
The source byte location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the first of two extension words following the
opcode.

*Rd(Displacement)
The destination location is the memory address specified by the sum
of the specified register contents and the signed 16-bit displace-
ment, contained in the second of two extension words following the
opcode.

Description 	MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination memory addresses are
bit addresses and are formed by adding the contents of the specified regis-
ter to its respective signed 16-bit displacement. The field size is eight bits.
The source and destination registers must be in the same register file.

Words 	3

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-107

Move Byte - Indirect with Displacement
MOVB 	to Indirect with Displacement 	MOVB

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Code

	

Address 	Data

	

>10000 	>CDEF

	

>10010 	>89AB

	

>11000 	>0000

	

>11010 	>0000

Before After

AO Al @>11000 @>11010

MOVB *A0(0) , * A1(0) >0001 0000 >0001 1000 >00EF >0000
MOVB *A0(0) ,*A1(1) >0001 0000 >0001 1000 >01 DE >0000
MOVB *A0(0) ,*A1(9) >0001 0000 >0001 1000 >DE00 >0001
MOVB *A0(0),*A1(12) >0001 0000 >0001 1000 >F000 >000E
MOVB *A0(0),*A1(32767) >0001 0000 >0000 9001 >00EF >0000
MOVE *A0 (0) ,*A1(- 32768) >0001 0000 >0001 9000 >00EF >0000
MOVB *A0(12),*A1(0) >0001 0000 >0001 1000 >00BC >0000
MOVE *AO (12) ,*A1 (1) >0001 0000 >0001 1000 >0178 >0000
MOVE *A0(12) ,*A1(9) >0001 0000 >0001 1000 >7800 >0001
MOVB *A0(12) ,*A1(12) >0001 0000 >0001 1000 >C000 >000B
MOVB *A0(12),*A1(32767) >0001 0000 >0000 9001 >00BC >0000
MOVE *A0(12) ,*A1(-32768) >0001 0000 >0001 9000 >00BC >0000
MOVB *A0(32767) ,*A1(0) >0000 8001 >0001 1000 >00EF >0000
MOVB *A0(32767) ,*A1(1) >0000 8001 >0001 1000 >01 DE >0000
MOVE *A0(32767),*A1(9) >0000 8001 >0001 1000 >DE00 >0001
MOVB *A0(32767) ,*A1(12) >0000 8001 >0001 1000 >F000 >000E
MOVE *A0(32767) ,*A1(32767) >0000 8001 >0000 9001 >00EF >0000
MOVE *AO (32767) , *A1 (-32678) >0000 8001 >0001 9000 >00EF >0000
MOVE *A0(-32768) ,*A1(0) >0001 8000 >0001 1000 >00EF >0000
MOVB *A0(- 32768),*A1(1) >0001 8000 >0001 1000 >01DE >0000
MOVB *A0(-32768) ,*A1(9) >0001 8000 >0001 1000 >DE00 >0001
MOVE *A0(-32768),*A1(12) >0001 8000 >0001 1000 >F000 >000E
MOVE *AO (-32768),*A1(32767) >0001 8000 >0000 9001 >00EF >0000
MOVE *AO (-32768) ,*A1(-32678) >0001 8000 >0001 9000 >00EF >0000

12 - 108

Syntax

Execution

Encoding

MOVB @<SAddress>,<Rd>

tb,SAddress 	Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	0 	1 	1 	1 	1 	1 	1
	

R
	

Rd

Source Address (LSW)

Source Address (MSW)

MOVB Move Byte - Absolute to Register 	MOVB

Operands

Description

Words

Machine
States

Status Bits

Examples

SAddress
The source byte location is the linear memory address contained in
the two extension words following the instruction.

MOVB moves a byte from the source memory address to the destination
register. The specified source memory address is a bit address and the field
size for the move is eight bits. When the byte is moved into the destination
register, it is right justified and sign extended to 32 bits. This instruction
also performs an implicit compare to 0 of the field data. The source and
destination registers must be in the same register file.

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the sign-extended data moved into register is negative, 0 otherwise.

C Unaffected
Z 1 if the sign-extended data moved into register is 0, 0 otherwise.
V 0

Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010

Code

Data
>00EF
>89AB

After

Al NCZV
MOVB @>10000,A1 >FFFF FFEF 1x00
MOVE @>10001,A1 >0000 0077 0x00
MOVB @>10008,A1 >0000 0000 Ox10
MOVB @>1000C,A1 >FFFF FFBO 1x00

12-109

Syntax

Execution

Encoding

MOVB @<SAddress>, @<DAddress>

@SAddress @DAddress

15 14 13 12 11 10 9
	

8
	

7 6 5 4 3 2 1 0

MOVB 	Move Byte - Absolute to Absolute 	MOVB

0 	0 	0 	0 	0 	0 	1 	1 	0 	1 	0 	0 	0 	0 	0 	0

Source Address (LSW)

Source Address (MSW)

Destination Address (LSW)

Destination Address (MSW)

Operands 	SAddress
The source byte location is the linear memory address contained in
the first set of two extension words following the instruction.

DAdd ress
The destination location is the linear memory address contained in
the second set of two extension words following the instruction.

Description 	MOVB moves a byte from the source memory address to the destination
memory address. Both the source and destination addresses are interpreted
as bit addresses and the field size for the move is eight bits.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-110

MOVB 	Move Byte - Absolute to Absolute 	MOVB

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>10000
>10010
>11000
>11010

Code

Data
>CDEF
>89AB
>0000
>0000

After

@>11000 @>11010
MOVB @>10000,@>11000 >00EF >0000
MOVE @>10000,@>11001 >01DE >0000
MOVE @>10000,@>11009 >DE00 >0001
MOVB @>10000,@>1100C >F000 >000E
MOVB @>10001,@>11000 >00F7 >0000
MOVB @>10001,@>11001 >01 EE >0000
MOVB @>10001,@>11009 >EE00 >0001
MOVE @>10001,@>1100C >7000 >000F
MOVB @>10009,@>11000 >00E6 >0000
MOVE @>10009,@>11001 >01CC >0000
MOVB @>10009,@>11009 >CCOO >0001
MOVE @>10009,@>1100C >6000 >000E
MOVE @>1000C,@>11000 >00BC >0000
MOVE @>1000C,@>11001 >0178 >0000
MOVB @>1000C,@>11009 >7800 >0001
MOVB @>10000,@>1100C >C000 >000B

12-111

MOVE

Syntax

Execution

Encoding

Fields

Move - Register to Register

MOVE <Rs>,<Rd>

(Rs) -+ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5

M Cross File A/File B boundary
M=0 if registers are in same file
M=1 if registers are in different files

R Register file select
R=0 specifies register file A
R=1 specifies register file B

4 3 2
	

1 0

MOVE

0 	1 	0 	0 	1 	1 I M I
	

Rs 	I R 	Rd

Description 	MOVE moves the 32 bits of data from the source register to the destination
register. Note that this is not a field move; therefore, the field size has no
effect. The source and destination registers can be any of the 31 locations
in the on-chip register file. Note that this is the only MOVE instruction that
allows the source and destination registers to be in different files. This in-
struction also performs an implicit compare to 0 of the register data.

Words

Machine
States

Status Bits

1

1

N 1 if the 32-bit data moved is negative, 0 otherwise.
C Unaffected
Z 1 if the 32-bit data moved is 0, 0 otherwise.
V 0

Examples 	Code

MOVE AO,A1
MOVE AO,A1
MOVE AO,A1
MOVE AO,B1
MOVE AO,B1
MOVE AO,B1

Before 	After

AO 	 Al 	 B1
>0000 FFFF >0000 FFFF >xxxx xxxx
>0000 0000 >0000 0000 >xxxx xxxx
>FFFF FFFF >FFFF FFFF >xxxx xxxx
>0000 FFFF >xxxx xxxx >0000 FFFF
>0000 0000 >xxxx xxxx >0000 0000
>FFFF FFFF >xxxx xxxx >FFFF FFFF

NCZ V
Ox 00
Ox10
1x00
Ox 00
Ox10
1x00

12 - 112

MOVE 	Move Field - Register to Indirect 	MOVE

Syntax
	MOVE <Rs>,.<Rd>[,<F>]

Execution
	

(field)Rs 	(field)*Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

0 	0 	0 	0 	0 F
	

Rs
	

R
	

Rd

Operands 	Rs
	

The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size se-
lected.

*Rd Destination register (indirect). The destination location is the mem-
ory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register. This memory address is a bit address and
the field size for the move is 1-32 bits. The SETF instruction sets the field
size and extension. The source and destination registers must be in the
same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address 	Data
>15500
>15510
>15520

Register

Code

>0000
>0000
>0000

AO = >FFFF FFFF

Before After

Al FSO/1 @>15500 @>15510 @>15520

MOVE AO , *A1 , 0 >0001 5500 5/x >001F >0000 >0000
MOVE AO , *Al , 1 >0001 5503 x/8 >07F8 >0000 >0000
MOVE AO , *A1 , 0 >0001 5508 13/x > FFOO >001F >0000
MOVE AO , *Al , 1 >0001 550B x/16 >F800 >07FF >0000
MOVE AO , *Al , 0 >0001 550D 19/x >E000 >FFFF >0000
MOVE A0, *Al , 1 >0001 550C x/24 >F000 >FFFF >000F
MOVE AO ,*Al, 0 >0001 5512 27/x >0000 >FFFC >1 FFF
MOVE AO , *A1 , 1 >0001 5510 x/32 >0000 >FFFF >FFFF

12-113

MOVE

Syntax

Execution

Encoding

Operands

Move Field - Register to Indirect

	

(Postincrement)
	

MOVE

MOVE <Rs>,*<Rd>+[,< F>]

(field)Rs 	(field) . Rd
Rd + field size 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

I 1
	

0 	0 	1 	0 	0
	

F
	

Rs
	

I R I 	Rd

Rs 	The source operand is the right justified field in the specified regis-
ter. 1-32 bits of the register which moved, depending on the field
size selected.

*Rd+ Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register. The destination register is postincre-
mented after the move by the field size selected. The memory address in the
destination register is a bit address and the field size for the move is 1-32
bits. The SETF instruction sets the field size and extension. The source and
destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15500
>15510
>15520

Register

Data
>0000
>0000
>0000

AO = >FFFF

Before

FFFF

After

Al FSO/1 Al @>15500 @>15510 @>15520
MOVE AO ,*A1+ , 0 >0001 5528 5/x >0001 552D >0000 >0000 >1 FOO
MOVE AO, *Al+ , 1 >0001 5525 x/8 >0001 552D >0000 >0000 >1FE0
MOVE AO , *Al+ , 0 >0001 5520 13/x >0001 552D >0000 >0000 >1FFF
MOVE A0, *Al+ , 1 >0001 551D x/16 >0001 552D >0000 >E000 >1FFF
MOVE AO, *Al+ , 0 >0001 5516 19/x >0001 5529 >0000 >FFCO >01FF
MOVE AO , *Al+ , 1 >0001 5507 x/24 >0001 551F > FF80 >7FFF >0000
MOVE AO , *A1+ , 0 >0001 5507 27/x >0001 551F >FF80 >FFFF >0003
MOVE A0, *A1+, 1 >0001 5500 x/32 >0001 5520 >FFFF >FFFF >0000

12-114

Before

FSO/1

After

@>15500 @>15510 @>15520 Al Al
>0001 5530 5/x >0001 552B >0000 >0000 >F800
>0001 552D x/8 >0001 5525 >0000 >0000 >1FE0
>0001 5528 13/x >0001 551B >0000 >F800 >00FF
>0001 5528 x/16 >0001 5518 >0000 >FFOO >00FF
>0001 5523 19/x >0001 5510 >0000 >FFFF >0007
>0001 5520 x/24 >0001 5508 >FFOO >FFFF >0000
>0001 5524 27/x >0001 5509 >FE00 >FFFF >000F
>0001 5520 x/32 >0001 5500 >FFFF >FFFF >0000

Code

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

Register AO = >FFFF FFFF

AO - *Al, 0
A0, - *A1, 1
A0, - *A1,0
AO , - *Al, 1
AO , - *Al, 0
AO , - *Al 1
AO , - *A1,0
AO , - *Al 1

MOVE

Syntax

Execution

Encoding

Operands

Move Field - Register to Indirect

	

(Predecrement)
	

MOVE

MOVE <Rs>,-*<Rd>[,< F>]

Rd - field size 	Rd
(field) Rs 	(field)" Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1 	0
	

1 	0 	0 	0 F
	

Rs
	

R
	

Rd

Rs 	The source operand is the right justified field in the specified regis-
ter. 1-32 bits of the register are moved, depending on the field size.

-*Rd Destination register (indirect with predecrement). The destination
location is the memory address contained in the specified register
predecremented by the field size selected. This is also the final value
for the register.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the memory address con-
tained in the destination register predecremented by the field size. The
memory address in the destination register is a bit address and the field size
for the move is 1-32 bits. The SETF instruction sets the field size and ex-
tension. Rs and Rd must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data
>15500 >0000
>15510 >0000
>15520 >0000

12-115

MOVE

Syntax

Execution

Encoding

Move Field - Register to Indirect
with Displacement

MOVE Rs,"<Rd(Displacement)>[,< F>]

(field)Rs 	(field)*(Rd + Displacement)

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4

MOVE

3
	

2
	

1
	

0

1 	0 	1 	1 	0 	0 F
	

Rs
	 R
	

Rd

Displacement

Operands 	Rs 	The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size se-
lected.

*Rd(Displacement)
Destination register with displacement. The destination location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the ex-
tension word following the opcode.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

Description 	MOVE moves a field from the source register to the destination memory
memory address. The destination memory address is a bit address and is
formed by adding the contents of the specified register to the signed 16-bit
displacement. The field size for the move is 1-32 bits. The SETF instruction
sets the field size and extension. The source and destination registers must
be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-116

MOVE

Examples

Move Field - Register to Indirect
with Displacement 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address 	 Data

Code

>15530
>15540
>15550

Register

>0000
>0000
>0000

AO = >FFFF FFFF

Before After

Al FS0/1 @>15530 @>15540 @>15550
MOVE A0,*A1(>0000),1 >0001 5530 x/1 >0001 >0000 >0000
MOVE A0,*A1(>0001),0 >0001 552F 5/x >001F >0000 >0000
MOVE A0,*A1(>000F),0 >0001 552D 8/x >F000 >000F >0000
MOVE A0,*A1(>0020),1 >0001 551C x/13 >F000 >01 FF >0000
MOVE A0,*A1(>00FF),0 >0001 5435 16/x >FFFO >000F >0000
MOVE A0,*A1(>OFFF),0 >0001 4531 19/x >FFFF >0007 >0000
MOVE A0,*A1(>7FFF),1 >0000 D531 x/22 >FFFF >003F >0000
MOVE A0,*A1(>FFF2),1 >0001 5540 x/25 >FFFC >07FF >0000
MOVE A0,*A1(>8000),0 >0001 D530 27/x >FFFF >07FF >0000
MOVE A0,*A1(>FFF0),0 >0001 5540 31/x >FFFF >7FFF >0000
MOVE A0,*A1(>FFEC),1 >0001 5548 x/31 >FFFO >FFFF >0007
MOVE A0,*A1(>FFEC),0 >0001 554D 32/x >FE00 >FFFF >01 FF
MOVE A0,*A1(>001D),0 >0001 5520 32/x >E000 >FFFF >1FFF
MOVE A0,*A1(>0020),1 >0001 5520 x/32 >0000 >FFFF >FFFF

1

12-117

i

MOVE

Syntax

Execution

Encoding

Operands

Examples

	

Move Field - Register to Absolute 	MOVE

MOVE <Rs>,@<DAddress>[,< F>]

(field)Rs 	(field)@DAddress

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
0 	0 	0 	0 	0 	1

	
F
	

1 	1 	0 	0 R
	

Rs
Destination Address (LSW)

Destination Address (MSW)

Rs 	The source operand is the right justified field in the specified register.
1-32 bits of the register are moved, depending on the field size.

DAddress
Linear destination address. The destination location is the memory
address contained in the two extension words following the in-
struction.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO.
F=1 selects FS1.

MOVE moves a field from the source register to the destination memory
address. The specified destination memory address is a bit address and the
field size for the move is 1-32 bits. SETF sets the field size and extension.

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Assume that memory contains these values before instruction execution:

Description

Words

Machine
States

Status Bits

Data
>0000
>0000
>0000

>FFFF FFFF

Address
>15500
>15510
>15520

Register AO

Code

MOVE A0,@>15500,0
MOVE A0,@>15503,1
MOVE A0,@>15508,0
MOVE A0,@>15508,1
MOVE AO,@>1550D,0
MOVE A0,@>15510,1
MOVE A0,@>15512,0
MOVE A0,@>1550C,1

	

Before 	After

FS0/1 @>15500 @>15510 @>15520

	

5/x 	>001F >0000 >0000

	

x/8 	>07F8 >0000 >0000

	

13/x 	>FFOO >001F >0000

	

x/16 	>F800 >07FF >0000

	

19/x 	>E000 >FFFF >0000

	

x/24 	>0000 >FFFF >OOFF

	

27/x 	>0000 >FFFC >1FFF

	

x/32 	>F000 >FFFF >OFFF

12-118

MOVE 	Move Field - Indirect to Register 	MOVE

Syntax
	

MOVE *<Rs>,<Rd>[,<F>]

Execution
	

(field)*Rs -> Rd

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1 	0 	0 	0 	0 	1

	
F
	

Rs
	

R
	

Rd

Operands 	*Rs The source operand location is the memory address contained in the
specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source memory address is a bit ad-
dress and the field size for the move is 1-32 bits. When the field is moved
into the destination register, it is right justified and sign extended or zero
extended to 32 bits according to the value of FE. This instruction also
performs an implicit compare to 0 of the field data. The SETF instruction
sets the field size and extension. The source and destination registers must
be in the same register file.

Words 	1

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510

Register

Code

>7770
>7777

AO = >0001

Data

5500

Before After

FSO/1 FEO/1 Al NCZV
MOVE *AO , Al, 1 x/1 x/1 >0000 0000 Ox10
MOVE *AO , Al, 0 5/x 0/x >0000 0010 Ox00
MOVE *AO , Al, 1 x/5 x/1 >FFFF FFFO 1x00
MOVE *AO ,A1, 0 12/x 1/x >0000 0770 Ox00
MOVE *AO , Al, 1 x/12 x/0 >0000 0770 Ox00
MOVE *AO , Al, 0 18/x 0/x >0003 7770 Ox00
MOVE *AO , Al, 1 x/18 x/1 >FFFF 7770 1x00
MOVE *AO,A1,0 27/x 1/x >FF77 7770 1x00
MOVE *AO , Al , 1 x/27 x/O >0777 7770 Ox00
MOVE *AO , Al 0 31/x 0/x >7777 7770 Ox00
MOVE *AO , A1 , 1 x/31 x/1 >F777 7770 1x00
MOVE *AO Al, 0 32/x x/x >7777 7770 Ox00

12-119

MOVE 	Move Field - Indirect to Indirect 	MOVE

Syntax
	

MOVE *<Rs>,*<Rd>[,< F>]

Execution
	

(field)* Rs 	(field)* Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2
	

1 0
1
	

0 	0 	0 	1 	0
	

F
	

Rs
	

I R I 	Rd

Operands 	*Rs The source operand location is the memory address contained in the
specified register.

*Rd The destination location is the memory address contained in the
specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The field size is determined by the value of
FS for the specified F bit. The SETF instruction sets the field size and ex-
tension. The source and destination registers must be in the same register
file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>15500 >FFFF >15530 >0000
>15510 >FFFF >15540 >0000
>15520 >FFFF >15550 >0000

Code

MOVE *A0, *Al ,
MOVE *A0, *A1,
MOVE *A0, *Al ,
MOVE *AO , *A1 ,
MOVE *AO , *A1 ,
MOVE *A0, *A1,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,
MOVE *AO, *A1,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,
MOVE *AO , *Al ,
MOVE *AO , *A1 ,

Before

Al FSO/1

After

@>15540 @>15550 AO @>15530
1 >0001 5500 >0001 5530 x/1 >0001 >0000 >0000
0 >0001 5500 >0001 5534 5/x >01 FO >0000 >0000
1 >0001 5500 >0001 553A x/10 >FC00 >000 F >0000
0 >0001 5500 >0001 553F 19/x >8000 >FFFF >0003
1 >0001 5504 >0001 5530 x/7 >007F >0000 >0000
0 >0001 550A >0001 5530 13/x >1FFF >0000 >0000
1 >0001 550D >0001 5534 x/8 >OFFO >0000 >0000
0 >0001 550D >0001 5530 28/x >FFFF >OFFF >0000
1 >0001 5505 >0001 5535 x/23 >FFEO >OFF F >0000
0 >0001 5508 >0001 5536 31/x >FFCO >FFFF >001F
1 >0001 5508 >0001 5531 x/31 >FFFE >FFF F >0000
0 >0001 550A >0001 5530 32/x >FFFF >FFFF >0000
0 >0001 5500 >0001 553A x/32 >FC00 >FFF F >03FF

12-120

Move rield - Indirect (Postincrement)
MCVE 	 to Register

Syntax 	MOVE •<Rs>+,<Rd>[,< F>]

Execution 	(field)* Rs -■ Rd
(Rs) + field size 	Rs

Encoding

Operands 	*Rs+ Source register (indirect with postincrement). The source operand
location is the memory address contained in the specified register.
The register is incremented after the move by the field size selected.

Rd 	The destination location is the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source register is incremented after
the MOVE by the field size selected. The source memory address is a bit
address and the field size for the move is 1-32 bits. When the field is moved
into the destination register, it is right justified and sign extended or zero
extended to 32 bits according to the value of FE for the particular F bit se-
lected. This instruction also performs an implicit compare to 0 of the field
data. The SETF instruction sets the field size and extension. The source
and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4

MOVE

3
	

2
	

1
	

0

1
	

0 	0 	1 	0 	1
	

F
	

Rs
	I R I 	Rd

12-121

MOVE

Examples

Move Field - Indirect (Postincrement)
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15500
>15510

Register AO = >0001

Before

Data
>7770
>7777

5500

After

FSO/1 FEO/1 AO Al NCZV
MOVE *A0+,A1,1 x/1 x/0 >0001 5501 >0000 0000 Ox10
MOVE *A0+,A1 , 1 x/5 x/0 >0001 5505 >0000 0010 Ox00
MOVE *AO+ ,A1, 0 5/x 1/x >0001 5505 >FFFF FFFO lx00
MOVE *AO+ ,A1 , 0 12/x 0/x >0001 550C >0000 0770 Ox00
MOVE *AO+ ,A1 , 1 x/12 x/1 >0001 550C >0000 0770 Ox00
MOVE *AO+ ,A1 , 0 18/x 1/x >0001 5512 >FFFF 7770 1x00
MOVE *A0+,A1, 1 x/18 x/0 >0001 5512 >0003 7770 0x00
MOVE *AO+ ,A1 , 0 27/x 0/x >0001 551 B >0777 7770 Ox00
MOVE *A0+,A1,1 x/27 x/1 >0001 551B >FF77 7770 1 x00
MOVE *AO+ ,A1 , 0 31/x 1/x >0001 551F >F777 7770 1x00
MOVE *A0+,A1 , 1 x/31 x/0 >0001 551F >7777 7770 Ox00
MOVE *AO+ ,A1 , 0 32/x x/x >0001 5520 >7777 7770 Ox00

r

12-122

1

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

0 	0 	1 	1 	0 F
	

Rs
	

R
	

Rd

Move Field - Indirect (Postincrement)
MOVE 	 to Indirect (Postincrement) 	 MOVE

Syntax 	MOVE *<Rs>+, *<Rd>+[,<F>]

Execution 	(field)*Rs 	(field)*Rd
(Rs) + field size -■ Rs
(Rd) + field size - ■ Rd

Encoding

Operands 	*Rs+ Source Register (indirect with postincrement). The source operand
location is the memory address contained in the specified register.
The register is incremented after the move by the field size selected.

*Rd+ Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.
The register is postincremented after the move by the field size se-
lected. If Rs and Rd specify the same register, then the destination
location is the original contents of the register incremented by twice
the FS.

F 	is an optional operand; it defaults to 0.
F=0 selects the FS0 parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both registers are incremented after the move by the field
size selected. Both memory addresses are bit addresses and the field size
for the move is 1-32 bits. The field size is determined by the value of FS
for the F bit specified. The SETF instruction sets the field size and exten-
sion. If Rs and Rd specify the same register, the data read from the location
pointed to by the original contents of Rs will be written to the location
pointed to by the incremented value of Rs (Rd). The source and destina-
tion registers must be in the same register file.

Words 	1

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

1

12-123

MOVE

Examples

Move Field - Indirect (Postincrement)
to Indirect (Postincrement) 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Before

5500

Address
>15500
>15510
>15520

MOVE 	*A0+,*A1+,F

Al 	FSO/1
>0001 553D 	x/1

Data
> FFFF
>FFFF
>FFFF

After

Address
>15530
>15540
>15550

Al
>0001 553E

Data
> 0000
> 0000
> 0000

@>15530 @>15540
>2000 	>0000

@>15550
>0000

F 	AO
1 	> 0001

AO
>0001 5501

0 	> 0001 5505 > 0001 5538 5/x >0001 550A >0001 553D >1F00 >0000 >0000
1 	> 0001 550A >0001 553F x/10 > 0001 5514 >0001 5549 >8000 >01FF >0000
0 	> 0001 550D >0001 5530 19/x >0001 5520 >0001 5543 >FFFF >0007 >0000
1 	> 0001 5510 >0001 5532 x/7 > 0001 5517 >0001 5539 >01 FC >0000 >0000
0 	> 0001
1 	>0001

5511
5513

>0001
>0001

553A
553F

13/x
x/8

>0001
>0001

551E
551B

>0001
>0001

5547
5547

>FC00
>8000

>007F
>007F

>0000
>0000

o 	>0001 5510 >0001 553A 28/x >0001 552C >0001 5556 >FC00 >FFFF >003F
1 	>0001 5518 >0001 5534 x/23 >0001 552F >0001 554B >FFFO >07FF >0000
0 	>0001 5510 >0001 5530 31/x >0001 552F >0001 554F >FFFF >7FFF >0000
1 	>0001 5511 >0001 553D x/31 >0001 5530 >0001 555C >E000 >FFFF >OFFF
0 	>0001
1 	>0001

5510
5500

>0001
>0001

553F
5530

32/x
x/32

>0001
>0001

5530
5520

>0001
>0001

555F
5550

>8000
>FFFF

>FFFF
>FFFF

>7FFF
>0000

12-124

MOVE

Syntax MOVE -*<Rs>,<Rd>[,‹ F>]

(Rs) - field size 	Rs
(field)*Rs -■ Rd

15 14 13 12 11 10
	

9 8 7 6 5 4

-*Rs Source Register (indirect with predecrement). The source operand
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FE0 parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the memory address contained in the source re-
gister to the destination register. The source register is predecremented
before the move by the field size selected. The source memory address is
a bit address and the field size for the move is 1-32 bits. The field size is
determined by the value of FS for the F bit specified. The SETF instruction
sets the field size and extension. When the field is moved into the desti-
nation register, it is right justified and sign extended or zero extended to 32
bits according to the value of FE for the particular F bit selected. This in-
struction also performs an implicit compare to 0 of the field data.

The source and destination registers must be in the same register file. If
Rs and Rd are the same register, the pointer information is overwritten by
the data fetched.

Words

Machine
States

Status Bits

1

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

Move Field - Indirect (Predecrement)
to Register MOVE

Execution

Encoding

Operands

3 2 	1 	0

Rd

12-125

MOVE

Examples

Move Field - Indirect (Predecrement)
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address

Register

>15500
>15510

AO = >0001

Before

Data
>7770
>7777

5520

After

FS0/1 FEO/1 AO Al NCZV
MOVE -*AO,A1,1 x/1 x/0 >0001 551F >0000 0000 Ox10
MOVE -*AO,A1,0 5/x 1/x >0001 551B >0000 000E Ox00
MOVE -*AO,A1,1 x/5 x/0 >0001 551B >0000 000E Ox00
MOVE -*AO,A1,0 12/x 0/x >0001 5514 >0000 0777 Ox 00
MOVE -*AO,A1,1 x/12 x/1 >0001 5514 >0000 0777 Ox 00
MOVE -*AO,A1,0 18/x 1/x >0001 550E >0001 DDDD Ox00
MOVE -*AO,A1,1 x/18 x/0 >0001 550E >0001 DDDD Ox00
MOVE -*AO,A1,0 27/x 0/x >0001 5505 >03888888 Ox 00
MOVE -*AO,A1,1 x/27 x/1 >0001 5505 >03BBBBBB Ox00
MOVE -*AO,A1,0 31/x 1/x >0001 5501 >3BBBBBB8 Ox00
MOVE -*AO,A1,1 x/31 x/0 >0001 5501 >3BBBBBB8 Ox 00
MOVE -*AO,A1,0 32/x x/x >0001 5500 >77777770 Ox00

12-126

Move Byte - Indirect (Predecrement)
MOVE 	 to Indirect (Predecrement) 	 MOVE

Syntax

Execution

Encoding

MOVE - . <Rs>,-*<Rd>[,< F>]

(Rs) - field size -> Rs
(Rd) - field size - ■ Rd
(field)* Rs (field)*Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	0 	1 	0 	1 	0
	

F
	

Rs
	

R
	

Rd

Operands 	- *Rs Source Register (indirect with predecrement). The source operand
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register.

- *Rd Destination register (indirect with predecrement). The destination
location is the memory address contained in the specified register
decremented by the field size selected. This is also the final value
for the register. If Rs and Rd specify the same register, then the
destination location is the original contents decremented by twice
the FS.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both registers are decremented before the move by the
field size selected. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The field size is determined by the value of
FS for the F bit specified. The SETF instruction sets the field size and ex-
tension. The source and destination registers must be in the same register
file. If Rs and Rd are the same register, then the final contents of the reg-
ister are its original contents decremented by twice the field size.

Words 	 1

Machine
States 	 See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

1 2-1 27

Move Byte - Indirect (Predecrement)
MOVE 	 to Indirect (Predecrement) 	 MOVE

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Before

Address
>15500 	>FFFF
>1 5 51 0 	>FFFF
>1 5 5 20 	>FFFF

MOVE 	- *AO, - *Al

Data 	Address

F

After

>1 5 530
>1 5 540
>1 5 5 50

Data
>0 00 0
>0 0 0 0
>0 0 0 0

F 	AO Al FSO/1 AO Al @>15530@>15540@>15550

1 	>0001 5501 >0001 5531 x/1 >0001 5500 >0001 5530 >0001 >0000 >0000
0 >0001 5505 >0001 5539 5/x >0001 5500 >0001 5534 >01F0 >0000 >0000
1 	>0001 550A >0001 5544 x/10 >0001 5600 >0001 553A >FC00 >000F >0000
0 	>0001 5513 >0001 5552 19/x >0001 5500 >0001 553F >8000 >FFFF >0003
1 	>0001 550B >0001 5537 x/7 >0001 5504 >0001 5530 >007F >0000 >0000
0 > 0001 5517 > 0001 553D 13/x >0001 550A >0001 5530 >1 FFF >0000 >0000
1 	>0001 5515 >0001 553C x/8 >0001 550D >0001 5534 >OFFO >0000 >0000
0 >0001 5529 >0001 554C 28/x >0001 5500 >0001 5530 >FFFF >OFFF >0000
1 	>0001 551C >0001 554C x/23 >0001 5505 >0001 5535 >FFEO >OFFF >0000
0 	> 0001 5527 > 0001 5555 31/x > 0001 5508 > 0001 5536 >FFCO >FFFF >001F
1 	>0001 5527 >0001 5550 x/31 >0001 5508 >0001 5531 >FFFE >FFFF >0000
0 	>0001 552A >0001 5550 32/x >0001 550A >0001 5530 >FFFF >FFFF >0000
1 	>0001 5520 >0001 555A x/32 >0001 5500 >0001 553A >FC00 >FFFF >03FF

12-128

Move Field - Indirect with Displacement
MOVE 	 to Register

Syntax
	

MOVE . <Rs(Displacement)>,< Rd>[,<F>]

Execution
	

(field)•(Rs + Displacement) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

MOVE

1 	0 	1 	1 	0 	1
	

F
	

Rs
	 R
	

Rd

Displacement

Operands 	"Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement. The source displace-
ment is contained in the extension word following the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FEO parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the source memory address to the destination
register. The source memory address is a bit address and is formed by ad-
ding the contents of the specified register to the signed 16-bit displace-
ment. The field size for the above is 1-32 bits. When the field is moved into
the destination register, it is right justified and sign extended or zero ex-
tended to 32 bits, according to the value of FE for the particular F bit se-
lected. This instruction also performs an implicit compare to 0 of the field
data. The SETF instruction sets the field size and extension. The source
and destination registers must be in the same register file.

Words 	2

Machine
States 	See Section 13.2, MOVE and MOVB Instructions Timing.

Status Bits 	N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

12-129

MOVE

Examples

Move Field - Indirect with Displacement
to Register 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Code

Address
>15530
>15540
>15550

Data
>3333
>4444
>5555

Before After

AO FB0/ FE01 Al NCZV
MOVE *A0(>0000),A1,1 >0001 5530 x/1 x/1 >FFFF FFFF 1x00
MOVE *A0(>0003),A1,1 >0001 552F x/2 x/O >0000 0000 Ox10
MOVE *A0(>0001),A1,0 >0001 552F 5/x 0/x >0000 0013 Ox00
MOVE *A0(>000F),A1,0 >0001 552D 8/x 1 /x >0000 0043 Ox00
MOVE *A0(>0020),A1,1 >0001 551 C x/13 x/0 >0000 0443 Ox00
MOVE *A0(>00FF),A1,0 >0001 5435 16/x 1/x >0000 4333 Ox00
MOVE *A0(>OFFF),A1,0 >0001 4531 19/x 1 /x >FFFC 3333 1x00
MOVE *A0(>7FFF),A1,1 >0000 D531 x/22 x/1 >0004 3333 Ox00
MOVE *A0(>FFF2),A1,1 >0001 5540 x/25 x/0 >0111 OCCC Ox00
MOVE *A0(>8000),A1,0 >0001 D530 27/x 1/x > FC44 3333 1x00
MOVE *A0(>FFF0),A1,0 >0001 5540 31/x 0/x >4444 3333 Ox00
MOVE *A0(>FFE0),A1,1 >0001 5558 x/31 x/1 >D544 4433 1x00
MOVE *A0(>FFEC),A1,0 >0001 554D 32/x 0/x >AAA2 2219 1x00
MOVE *A0(>001D),A1,0 >0001 5520 32/x 1 /x >AAAA 2221 1x00
MOVE *A0(>0020),A1,1 >0001 5520 x/32 x/0 >5555 4444 Ox00

12-130

Move Field - Indirect with Displacement
MOVE 	 to Indirect (Postincrement) 	 MOVE

Syntax 	MOVE *<Rs(Displacement)>, .<Rd>+[,<F>]

Execution 	(field)" Rs(Displacement) 	(field)*Rd
(Rd) + field size -+ Rd

Encoding 	15 14 13 12 11 10 9 	8 7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	1 	0 	1 	0 	0 F
	

Rs
	

R
	

Rd

Displacement

Operands 	*Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the source register
contents and the signed 16-bit displacement, contained in the ex-
tension word following the instruction.

*Rd+
Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address contained in the destination register; both the source and
destination memory addresses are bit addresses. The source memory ad-
dress is formed by adding the contents of the source register to the signed
16-bit displacement. The destination register is incremented following the
move by the field size selected. The field size for the move is 1-32 bits.
The SETF instruction sets the field size and extension. The source and
destination registers must be in the same register file.

Words

Machine
States

Status Bits

2

See MOVE and MOVB Instructions Timing, Section 13.2.

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-131

Move Field - Indirect with Displacement
to Indirect (Postincrement) 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

MOVE

Examples

Address Data Address Data
>15500 >0000 >15530 >3333
>15510 >0000 >15540 >4444
>15520 >0000 >15550 >5555

Code Before

Al 	FSO/1

After

@>15520

@>15510

@>15500

AO Al
MOVE *A0(>0000),A1+,1 >00015530 >00015500 x/1 > 00015501 >0001 >0000 >0000
MOVE *A0(>0001),A1+,1 >0001552F >00015504 5/x >00015509 >0130 >0000 >0000
MOVE *A0(>000F),A1+,1 >0001552D >0001550C 8/x >00015514 >3000 >0004 >0000
MOVE *A0(>0020),A1+,1 > 0001551 C > 0001550D x/13 >0001551A >6000 >0088 >0000
MOVE *A0(>00FF),A1+,1 >00015535 >0001550C 16/x > 0001551 C >3000 >0433 >0000
MOVE *A0(>OFFF),A1+,1 > 00015531 > 00015510 19/x >00015523 >0000 >3333 >0004
MOVE *A0(>7FFF),A1+,1 > 0000D531 > 00015508 x/22 > 0001551E >3300 >0433 >0000
MOVE *A0(>FFF2),A1+,1 > 00015540 > 00015500 x/25 >00015519 >OCCC >0111 >0000
MOVE *A0(>8000),A1+,1 > 0001 D530 > 00015503 27/x > 0001551 E >9998 >2221 >0000
MOVE *A0(>FFF0),A1+,1 >00015540 >00015501 31/x > 0001552A >6666 >8888 >0000
MOVE *A0(>FFE0),A1+,1 >00015558 >00015508 x/31 >00015527 >3300 >4444 >0055
MOVE *A0(>FFEC),A1+,1 >0001554D >0001550A 32/x > 00015528 >3200 >4444 >0155
MOVE *A0(>001D),A1+,1 > 00015520 > 00015510 32/x >00015530 >0000 >2221 >AAAA
MOVE *A0(>0020),A1+,1 >00015520 >00015510 x/32 > 00015530 >0000 >4444 >5555

12-132

Move Field - Indirect with Displacement
MOVE 	 to Indirect with Displacement 	 MOVE

Syntax

Execution

Encoding

MOVE *<Rs(Displacement)>, *<Rd>(Displacement)> [,<F>.]

(field)*Rs(Displacement) 	(field)*Rd(Displacement)

15 14 13 12 11 10 9 	8 	7 	6 	5 	4 	3
	

2
	

1
	

0

1 	0 	1 	1 	1 	0
	

F
	

Rs
	

R
	

Rd

Source Displacement

Destination Displacement

Operands 	"Rs(Displacement)
Source register with displacement. The source operand location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the first
of two extension words following the instruction.

*Rd(Displacement)
Destination register with displacement. The destination location is
the memory address specified by the sum of the specified register
contents and the signed 16-bit displacement, contained in the sec-
ond of two extension words following the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FS0 parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both the source and destination memory addresses are
bit addresses and are formed by adding the contents of the specified regis-
ter to its respective signed 16-bit displacement. The field size for the move
is 1-32 bits. The SETF instruction sets the field size and extension. The
source and destination registers must be in the same register file.

Words 	3

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-133

MOVE

Examples

Move Field - Indirect with Displacement
to Indirect with Displacement 	 MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address Data Address Data
>15500 >0000 >15530 >3333
>15510 >0000 >15540 >4444
>15520 >0000 >15550 >5555

Before After

Al 	FSO/1

4>15500 	@>15520

@>15510 AO
MOVE *AO (>0000) , *A1 (>0000) , 1 >00015530 >00015500 x/1 >0001 >0000 >0000
MOVE *AO (>0001) , *A1 (>0000) , 0 >0001552F >00015504 5/x >0130 >0000 >0000
MOVE *AO (>000F) , *A1 (>000F) , 0 >0001552D > 000154FD 8/x >3000 >0004 >0000
MOVE *AO (>0020) , *A1 (>001D) , 1 >0001551C >000154F0 x/13 >6000 >0088 >0000
MOVE *AO (> OOFF) , *A1 (>FFF8) , 0 >00015435 >00015514 16/x >3000 >0433 >0000
MOVE *AO (>OFFF) , *A1 (>OFFF) , 0 >00014531 > 00014511 19/x >0000 >3333 >0004
MOVE *AO (> 7FFF) , *A1 (>8000) , 1 >0000D531 > 0001 D508 x/22 >3300 >0433 >0000
MOVE *AO (>FFF2) , *A1 (>7FFF) , 1 >00015540 >0000D501 x/25 >OCCC>0111 >0000
MOVE *AO (>8000) , *A1 (>0020) , 0 > 0001 D530 > 000154E3 27/x >9998 >2221 >0000
MOVE *AO (>FFFO) , *A1 (>0010) , 0 >00015540 > 000154F1 31/x >6666 >8888 >0000
MOVE *AO (>FFEO) , *A1 (>FFEO) , 1 >00015558 > 00015528 x/31 >3300 >4444 >0055
MOVE *AO (>FFEC) , *A1 (>FFEC) , 0 >00015540 > 0001551 D 32/x >3200 >4444 >0155
MOVE *AO (>001D) , *A1 (>0020) , 0 >00015520 > 000154F0 32/x >0000 >2221 >AAAA
MOVE *AO (>0020) , *A1 (>0020) , 1 >00015520 > 000154F0 x/32 >0000 >4444 >5555

12-134

Syntax

Execution

Encoding

MOVE @<SAddress>,<Rd>[,< F>]

(field)@SAddress -0 Rd

15 14 13 12 11 10 9
	

8
	

7 6 5 4 3 2 1 0

MOVE 	Move Field - Absolute to Register 	MOVE

0 	0 	0 	0 	0 	1
	

F
	

1 	1 	0 	1
	

R
	

Rd

Source Address (LSW)

Source Address (MSW)

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the two extension words following the in-
struction. It is 1-32 bits in size.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO, FE0 parameters for the move.
F=1 selects the FS1, FE1 parameters for the move.

Description 	MOVE moves a field from the source memory address to the destination
register. The specified source memory address is a bit address and the field
size for the move is 1-32 bits. When the field is moved into the destination
register, it is right justified and sign extended or zero extended to 32 bits
according to the value of FE for the particular F bit selected. This instruc-
tion also performs an implicit compare to 0 of the field data. The SETF in-
struction sets the field size and extension.

Words

Machine
States

Status Bits

3

See MOVE and MOVB Instructions Timing, Section 13.2.

N 1 if the field-extended data moved to register is negative, 0 otherwise.
C Unaffected
Z 1 if the field-extended data moved to register is 0, 0 otherwise.
V 0

12-135

MOVE Move Field - Absolute to Register 	MOVE

Examples Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510

Code

Data
>7770
>7777

Before After

FEO/1 FSO/1 Al NCZV
MOVE @>15500,A1,1 x/0 x/1 >0000 0000 Ox10
MOVE @>15500,A1,0 0/x 5/x >0000 0010 Ox00
MOVE @>15503,A1,1 x/1 x/5 >0000 000E Ox 00
MOVE @>15500,A1,0 0/x 12/x >0000 0770 Ox00
MOVE @>1550D,A1,1 x/1 x/12 >FFFF FBBB 1x00
MOVE @>15504,A1,0 1/x 18/x >FFFF 7777 1x00
MOVE @>15500,A1,1 x/0 x/18 >0003 7770 000
MOVE @>15500,A1,0 0/x 27/x >0777 7770 Ox00
MOVE @>15500,A1,1 x/1 x/27 >FF77 7770 1x00
MOVE @>15501,A1,0 0/x 30/x >3BBB BBB8 Ox00
MOVE @>15501,A1,1 x/1 x/30 >FBBB BBB8 1x00
MOVE @>15500,A1,0 x/x 32/x >7777 7770 Ox00

12-136

1 	1 	0 	1 	0 	1
	

F
	

0 	0 	0 	0 R
	

Rd

Source Address (LSW)

Source Address (MSW)

MOVE

Syntax

Execution

Encoding

Move Field - Absolute to Indirect
(Postincrement)

MOVE @<SAddress>, *<Rd>+[,F]

(field)@SAddress 	(field)*Rd
(Rd) + field size -+ Rd

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4 3 2
	

1 0

MOVE

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the two extension words following the in-
struction.

*Rd+
Destination register (indirect with postincrement). The destination
location is the memory address contained in the specified register.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the memory ad-
dress contained in the destination register. The source memory address is
contained in the two extension words following the instruction. The des-
tination register is incremented following the move by the field size se-
lected. The source and destination registers must be in the same register
file.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-137

Move Field - Absolute to Indirect
MOVE 	 (Postincrement) 	 MOVE

Examples 	Assume that memory contains the following values before instruction exe-
cution:

	

Address 	Data 	Address 	Data

	

>15500 	>FFFF 	>15530 	>0000

	

>15510 	>FFFF 	>15540 	>0000

	

>15520 	>FFFF 	>15550 	>0000

Code Before After

@>15500 	@>15520
AO 	 Al FEO/1 Al @>15510

MOVE @ 15 5 0 	, A1+ , 1 >00015530 >00015531 x/1 >00015531 >0001 >0000 >0000
MOVE @ 15 5 0 	, A1+ 	> 00015534 > 00015539 5/x > 00015539 >01 FO >0000 >0000
MOVE @ 15 5 00 , A1+ , 1 >0001553A >00015544 x/10 >00015544 >FC00 >000F >0000
MOVE @ 15 5 0 	, A1+ , 0 >0001553F >00015552 19/x >00015552 >8000 >FFFF >0003
MOVE @15 5 04 ,A1+, i >00015530 >00015537 x/7 >00015537 >007F >0000 >0000
MOVE @15 5 OA , Al+ , 0 >00015530 >0001553D 13/x >0001553D >1 FFF >0000 >0000
MOVE @ 15 5 OD , Al+ , 1 >00015534 >00015536 x/8 >00015536 >OFFO >0000 >0000
MOVE @15 5 OD , Al+ , 0 >00015530 >0001554C 28/x >0001554C >FFFF >OFFF >0000
MOVE @15 5 0 5 ,A1+ , 1 >00015535 >0001554D x/23 >0001554D >FFEO >OFFF >0000
MOVE @15508,A1+,0 >00015536 >00015555 31/x >00015555 >FFCO >FFFF >001F
MOVE @15 5 08 , A1+ , 1 >00015531 >00015548 x/31 >00015548 >FFFE >FFFF >0000
MOVE @155OA,Al+,0 >00015530 >00015550 32/x >00015550 >FFFF >FFFF >0000
MOVE @15 5 0 0 ,A1+ , 1 >0001553A >0001555A x/32 >0001555A >FC00 >FFFF >03FF

12-138

MOVE 	Move Field - Absolute to Absolute 	MOVE

Syntax

Execution

Encoding

MOVE @<SAddress>, @<DAddress>[,<F>]

(fieid)©SAddress 	(field)@DAddress

15 14 13 12 11 10 9 	8 	7 	6 	5
	

4
	

3
	

2
	

0

0 	0 	0 	0 	0 	1 	IF 	I 	1 	1 	1 	0 	0 	0 	0 	0 	0

Source Address (LSW)

Source Address (MSW)

Destination Address (LSW)

Destination Address (MSW)

Operands 	SAddress
Source address. The source operand location is the linear memory
address contained in the first set of two extension words following
the instruction.

DAddress
Destination address. The destination location is the linear memory
address contained in the second set of two extension words follow-
ing the instruction.

F 	is an optional operand; it defaults to 0.
F=0 selects the FSO parameter for the move.
F=1 selects the FS1 parameter for the move.

Description 	MOVE moves a field from the source memory address to the destination
memory address. Both memory addresses are bit addresses and the field
size for the move is 1-32 bits. The SETF instruction sets the field size and
extension.

Words 	5

Machine
States 	See MOVE and MOVB Instructions Timing, Section 13.2.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

12-139

MOVE

Examples

Move Field - Absolute to Absolute 	MOVE

Assume that memory contains the following values before instruction exe-
cution:

Address
>15500
>15510
>15520
>15530
>15540
>15550

Data
>FFFF
>FFFF
>FFFF
>0000
>0000
>0000

Code Before After

@>15540 @>15550 FSO/1 @>15530
MOVE @>15500,@>15530,1 x/1 >0001 >0000 >0000
MOVE @>15500,@>15534,0 5/x >01F0 >0000 >0000
MOVE @>15500,@>1553A,1 x/10 >FC00 >000F >0000
MOVE @>15500,@>1553F,0 19/x >8000 >FFFF >0003
MOVE @>15504,@>15530,1 x/7 >007F >0000 >0000
MOVE @>1550A,@>15530,0 13/x >1 FFF >0000 >0000
MOVE @>1550D,@>15534,1 x/8 >OFFO >0000 >0000
MOVE @>1550D,@>15530,0 28/x >FFFF >OFFF >0000
MOVE @>15505,@>15535,1 x/23 >FFEO. >OFFF >0000
MOVE @>15508,@>15536,0 31/x >FFCO >FFFF >001F
MOVE @>15508,@>15531,1 x/31 >FFFE >FFFF >0000
MOVE @>1550A,@>15530,0 32/x >FFFF >FFFF >0000
MOVE @>15500,@>1553A,0 x/32 >FC00 >FFFF >03FF

12-140

I

0 	0 	0 	0 	1 	0 	0 	1 	1 	1 	0 R
	

Rd

IW

MOVI <IW>,<Rd>[,W]

IW 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Syntax

Execution

Encoding

Move Immediate - 16 Bits 	 MOVI MOVI

Operands 	IW is a 16-bit immediate value.

Description 	MOVI stores a 16-bit, sign-extended immediate value in the destination
register.

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 < IW < 32,767. You can force
the assembler to use the short form by following the register specification
with ,W:

MOVI IW , Rd, W

The assembler will truncate the upper bits and issue an appropriate warning
message.

Words 	2

Machine
States 	2,8

Status Bits 	N 1 if the data being moved is negative, 0 otherwise.
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise.
V 0

Examples 	Code 	 After

AO 	 NCZV
MOVI 32767 , AO 	>0000 7FFF Ox00
MOVI 	1,A0 	>0000 0001 	Ox00
MOVI 	0,A0 	>0000 0000 Ox10
MOVI 	-1,A0 	>FFFF FFFF 1x00
MOVI -32768,A0 	>FFFF 8000 1x00
MOVI >0000,A0 	>0000 0000 Ox10
MOVI > 7FFF , AO 	>00007FFF Ox00

12-141

Syntax

Execution

Encoding

MOVI <IL>,<Rd> [,L]

IL 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

MOVI Move Immediate - 32 Bits 	 MOVI

0 	0 	0 	0 	1 	0 	0 	1 	1 	1 	1
	

Rd

IL (LSW)

IL (MSW)

Operands 	IL is a 32-bit immediate value.

Description 	MOVI stores a 32-bit immediate value,in the destination register. The as-
sembler will use this opcode if it cannot use the MOVI IW,Rd opcode,
or if the long opcode is forced by following the register specification with
,L:

MOVI IL,Rd,L

Words 	3

Machine
States 	3,12

Status Bits 	N 1 if the data being moved is negative, 0 otherwise.
C Unaffected
Z 1 if the data being moved is 0, 0 otherwise.
V

Examples 	Code 	 After

AO 	 NCZ V
MOVI 2147483647,A0 	>7FFF FFFF Ox00
MOVI 	 32768 , AO 	>0000 8000 Ox00
MOVI 	-32769,A0 	>FFFF 7FFF 1x00
MOVI -2147483648,A0 	>8000 0000 1 x00
MOVI 	 >8000 , AO >0000 8000 Ox00
MOVI 	>FFFFFFFF ,A0 	>FFFF FFFF 1x00
MOVI 	>FFFF ,A0 ,L 	>FFFFFFFF 1x00

12-142

Syntax

Execution

Encoding

MOVK <K>,<Rd>

K 	Rd

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	1 	1 	0
	

K
	

R
	

Rd

MOVK 	 Move Constant (5 Bits) 	' MOVK

Operands

Description

Words

Machine
States

Status Bits

K is a constant from 1 to 32.

MOVK stores a 5-bit constant in the destination register. The constant is
treated as an unsigned number in the range 1-32, where K = 0 in the op-
code corresponds to a value of 32. The resulting constant value is zero
extended to 32 bits. Note that you cannot set a register to 0 with this in-
struction. You can clear a register by XORing the register with itself; use
CLR Rd (an alternate mnemonic for XOR) to accomplish this. Both these
methods alter the Z bit (set it to 1).

1

1,4

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Examples 	Code

MOVK ',AO
MOVK 8,A0
MOVK 16,A0
MOVK 32,A0

After

AO
>0000 0001
>0000 0008
>0000 0010
>0000 0020

12-143

MOVX 	 Move X Half of Register 	 MOVX

Syntax
	

MOVX <Rs>,<Rd>

Execution
	

(RsX) —■ RdX

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2
	

1 0

Description

Rs
	 R
	

Rd

MOVX moves the X half of the source register (16 LS8s) to the X half of
the destination register. The Y halves of both registers are unaffected.

MOVX and MOVY instructions can be used for handling packed 16-bit
quantities and XY addresses. The RL instruction can be used to swap the
contents of X and Y.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

1

1,4

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples Code 	 Before

AO
MOVX AO , Al 	>0000 0000
MOVX AO , Al 	>1234 5678
MOVX AO ,A1 	>FFFF FFFF

After

Al 	 Al
>FFFF FFFF 	>FFFF 0000
>0000 0000 	>0000 5678
>0000 0000 	>0000 FFFF

12-144

MOVY 	 Move Y Half of Register 	 MOVY

Syntax
	

MOVY <Rs>,<Rd>

Execution
	

(RsY) 	RdY

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0
1
	

1 	1 	0 	1 	1 	1
	

Rs
	 R
	

Rd

Description 	MOVY moves the Y half of the source register (16 MSBs) to the Y half of
the destination register. The X halves of both registers are unaffected.

MOVX and MOVY instructions can be used for handling packed 16-bit
quantities and XY addresses. The RL instruction can be used to swap the
contents of X and Y.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 Al
MOVY AO, Al 	>0000 0000 >FFFF FFFF 	>0000 FFFF
MOVY AO Al 	>1234 5678 >0000 0000 	>1234 0000
MOVY AO, Al 	>FFFF FFFF >0000 0000 	>FFFF 0000

12-145

MPYS 	 Multiply Registers - Signed 	 MPYS

Syntax 	IVIPYS <Rs>,<Rd>

Execution 	Rd Even: (Rs) x (Rd) - ■ Rd:Rd+1
Rd Odd: (Rs) x (Rd) - Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

0 	1 	0 	1 	1 	1 	0
	

Rs
	

R
	

Rd

Description 	There are two cases:

Rd Even MPYS performs a signed multiply of the source register by the
destination register, and stores the 64-bit result in the two
consecutive registers starting at the destination register. The
32 MSBs of the result are stored in the specified even-num-
bered destination register. The 32 LSBs of the result are stored
in the next consecutive register, which is odd-numbered.
Avoid using A14 or B14 as the destination register, since this
overwrite the SP. The assembler will issue a warning in this
case.

Words

Machine
States

Status Bits

Rd Odd 	Perform a signed multiply of the source register by the desti-
nation register, and store the 32 LSBs of the result in the des-
tination register. Note that overflows are not detected. The Z
and N bits are set on the full 64-bit result, even though only the
lower 32 bits are stored in Rd.

FS1 controls the width of the multiply; the portion of Rs by which Rd is
multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS
will produce unpredictable results. The MSB of the source operand field
supplies the source operand's sign. The source and destination registers
must be in the same register file.

1

20,23

N 1 if the result is negative, 0 otherwise.
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

12-146

MPYS 	 Multiply Registers - Signed' MPYS

Examples 	MPYS Al, AO

Before

Al 	 FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>0000 0000 >7FFF FFFF 32 >0000 0000 >0000 0000 Oxl x
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 Oxlx
>7FFF FFFF >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>FFFF FFFF >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>7FFF 0000 >1000 0000 32 >0000 0000 >7FFF0000 OxOx
>7FFF 0000 >1000 0000 32 >0000 007F >FF00 0000 OxOx
>7FFF 0000 >1000 0000 32 >0000 7FFF >0000 0000 OxOx
>FFFF FFFF >1000 0000 32 >FFFF FFFF >FFFF FFFF 1 x0x
>8000 0000 >7FFF FFFF 32 >C000 0000 >8000 0000 lxOx
>FFFF 0000 >7FFF 0000 32 >FFFF 8001 >0000 0000 1x0x
>FFFF FFFF >FFFF FFFF 32 >0000 0000 >1000 0000 OxOx
>8000 0000 >8000 0000 32 >4000 0000 >0000 0000 OxOx
>8000 0001 >8000 0000 32 >3FFF FFFF >8000 0000 OxOx

MPYS AO,A1

Before After

AO Al FS1 AO Al NCZV
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 Oxlx
>FFFF FFFF >0000 0000 32 >FFFF FFFF >0000 0000 Oxlx
>0000 0000 >7FFF FFFF 32 >0000 0000 >0000 0000 Oxlx
>7FFF 0000 >1000 0000 32 >007F FF00 >7FFF0000 OxOx
>7FFF 0000 >1000 0000 32 >007F FFOO >FFOO 0000 Ox0x
>7FFF 0000 >1000 0000 32 >007F FF00 >0000 0000 Ox Ox
>FFFF FFFF >1000 0000 32 >FFFF FFFF >FFFF FFFF 1x0x
>FFFF 0000 >7FFF0000 32 >FFFF 0000 >0000 0000 1x0x
>FFFF FFFF >FFFF FFFF 32 >FFFF FFFF >1000 0000 OxOx
>8000 0001 >8000 0000 32 >8000 0001 >8000 0000 OxOx
>8000 0000 >8000 0000 32 >8000 0000 >0000 0000 Ox1x

12-147

MPYU

Syntax

Multiply Registers - Unsigned MPYU

MPYU <Rs>,<Rd>

Execution 	Rd Even: (Rs) x (Rd) 	Rd:Rd+1
Rd Odd: (Rs) x (Rd) --■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3 2
	

1
	

0

Rs
	

R
	

Rd

Description 	There are two cases:

Rd Even MPYU performs an unsigned multiply of the source register by
the destination register, and stores the 64-bit result in the two
consecutive registers starting at the destination register. The
32 MSBs of the result are stored in the specified even-num-
bered destination register. The 32 LSBs of the result are stored
in the next consecutive register, which is odd-numbered.
Avoid using Al 4 or B14 as the destination register, since this
overwrites the SP. The assembler will issue a warning in this
case.

Words

Machine
States

Status Bits

Examples

Rd Odd 	Perform an unsigned multiply of the source register by the
destination register, and store the 32 LSBs of the result in the
destination register. Note that overflows are not detected. The
Z and N bits are set on the full 64-bit result, even though only
the lower 32 bits are stored in Rd.

FS1 controls the width of the multiply; the portion of Rs by which Rd is
multiplied is determined by FS1. FS1 should be even. If FS1 is odd, MPYS
will produce unpredictable results.

The source and destination registers must be in the same register file.

1

21,24

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

MPYU Al,A0

Before

Al FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 xxlx
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 xx1x
>FFFF FFFF >0000 0000 32 >0000 0000 >0000 0000 1x1x
>FFFF 0000 >1000 0000 32 >0000 0000 >FFFF 0000 xx0x
>FFFF 0000 >1000 0000 32 >0000 ()OFF >FFOO 0000 xx0x
>FFFF 0000 >1000 0000 32 >0000 FFFF >0000 0000 xx0x

12 - 148

MPYU 	 Multiply Registers - Unsigned MPYU

MPYU AO,A1

Before

Al 	 FS1

After

Al NCZV AO AO
>0000 0000 >0000 0000 32 >0000 0000 >0000 0000 xx1x
>FFFF FFFF >0000 0000 32 >FFFF FFFF >0000 0000 xxix
>0000 0000 >FFFF FFFF 32 >0000 0000 >0000 0000 1x1x
>FFFF 0000 >1000 0000 32 >00FF FF00 >FFFF 0000 xx0x
>FFFF 0000 >1000 0000 32 > 00 F F FF00 > FFOO 0000 xx0x
>FFFF 0000 >1000 0000 32 >00FF FF00 >0000 0000 xx0x

12-149

NEG Negate Register NEG

Syntax
	

NEG <Rd>

Execution 	-(Rd) -■ Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2
	

1 0

1 ° 	0 	0 	0 	0 	0 	1 	1 	1 	0 	1
	

R
	

Rd

Description 	NEG stores the 2's complement of the contents of the destination register
back into the destination register.

Words 	1

Machine
States 	1,4

Status Bits 	N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow (Rd # 0), 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 1 if there is an overflow (Rd = >8000 0000), 0 otherwise.

Examples Code Before After

AO AO NCZV
NEG AO >0000 0000 0010 >0000 0000
NEG AO >5555 5555 1100 >AAAAAAAB
NEG AO >7FFF FFFF 1100 >8000 0001
NEG AO >8000 0000 1101 >8000 0000
NEG AO >8000 0001 0100 >7FFF FFFF
NEG AO >FFFF FFFF 01 00 >0000 0001

12-150

NEGB 	 Negate Register with Borrow 	 NEGB

Syntax
	

NEGB <Rd>

Execution 	-(Rd) - (C) -- ■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	0 H I
	

Rd

Description 	NEGB takes the 2's complement of the destination register's contents and
decrements by 1 if the borrow bit (C) is set; the result is stored in the des-
tination register. This instruction can be used in sequence with itself and
with the NEG instruction for negating multiple-register quantities.

Words

Machine
States

Status Bits

Examples

....

▪

,,

1

1,4

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

Code Before

C

After

AO AO NCZV
NEGB AO >0000 0000 0 0010 >0000 0000
NEGB AO >0000 0000 1 1100 >FFFF FFFF
NEGB AO >5555 5555 0 1100 >AAAA AAAB
NEGB AO >5555 5555 1 1100 >AAAA AAAA
NEGB AO >7FFF FFFF 0 1100 >8000 0001
NEGB AO >7FFF FFFF 1 1100 >8000 0000
NEGB AO >8000 0000 0 1101 >8000 0000
NEGB AO >8000 0000 1 0100 >7FFF FFFF
NEGB AO >8000 0001 0 0100 >7FFF FFFF
NEGB AO >8000 0001 1 01 00 >7FFF FFFE
NEGB AO >FFFF FFFF 0 0100 >0000 0001
NEGB AO >FFFF FFFF 1 0110 >0000 0000

12-151

NOP 	 No Operation NOP

Syntax
	

NOP

Execution
	

No operation

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3
	

0
0 	0 	0 	0 	0
	

1 	1 	0 	0 	0 	0 	0 	0 	0 0

Description 	The program counter is incremented to point to the next instruction. The
processor status is otherwise unaffected.

This instruction can be used to pad loops and perform other timing func-
tions.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Example 	Code 	Before 	After

PC 	 PC
NOP 	>00020000 	>00020010

12-152

Syntax
	

N OT <Rd>

Execution
	

NOT(Rd) 	Rd

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5
	

4 3
	

2
	

1 0
0 0 0 0 0

	
R
	

Rd

NOT stores the l's complement of the destination register's contents back
into the destination register.

1,4

N Unaffected
C Unaffected
Z 1 if the result is 0, 0 otherwise.
V Unaffected

Description

Words

Machine
States

Status Bits

NOT 	 Complement Register NOT

Examples Code 	Before 	After

AO 	 NCZV

NOT AO >0000 0000 	xx0x
NOT AO >5555 5555 	xx0x
NOT AO >FFFF FFFF 	xxl x
NOT AO >8000 0000 	xx0x

AO
>FFFF FFFF
>AAAA AAAA
>0000 0000
>7FFF FFFF

12-153

OR 	 OR Registers OR

Syntax 	OR <Rs>,<Rd>

Execution 	(Rs) OR (Rd) 	Rd

Encoding 	15 14 13 12 11 10

0 	1 	0 	1 	0 	1 	0

9 8 7 6 5

Rs

4 3 2 1 0

I
	

Rd

Description 	This instruction bitwise-ORs the contents of the source register with the
contents of the destination register; the result is stored in the destination
register.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 Al 	 NCZNi
OR AO,A1 	>FFFF FFFF >0000 0000 >FFFFFFFF xx0x
OR AO,A1 	>0000 0000 >FFFF FFFF >FFFF FFFF xx0x
OR AO , Al 	>55555555 >AAAA AAAA >FFFFFFFF xx0x
OR AO , Al 	>0000 0000 >0000 0000 >0000 0000 xxl x

12 - 154

ORI

Syntax

Execution

Encoding

OR Immediate (32 Bits)

ORI <L>,<Rd>

L OR (Rd) 	Rd

15 14 13 12 11 10 9
	

8
	

7
	

6 5 4 3 2 1 0

ORI

0 	0 	0 	0 	1 	0 	1 	1 	1 	0 	1
	

R
	

Rd

L (LSW)

L (MSW)

Operands 	L is a 32-bit immediate value.

Description 	This instruction bitwise-ORs the 32-bit immediate value, L, with the con-
tents of the destination register; the result is stored in the destination reg-
ister.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 AO 	 NCZV
ORI >FFFEFFFF ,A0 	>0000 0000 	>FFFF FFFF xx0x
ORI >00000000,A0 	>FFFF FFFF 	>FFFF FFFF xx0x
ORI >AAAAAAAA,A0 	>5555 5555 	>FFFF FFFF xx0x
ORI >00000000,A0 	>0000 0000 	>0000 0000 xx1x

12-155

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

Syntax

Execution

Encoding

PIXBLT B,L

Binary source pixel array 	Destination pixel array (with processing)

1

1

5 1 4 1 3 1 2 11 1 0 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

Operands 	B specifies that the source pixel array is treated as a binary array whose
starting address is given in linear format.

L specifies that the destination pixel array starting address is given in lin-
ear format.

Description 	PIXBLT expands, transfers, and processes a binary source pixel array with
a destination pixel array. This instruction operates on two-dimensional ar-
rays of pixels using linear starting addresses for both the source and the
destination. The source pixel array is treated as a one bit per pixel array.
As the PixBlt proceeds, the source pixels are expanded and then combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT B , L. The following set of
implied operands govern the operation of the instruction and define the
source and destination arrays.

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX XY Pixel array dimensions (rows:columns)

B8 COLORO Pixel Background expansion color

B9 COLOR1 Pixel Foreground expansion color

B10—B141. Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask—pixel format

t These registers are changed by PIXBLT execution.

Source Array The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, and DYDX registers:

• 	At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array.

12-156

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH can be any pixel-aligned va-
lue for this PIXBLT.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the address of the next set
of 32 pixels to be read from the source array. When the transfer is complete,
SADDR points to the linear address of the first pixel on the next row of
pixels that would have been moved had the block transfer continued.

Source
Expansion 	The actual source pixel values which are to be written or processed with the

destination array are determined by the interaction of the source array with
the contents of the COLOR1 and COLORO registers. In the expansion op-
eration, a 1 bit in the source array selects a pixel from the COLOR1 register
for operation on the destination array. A 0 bit in the source array selects a
COLORO pixel for this purpose. The pixels selected from the COLOR1 and
COLORO registers are those that align directly with their intended position
in the destination array word.

Destination
Array 	 The location of the destination pixel block is defined by the contents of the

DADDR, DPTCH, and DYDX registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a multiple of 16.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DAD DR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Corner Adjust No corner adjust is performed for this instruction; PBH and PBV are ig-
nored. The pixel transfer simply proceeds in the order of increasing linear
addresses.

Window
Checking 	Window checking cannot be used with this PixBlt instruction. The con-

tents of the WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to expanded pixels as they are processed with the destination array.
There are 16 Boolean and 6 arithmetic operations; the default case at reset

12-157

PIXBLT Pixel Block Transfer - Binary to Linear 	PIXBLT

is the replace (S 	D) operation. Note that the data is first expanded and
then processed. The 6 arithmetic operations do not operate with pixel sizes
of one or two bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask

Interrupts

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words

Machine
States

Status Bits

1

See PIXBLT Expand Instructions Timing, Section 13.5.

N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B:
	

I/O Registers:
SADDR (B0) 	= >0000 2030 	PSIZE 	= >0010
SPTCH (B1) 	= >0000 0100
DADDR (B2)
	

>0003 3000
DPTCH (B3)
	

>0000 1000
DYDX (B7)
	

>0002 0010
COLORO (B8) = >FEDC FEDC
COLOR1 (B9)
	

>BABB BA98

12-158

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>02000 >xxxx, >xxxx, >xxxx, >1234, >xxxx, >xxxx, >xxxx, >xxxx
>02080 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >5678, >xxxx, >xxxx, >xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx

>33000 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>33080 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>34000 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF
>34080 >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

Example 1

Example 2

This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FEDC,> FEDC,>BA98,>FEDC,> BA98, > BA98, >FEDC,>FEDC
>33080 >FEDC,>BA98,>FEDC,>FEDC,>BA98,>FEDC,>FEDC,>FEDC

>34000 >FEDC,>FEDC,>FEDC,>BA98,>BA98,>BA98,>BA98,>FEDC
>33080 >FEDC,>BA98,>BA98,>FEDC,>BA98,>FEDC,>BA98,>FEDC

This example uses the (D - S) 	D pixel processing operation. Before in-
struction execution, PMASK = >0000 and CONTROL = >4800 (T=0,
PP=10010).

After instruction execution, memory will contain the following values:

Linear
Address Data
>33000 >0123, >0123, >4567, >0123, >4567, >4567, >0123, >0123
>33080 >0123, >4567, >0123, >0123, >4567, >0123, >0123, >0123

>34000 >0123, >0123, >0123, >4567, >4567, >4567, >4567, >0123
>34080 >0123, >4567, >4567, >0123, >4567, >0123, >4567, >0123

12-159

PIXBLT 	Pixel Block Transfer - Binary to Linear 	PIXBLT

Example 3 	This example uses transparency with COLORO = >00000000. Before in-
struction execution, PMASK = >0000 and CONTROL = >0020 (T=1,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FFFF, >FFFF, >BA98,>FFFF, >BA98,>BA98,>FFFF, >FFFF
>33080 >FFFF, >BA98,>FFFF, >FFFF, >BA98,>FFFF, >FFFF, >FFFF

Example 4

>34000 >FFFF, >FFFF, >FFFF, >BA98,>BA98,>BA98,>BA98,>FFFF
>34080 >FFFF, >BA98,>BA98,>FFFF, >BA98,>FFFF, >BA98,>FFFF

This example uses plane masking; the four LSBs are masked. Before in-
struction execution, PMASK = >000F and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>33000 >FEDF, >FEDF, >BA9F,>FEDF, >BA9F,>BA9F,>FEDF, >FEDF
>33080 >FEDF, > BA9F, > FEDF, >FEDF, >BA9F,>FEDF, >FEDF, >FEDF

>34000 >FEDF, >FEDF, >FEDF, >BA9F,>BA9F,>BA9F, >BA9F,>FEDF
>34080 >FEDF, > BA9F, > BA9F, > FEDF, >BA9F,>FEDF, >BA9F,>FEDF

12 - 160

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

Syntax 	PIXBLT B,XY

Execution 	Binary source pixel array - ■ Destination pixel array (with processing)

Encoding

Operands 	B specifies that the source pixel array is treated as a binary array whose
starting address is given in linear format.

XY specifies that the destination pixel array starting address is given in XY
format.

Description 	PIXBLT expands, transfers, and processes a binary source pixel array with
a destination pixel array. This instruction operates on two-dimensional ar-
rays of pixels using a linear starting address for the source and an XY ad-
dress for the destination. The source pixel array is treated as a one bit per
pixel array. As the PixBlt proceeds, the source pixels are expanded and then
combined with the corresponding destination pixels based on the selected
graphics operations.

Note that the instruction is entered as PIXBLT B , XY. The following set
of implied operands govern the operation of the instruction and define the
Source and destination arrays.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 01

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B211 DADDR XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

B7t DYDX XY Pixel array dimensions (rows:columns)

B8 COLORO Pixel Background expansion color

B9 COLOR1 Pixel Foreground expansion color

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window clipping or pick operation
T 	—Transparency operation

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for source preclipping.

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
Used for common rectangle function with window hit operation (W=1).

12-161

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

Source Array The source pixel array for the expand operation is defined by the contents
of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:

• At the outset of the instruction, SADDR contains the linear address
of the pixel with the lowest address in the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH can be any pixel-aligned va-
lue for this PIXBLT. For window clipping, SPTCH must be a power
of two, and CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing and window clipping.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the address of the next set
of 32 pixels to be read from the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Source
Expansion 	The actual source pixel values which are to be written or processed with the

destination array are determined by the interaction of the source array with
contents of the COLOR1 and COLORO registers. In the expansion opera-
tion, a 1 bit in the source array selects a pixel from the COLOR1 register for
operation on the destination array. A 0 bit in the source array selects a
COLORO pixel for this purpose. The pixels selected from the COLOR1 and
COLORO registers are those that align directly with their intended position
in the destination array word.

Destination
Array 	 The location of the destination pixel block is defined by the contents of the

DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing and window clipping.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

12 - 162

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

During instruction execution, DADDR points to the linear address of next
pixel (or word of pixels) to be modified in the destination array. When the
block transfer is complete, DADDR points to the linear address of the first
pixel on the next row of pixels that would have been moved had the block
transfer continued.

Corner Adjust No corner adjust is performed for this instruction. The transfer executes in
the order of increasing linear addresses. PBH and PBV are ignored.

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

Pixel
Processing
	

Pixel processing can be used with this instruction. The PPOP field of the
CONTROL I/O register specifies the pixel processing operation that will be
applied to expanded pixels as they are processed with the destination array.
There are 16 Boolean and 6 arithmetic operations; the default case at reset
is the S D operation. Note that the data is first expanded and then pro-
cessed. The 6 arithmetic operations do not operate with pixel sizes of one
or two bits per pixel. For more information, see Section 7.7, Pixel Proc-
essing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

12-163

PIXBLT Pixel Block Transfer - Binary to XV 	PIXBLT

Plane Mask

Interrupts

The plane mask is enabled for this instruction.

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBIt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBIt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBIt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBIt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See PIXBLT Expand Instructions Timing, Section 13.5.

Status Bits 	N Undefined
C Undefined
Z Undefined
V 1 if a window violation occurs, 0 otherwise. Undefined if window

checking is not enabled (W=00).

12-164

PIXBLT 	Pixel Block Transfer - Binary to XV 	PIXBLT

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) 	= >0000 2010 	PSIZE 	= >0008
SPTCH (B1) 	= >0000 0010
DADDR (B2) = >0030 0022
DPTCH (B3) 	>0000 1000
OFFSET (B4) 	>0001 0000
WSTART (B5) 	>0000 0026
WEND (B6) 	>0040 0050
DYDX (B7) 	>0004 0010
COLORO (B8) 	>0000 0000
COLOR1 (B9) 	>7C7C 7C7C

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>2000 >xxxx, >0123, >4567, >89AB,>CDEF,>xxxx, >xxxx, >xxxx

>40000 to
>43080 >FFFF

Example 1 This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W-00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>40100 >FFFF, >7C7C,>0000, >7C00, >0000, >007C, >0000, >0000
>40180 >0000, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>41100 >FFFF, >7C7C,>007C, >7C00, >007C, >007C, >007C, >0000
>41180 >007C, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>42100 >FFFF, >7C7C,>7C00, >7C00, >7C00, >007C, >7C00, >0000
>42180 >7C00, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

>43100 >FFFF, >7C7C,>7C7C,>7C00, >7C7C,>007C, >7C7C,>0000
>43180 >7C7C,>FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF, >FFFF

12-165

PIXBLT 	Pixel Block Transfer - Binary to XY 	PIXBLT

XY Addressing

Example 2

X Address
Y 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDE F 012 3 4
A
d 30 FF FF 7C 7C 00 00 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
r 31 FF FF 7C 7C 7C 00 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF 7C 7C 00 7C 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF

33 FF FF 7C 7C 7C 7C 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

This example uses the XOR pixel processing operation. Before instruction
execution, PMASK = >0000 and CONTROL = >2800 (T=0, W=00,
PP-01010).

After instruction execution, memory will contain the following values:

Example 3

X Address
• 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4
A
d 30 FF FF 83 83 FF FF FF 83 FF FF 83 FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF 83 83 83 FF FF 83 83 FF 83 FF 83 FF FF FF 83 FF FF FF FF
e
s 32 FF FF 83 83 FF 83 FF 83 FF 83 83 FF FF 83 FF FF FF 83 FF FF FF

• 33 FF FF 83 83 83 83 FF 83 83 83 83 FF 83 83 FF FF 83 83 FF FF FF

This example uses transparency. Before instruction execution, PMASK =
>0000 and CONTROL = >0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4
A
d 30 FF FF 7C 7C FF FF FF 7C FF FF 7C FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF 7C 7C 7C FF FF 7C 7C FF 7C FF 7C FF FF FF 7C FF FF FF FF
e
s 32 FF FF 7C 7C FF 7C FF 7C FF 7C 7C FF FF 7C FF FF FF 7C FF FF FF

33 FF FF 7C 7C 7C 7C FF 7C 7C 7C 7C FF 7C 7C FF FF 7C 7C FF FF FF

12 - 166

PIXBLT 	Pixel Block Transfer - Binary to XV 	PIXBLT

Example 4 	This example uses window operation 3 (clipped destination). Before in-
struction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP =00000).

After instruction execution, memory will contain the following values:

X Address
Y 	222222222222222233333

O 12 3 4 5 6 78 9ABCDEF 01234
A
d 30 FF FF FF FF FF FF 00 7C 00 00 7C 00 00 00 00 00 00 00 FF FF FF
d
✓ 31 FF FF FF FF FF FF 00 7C 7C 00 7C 00 7C 00 00 00 7C 00 FF FF FF
e
s 32 FF FF FF FF FF FF 00 7C 00 7C 7C 00 00 7C 00 00 00 7C FF FF FF

33 FF FF FF FF FF FF 00 7C 7C 7C 7C 00 7C 7C 00 00 7C 7C FF FF FF

Example 5 This example uses plane masking; the four LSBs of each pixel are masked.
Before instruction execution, PMASK = >OFOF and CONTROL = >0020
(T=1, W-00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	222222222222222233333

O 12 3 4 5 6 78 9ABCDEF 01234
A
d 30 FF FF FF FF FF FF FF 7F FF FF FF FF FF FF FF FF FF FF FF FF FF
d
r 31 FF FF FF FF FF FF FF 7F 7F FF FF FF FF FF FF FF 7F FF FF FF FF
e
s 32 FF FF FF FF FF FF FF 7F FF 7F FF FF FF FF FF FF FF 7F FF FF FF

• 33 FF FF FF FF FF FF FF 7F 7F 7F FF FF FF FF FF FF 7F 7F FF FF FF

12-167

PIXBLT
	

Pixel Block Transfer - Linear to Linear 	PIXBLT

Implied
Operands

PIXBLT L,L

Source pixel array 	Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

L specifies that the source and destination pixel array starting addresses
are given in linear format.

PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
linear starting addresses for both the source and the destination. As the
PixBlt proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT L,L. The following set of
implied operands govern the operation of the instruction and define the
source and destination arrays.

B File Registers

Register Name Format Description

BOtt SADDR Linear Source pixel array starting address

131 t SPTCH Linear Source pixel array pitch

B2tt DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B7 DYDX XY Pixel array dimensions
(rows:columns)

B10—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
T 	—Transparency operation
PBH — 	Bit BLT horizontal direction
PBV— 	Bit BLT vertical direction

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
t You must adjust SADDR and DADDR to correspond to the corner selected by the

values of PBH and PBV. See Corner Adjust below for additional information.

Syntax

Execution

Encoding

Operands

Description

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, and DYDX registers:

• At the outset of the instruction, SADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL I/O register. (See
Corner Adjust below.)

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.

12-168

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be read from the source array. When the block transfer is com-
plete, SADDR points to the starting address of the next set of 32 pixels that
would have been moved had the block transfer continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, and DYDX registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel at the appropriate starting corner of the array as deter-
mined by the PBH and PBV bits in the CONTROL I/O register. (See
Corner Adjust below.)

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved.

However, this instruction is unique because the corner adjust is not auto-
matic; the starting corners of both the source and destination arrays must
be explicitly set to the alternate corner before instruction execution. Only
the direction of the move is affected by the values of the PBH and PBV bits.
This facility allows you to use corner adjust for screen definitions that do
not lend themselves to XY addressing (those not binary powers of two).
In effect, you supply your own corner adjust operation in software and the
PixBlt instruction provides directional control. To use this feature, you must
set both SAD DR and DADDR to correspond to the corner selected by PBH
and PBV.

• For PBH = 0 and PBV = 0, SADDR and DADDR should be set as
normally for linear PixBlts. Both registers should be set to correspond
to the linear address of the first pixel on the first line of the array
(that is, the pixel with the lowest address).

12-169

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

• For PBH = 0 and PBV = 1, SADDR and DADDR should be set to
correspond to the linear address of the first pixel on the last line of
the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DY x SPTCH)

and

DADDR = (linear address of 1st pixel in dest. array) + (DY x DPTCH)

• For PBH = 1 and PBV = 0, SADDR and DADDR should be set to
correspond to the linear address of the pixel following the last pixel
on the first line of the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DX x PSIZE)

and

DADDR = (linear address of 1st pixel in dest. array) + (DX x PSIZE)

• For PBH = 1 and PBV = 1, SADDR and DADDR should be set to
correspond to the linear address of the pixel following the last pixel
on the last line of the array. In other words,

SADDR = (linear address of 1st pixel in source array) + (DY x SPTCH)
+ (DX x PSIZE)

and

DADDR = (linear address of 1st pixel in dest. array) + (DY x DPTCH)
+ (DX x PSIZE)

Window
Checking 	Window operations are not enabled for this instruction. The contents of the

WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the interrupt is processed. SADDR points to the address of the

12-170

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10—B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words

Machine
States

Status Bits

1

See Section 13.4, PIXBLT Instructions Timing.

N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) = >0000 2004 	PSIZE 	= >0004
SPTCH (B1) 	— >0000 0080
DADDR (B2) = >0000 2228
DPTCH (B3) = >0000 0080
OFFSET (B4) = >0000 0000
DYDX (B7) = >0002 000D

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Address Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02280 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-171

PIXBLT

Example 1

Pixel Block Transfer - Linear to Linear 	PIXBLT

This example uses the rep/ace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, >xxxx, > XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX

>02180 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx

>02200 >xxxx, >xxxx, >00xx, >1110, > 2221, > x332, > xxxx, >XXXX

>02280 >xxxx, >xxxx, >00xx, >1110, > 2221, >x332, > xxxx, > XXXX

>02300 >xxxx, >xxxx, > xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx

Example 2

Example 3

This example uses the (D - S) 	D pixel processing operation. Before in-
struction execution, PMASK = >0000 and CONTROL = >4800 (T=0,
W=00, PP-10010).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, > xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx

>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, > xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02200 >xxxx, >xxxx, >FFxx, >EEEF, >DDDE>xCCD,>xxxx, >xxxx

>02280 >xxxx, >xxxx, >FFxx, >EEEF, >DDDE,>xCCD,>xxxx, >XXXX

>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

This example uses transparency. Before instruction execution, PMASK =
> 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, > xxxx, >XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, > xxxx, > xxxx

>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX, >XXXX

>02180 >xxxx, '>xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx

>02200 >xxxx, 	>xxxx, > FFxx, >111F, >2221, >x332, >xxxx, >xxxx

>02280 >xxxx, >xxxx, >FFxx, >111 F, >2221, >x332, > xxxx, >xxxx

>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, > xxxx, > xxxx, >XXXX

12-172

PIXBLT 	Pixel Block Transfer - Linear to Linear 	PIXBLT

Example 4 	This example uses plane masking; the MSB of each pixel is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, 	>xxxx, >xxxx

>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

>02200 >xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >xxxx

>02280 >xxxx, >xxxx, >88xx, >9998, >AAA9,>xBBA,>xxxx, >xxxx

>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx

12-173

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

Syntax

Execution

Encoding

PIXBLT L,XY

Source pixel array -* Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0

Operands 	L specifies that the source pixel array starting address is given in linear
format.

XY specifies that the destination pixel array starting address is given in XY
format.

Description 	PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
a linear starting addresses for the source array and an XY address for the
destination array. As the PixBlt proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT L , XY. The following set
of implied operands govern the operation of the instruction and define the
source and destination arrays.

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR Linear Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2T$ DADDR XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner 	.

B6 WEND XY Window ending corner

B7$ DYDX XY Pixel array dimensions (rows:columns)

B10— B14T Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window operations
T 	—Transparency operation
PBH— 	PixBlt horizontal direction
PBV— 	PixBlt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for preclipping and corner adjust

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask—pixel format

t These registers are changed by PIXBLT execution.
$ Used for common rectangle function with window pick.

12-174

PIXBLT 	Pixel Block Transfer - Linear to XI' 	PIXBLT

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, DYDX, and (potentially) CONVSP registers:

• At the outset of the instruction, SAD DR contains the linear address
of the pixel with the lowest address in the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array. SPTCH must be a multiple of 16.
For window clipping or corner adjust, SPTCH must be a power of two
and CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in window
clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of pixels
per row.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be accessed in the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and

• CONVDP must be set to correspond to the DPTCH value. CONVDP
is computed by operating on the DPTCH register with the LMO in-
struction; it is used for the XY calculations involved in XY addressing,
window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the linear address of next
pixel (or word of pixels) to be accessed in the destination array. When the
block transfer is complete, DADDR points to the linear address of the first
pixel on the next row of pixels that would have been moved had the block
transfer continued.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBlt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being

12-175

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

overwritten before it is moved. This PixBlt performs the corner adjust
function automatically under the control of the PBH and PBV bits. If
PBV=1, SPTCH must be a power of two and CONVSP should be valid.
The SADDR and DADDR registers should be set to correspond to the ap-
propriate format address of the first pixel on the first line of the source
(linear) and destination (XY) arrays, respectively.

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1.

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

r
I

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of 1 or 2 bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.

12-176

PIXBLT 	Pixel Block Transfer - Linear to XY 	PIXBLT

DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See PIXBLT Instructions Timing, Section 13.4.

Status Bits 	N Undefined
C Undefined
Z Undefined
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise. Undefined if window clipping not enabled (W=00).

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: I/O Registers:
SADDR (BO) 	= >0000 2004 CONVDP = >0017
SPTCH (B1) = >0000 0080 PSIZE = >0004
DADDR (B2) >0052 0007 PMASK = >0000
DPTCH (B3) >0000 0100 CONTROL = >0000
OFFSET (B4) = >0001 0000 (W=00, T=0, PP=00000)
WSTART (B5) >0030 000C
WEND (B6) = >0053 0014
DYDX (B7) >0003 0016

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Data Address

>02000 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>02080 >3210, >7654, > BA98, > FEDC,>3210, >7654, > BA98, > FEDC
>02100 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC

>15200 to
>15480 >8888

12-177

PIXBLT 	Pixel Block Transfer - Linear to XV 	PIXBLT

Example 1 	This example uses the replace (S -■ D) pixel processing operation. Before
instruction execution, PMASK = >7777 and CONTROL = >0000 (T=0,
W=00, PP=00000).

Example 2

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>15200 >8888, >1888, >5432, >9876, >DCBA,>10FE, >5432, >8886
>15300 >8888, >1888, >5432, >9876, > DCBA,>10FE, >5432, >8886
>15400 >8888, >1888, >5432, >9876, >DCBA>10FE, >5432, >8886

XY Addressing
X Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 52 88888881 23 456 7 8 9ABCDEFO 1 23458888
d

53 88888881 234 56 7 8 9ABCDE FO 1 23458888
e
s 54 8888888123 456 7 8 9ABCDEFO 1 23458888

This example uses the (D subs S) -> D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >4C00 (T=0,
W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 	1 1 	1 1 	1 1 	1 	1 	1 	1 	1 	1 	1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d
d
r
e
s

52

53

54

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

8 7

6 5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

8 7

8 7

8 7

6 5 4 3 2 8 8 8

6 5 4 3 2 8 8 8

6 5 4 3 2 8 8 8

Example 3 This example uses transparency with the (D subs S) -■ D pixel processing
operation. Before instruction execution, PMASK = >0000 and CONTROL
= >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0
0 1

0 0
2 3

0 0
4 5

0 0
6 7

0 0 0 0 0 0 0 0 1 1
8 9 ABCDEF 0 1

1 	1
2 3

1 	1
4 5

1 	1
6 7

1 	1 	1 	1 	1 	1 	1 	1
8 9 ABCDEF

A
d
d

52 8 8 8 8 8 8 8 7 6 5 4 3 2 1 8 8 8 8 8 8 8 8 8 7 6 5 4 3 2 8 8 8

e
s

53

54

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

6 5

6 5

4 3

4 3

2 1

2 1

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 8

8 7

8 7

6 5

6 5

4 3

4 3

2 8

2 8

8 8

8 8

12 - 178

PIXBLT 	Pixel Block Transfer - Linear to XY 	PIXBLT

Example 4 	This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, PP=00000).

After instruction execution, memory will contain the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 8888888888886789ABCDE88888888888
d
r 538888888888886789ABCDE88888888888
e
s 54 8

Example 5 This example uses plane masking; the most significant bit is masked. Before
instruction execution, PMASK = >8888 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

X Address
Y 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 52 88888889ABCDEF89ABCDEF89ABCDE888
d
r 53 88888889ABCDEF89ABCDEF89ABCDE888
e
s 54 88888889ABCDEF89ABCDEF89ABCDE888

12-179

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

Syntax 	PIXBLT XY,L

Execution 	Source pixel array - Destination pixel array (with processing)

Encoding

Operands 	XY specifies that the source pixel array starting address is given in XY for-
mat.

L specifies that the destination pixel array starting address is given in lin-
ear format.

Description 	PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
an XY starting address for the source pixel array and a linear address for the
destination array. As the PixBlt proceeds, the source pixels are combined
with the corresponding destination pixels based on the selected graphics
operations.

Note that the instruction is entered as PIXBLT XY,L. The following set
of implied operands govern the operation of the instruction and define the
source and destination arrays.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0

Implied
Operands B File Registers

Register Name Format Description

BOt SADDR XY Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t DADDR Linear Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B7 DYDX XY Pixel array dimensions (rows:columns)

1310—B14t Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP 	— Pixel processing operations (22 options)
T 	—Transparency operation
PBH — PixBlt horizontal direction
PBV — PixBlt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)
Used for X1' operations

>C0000140 CONVDP XY-to-linear conversion (destination pitch)
Used for XY operations

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.

12-180

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

Source Array The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

• At the outset of the instruction, SAD DR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) and

• CONVSP must be set to correspond to the SPTCH value. CONVSP
is computed by operating on the SPTCH register with the LMO in-
struction; it is used for the XY calculations involved in XY addressing,
window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be accessed from the source array. When the block transfer is
complete, SADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved had the block transfer
continued.

Destination
Array 	 The location of the destination pixel array is defined by the contents of the

DADDR, DPTCH, DYDX, and (potentially) CONVDP registers:

• At the outset of the instruction, DADDR contains the linear address
of the pixel with the lowest address in the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array. DPTCH must be a multiple of
16. For window clipping or corner adjust, DPTCH must be a power
of two and CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in window
clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be modified in the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

1 2-1 81

PIXBLT 	Pixel Block Transfer - XY to Linear 	PIXBLT

r

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBIt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBIt performs the corner adjust
function automatically under the control of the PBH and PBV bits. If
PBV=1, DPTCH must be a power of two and CONVDP must be valid. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (linear) arrays, respectively.

Window
Checking 	Window operations are not enabled for this instruction. The contents of the

WSTART and WEND registers are ignored.
Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the S

D operation. Note that the data is read through the plane mask and then
processed. The 6 arithmetic operations do not operate with pixel sizes of
one or two bits per pixel. For more information, see Section 7.7, Pixel
Processing, on page 7-15.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Interrupts 	This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBIt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10—B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBIt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBIt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10—B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBIt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States See PIXBLT Instructions Timing, Section 13.4.

12-182

PIXBLT 	Pixel Block Transfer - XI' to Linear 	PIXBLT

Status Bits N Undefined
C Undefined
Z Undefined
V Undefined

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: 	 I/O Registers:
SADDR (BO) = >00400001 	CONVSP = >0018
SPTCH (B1) 	= >00000080 	PSIZE 	= >004
DADDR (B2) = >00002228
DPTCH (B3) = >00000080
OFFSET (B4) = >00000000
DYDX (B7) = >0002000D

Additional implied operand values are listed with each example.

For this example, assume that memory contains the following data before
instruction execution.

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02280 >xxxx, >xxxx, >FFxx, >FFFF, >FFFF, >xFFF, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx

Example 1 This example uses the replace (S 	D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, 	>xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx
>02200 >xxxx, >xxxx, >00xx, >1110, >2221, >x332; >xxxx, >xxxx
>02280 >xxxx, >xxxx, >00xx, >1110, >2221, >x332, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-183

PIXBLT

Example 2

Pixel Block Transfer - XV to Linear 	PIXBLT

This example uses the Os 	D pixel processing operation. Before instruc-
tion execution, PMASK = >0000 and CONTROL = >0000 (T=0, W=00,
PP=00011).

After instruction execution, memory will contain the following values:

Linear
Address Data

>02000 > 000x, > 1 1 1 1 , >2222, >xx33, >xxxx, > xxxx, > xxxx, >XXXX

>02080 >000x, >1111, >2222, >xx33, >xxxx, >XXXX, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >XXXX, >xxxx, >xxxx

>02180 > xxxx, >xxxx, >xxxx, >xxxx, >xxxx, > xxxx , >xxxx, >xxxx
>02200 >xxxx, >xxxx, >00xx, >0000, >0000, > x000 , > xxxx, >XXXX

>02280 >xxxx, > xxxx, >00xx, >0000, >0000, >x000, >xxxx, >xxxx
>02300 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >XXXX, >XXXX

Example 3 This example uses transparency. Befrore instruction execution, PMASK =
> 0000 and CONTROL = > 0020 (T=1, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Address

Data

>02000 >000x, > 1 111 , >2222, >xx33, >xxxx, >xxxx, >xxxx, > xxxx
>02080 >000x, >1111, >2222, >xx33, >xxxx, >xxxx, >xxxx, >xxxx
>02100 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx

>02180 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx
>02200 >xxxx, >xxxx, > FFxx, >111F, >2221, >x332, >xxxx , >xxxx
>02280 >xxxx, >xxxx, > FFxx, >111F, >2221, >x332, >XXXX, >XXXX

>02300 >xxxx, >xxxx, >xxxx, 	>xxxx, 	>xxxx, >xxxx, >XXXX,>XXXX

Example 4 	This example uses plane masking; the two MSBs of each pixel are masked.
Before instruction execution, PMASK = >CCCC and CONTROL = >0000
(T=0, W=00, PP=00000).

After instruction execution, memory will contain the following values:

Linear
Data

Address
>02000 >000x, >1111 , >2222, >xx33, >xxxx, 	>xxxx, >xxxx, >xxxx

>02080 >000x, >1111, >2222, >xx33, >xxxx, 	>xxxx, >xxxx, > xxxx
>02100 >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, > xxxx, >xxxx
>02180 >xxxx, >xxxx, >xxxx, >xxxx, 	>xxxx, >xxxx, >xxxx, >xxxx
>02200 >xxxx, >xxxx, >CCxx, >DDDC?EEED,>xFFE, >xxxx, > xxxx
>02280 > xxxx, > xxxx, >CCxx, >DDDC?EEED,>xFFE, >XXXX, >XXXX

>02300 >xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx, 	>xxxx, >xxxx

12-184

PIXBLT 	Pixel Block Transfer - XY to XY 	PIXBLT

Implied
Operands

PIXBLT XY,XY

Source pixel array —■ Destination pixel array (with processing)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0

XY specifies that the source and destination pixel array starting addresses
are given in XY format.

PIXBLT transfers and processes a source pixel array with a destination pixel
array. This instruction operates on two-dimensional arrays of pixels using
XY starting addresses for both the source and destination pixel arrays. As
the PixBlt proceeds, the source pixels are combined with the corresponding
destination pixels based on the selected graphics operations.

Note that the instruction is entered as PIXBLT XY,XY. the destination.
The following set of implied operands govern the operation of the instruc-
tion and define the source and destination arrays.

B File Registers

Register Name Format Description

BOt SADDR XY Source pixel array starting address

B1 SPTCH Linear Source pixel array pitch

B2t# DAD D R XY Destination pixel array starting address

B3 DPTCH Linear Destination pixel array pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

87$ DYDX XY Pixel array dimensions (rows:columns)

B10—B14$ Reserved registers

I/O Registers

Address Name Description and Elements (Bits)

>C0000080 CONTROL PP 	— Pixel processing operations (22 options)
W 	—Window clipping or pick operation
T 	— Transparency operation
PBH— PixBlt horizontal direction
PBV— PixBIt vertical direction

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

t These registers are changed by PIXBLT execution.
Used for common rectangle function with window pick.

Syntax

Execution

Encoding

Operands

Description

12-185

PIXBLT
	

Pixel Block Transfer - XV to XV 	PIXBLT

Source Array

Destination
Array

The source pixel array for the processing operation is defined by the con-
tents of the SADDR, SPTCH, CONVSP, OFFSET, and DYDX registers:

• At the outset of the instruction, SADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVSP to calculate the linear address of the starting location
of the array.

• SPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the source array (typically this is the screen pitch).
SPTCH must be a power of two (greater than or equal to 16) and
CONVSP must be set to correspond to the SPTCH value.

• CONVSP is computed by operating on the SPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing, window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, SADDR points to the next pixel (or word of
pixels) to be read from the source array. When the block transfer is com-
plete, SADDR points to the linear address of the first pixel on the next
row of pixels that would have been moved had the block transfer continued.

The location of the destination pixel array is defined by the contents of the
DADDR, DPTCH, CONVDP, OFFSET, and DYDX registers:

• At the outset of the instruction, DADDR contains the XY address of
the pixel with the lowest address in the array. It is used with OFFSET
and CONVDP to calculate the linear address of the starting location
of the array.

• DPTCH contains the linear difference in the starting addresses of ad-
jacent rows of the destination array (typically this is the screen pitch).
DPTCH must be a power of two (greater than or equal to 16) and
CONVDP must be set to correspond to the DPTCH value.

• CONVDP is computed by operating on the DPTCH register with the
LMO instruction; it is used for the XY calculations involved in XY ad-
dressing, window clipping and corner adjust.

• DYDX specifies the dimensions of both the source and destination
arrays in pixels. The DY portion of DYDX contains the number of
rows in the array, while the DX portion contains the number of col-
umns.

During instruction execution, DADDR points to the next pixel (or word of
pixels) to be read from the destination array. When the block transfer is
complete, DADDR points to the linear address of the first pixel on the
next row of pixels that would have been moved had the block transfer
continued.

12-186

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Window
Checking 	Window checking can be used with this instruction by setting the two W

bits in the CONTROL register to the desired value. If window checking
mode 1, 2, or 3 is selected, the WSTART and WEND registers define the
XY starting and ending corners of a rectangular window.

0 No windowing. The entire pixel array is drawn and the WVP and V bits
are unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if any portion of
the destination array lies within the window. Otherwise, the V bit is set
to 1

If the V bit is set to 0, the DADDR and DYDX registers are modified to
correspond to the common rectangle formed by the intersection of the
destination array with the rectangular window. DADDR is set to the XY
address of the pixel in the starting corner of the common rectangle.
DYDX is set to the X and Y dimensions of the common rectangle.

If the V bit is set to 1, the array lies entirely outside the window, and the
values of DADDR and DYDX are indeterminate.

2 Window miss. If the array lies entirely within the active window, it is
drawn and the V bit is set to 0. Otherwise, no pixels are drawn, the V
and WVP bits are set to 1, and the instruction is aborted.

3 Window clip. The source and destination arrays are preclipped to the
window dimensions. Only those pixels that lie within the common rec-
tangle (corresponding to the intersection of the specified array and the
window) are drawn. If any preclipping is required, the V bit is set to 1.

Pixel
Processing 	Pixel processing can be used with this instruction. The PPOP field of the

CONTROL I/O register specifies the pixel processing operation that will be
applied to pixels as they are processed with the destination array. There are
16 Boolean and 6 arithmetic operations; the default case at reset is the re-
place (S --■ D) operation. Note that the data is read through the plane mask
and then processed. The 6 arithmetic operations do not operate with pixel
sizes of one or two bits per pixel. For more information, see Section 7.7,
Pixel Processing, on page 7-15.

Corner Adjust The PBH and PBV bits in the CONTROL I/O register govern the direction
of the PixBIt. If the source and destination arrays overlap, then PBH and
PBV should be set to prevent any portion of the source array from being
overwritten before it is moved. This PixBIt performs the corner adjust
function automatically under the control of the PBH and PBV bits. The
SADDR and DADDR registers should be set to correspond to the appro-
priate format address of the first pixel on the first line of the source (XY)
and destination (XY) arrays, respectively.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it expands and processes the source data. At reset, the default
case for transparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

12-187

PIXBLT

Interrupts

Pixel Block Transfer - XV to XV 	PIXBLT

This instruction can be interrupted at a word or row boundary of the desti-
nation array. When the PixBlt is interrupted, the TMS34010 sets the PBX
bit in the status register and then pushes the status register on the stack.
At this time, DPTCH, SPTCH, and B10-B14 contain intermediate values.
DADDR points to the linear address of the next word of pixels to be modi-
fied after the insterrupt is processed. SADDR points to the address of the
next 32 pixels to be read from the source array after the interrupt is proc-
essed.

Before executing the RETI instruction to return from the interrupt, restore
any B-file registers that were modified (also restore the CONTROL register
if it was modified). This allows the TMS34010 to resume the PixBlt cor-
rectly. You can inhibit the TMS34010 from resuming the PixBlt by exe-
cuting an RETS 2 instruction instead of RETI; however, SPTCH, DPTCH,
and B10-B14 will contain indeterminate values.

Shift Register
Transfers 	If the SRT bit in the DPYCTL I/O register is set, each memory read or write

initiated by the PixBlt generates a shift register transfer read or write cycle
at the selected address. This operation can be used for bulk memory clears
or transfers. (Not all VRAMs support this capability.)

Words 	1

Machine
States 	See Section 13.4, PIXBLT Instructions Timing.

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V If window clipping is enabled - 1 if a window violation occurs, 0 oth-

erwise. Unaffected if window clipping not enabled.

Examples 	Before the PIXBLT instruction can be executed, the implied operand regis-
ters must be loaded with appropriate values. These PIXBLT examples use
the following implied operand setup.

Register File B: I/O Registers:
SADDR (BO) 	= >0020 0004 CONVSP 	= >0016
SPTCH (B1) - >0000 0200 CONVDP = >0016
DADDR (B2) = >0041 0004 PSIZE = >0004
DPTCH (B3) = >0000 0200 PMASK = >0000
OFFSET(B4) = >0001 0000 CONTROL = >0000
WSTART(B5) = >0030 0009 (W=00, T=0, PP=00000)
WEND (B6) = >0042 0012
DYDX (B7) = >0003 001 6

Additional implied operand values are listed with each example. For this
example, assume that memory contains the following data before instruc-
tion execution.

Linear
Address 	 Data
>14000 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>14200 >3210, >7654, > BA98, > FEDC,>3210, >7654, > BA98, > FEDC
>14400 >3210, >7654, >BA98,>FEDC,>3210, >7654, >BA98,>FEDC
>18200 to
>18680 >3333

12-188

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Example 1 	This example uses the rep/ace (S -4D) pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=00, PP-00000).

After instruction execution, memory will contain the following values:

Linear
Address 	 Data
>18200 >3333, >7654, >BA98,>FEDC,>3210, >7654, >3398, >3333

>18400 >3333, >7654, > BA98, > FEDC,>3210, >7654, >3398, >3333

>18600 >3333, >7654, >BA98,>FEDC,>3210, >7654, >3398, >3333

XY Addressing
X Address

• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 41 3333456789ABCDEF 0123456789333333
d
• 42 3333456789 ABCDEF 0123456789333333
e
s 43 3333456789 ABCDEF 0123456789333333

Example 2 This example uses the (D adds S) 	D pixel processing operation. Before
instruction execution, PMASK = >0000 and CONTROL = >4400 (T=0,
W=00, PP-10001).

After instruction execution, memory will contain the following values:

X Address
• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

O 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d 41 3 3 3 3789 ABCDEFFFF 3456789 ABC333333
d
• 42 3333789 ABCDEFFFF 3456789 ABC333333
e

43 3333789ABCDEFFFF34567 89 ABC 333333

12-189

PIXBLT 	Pixel Block Transfer - XV to XV 	PIXBLT

Example 3 	This example uses transparency and the (D SUBS S) -■ D pixel processing
operation. Before instruction execution, PMASK = >0000 and CONTROL
= >4C20 (T=1, W=00, PP=10011).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 	1 1 	1 1 	1 1 	1 	1 	1 	1 	1 	1 	1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d
d
r
e
s

41

42

43

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 1

2 3

2 3

2 3

3 3

3 3

3 3

3 3

3 3

3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Example 4

Example 5

This example uses window operation 3 (the destination is clipped). Before
instruction execution, PMASK = >0000 and CONTROL = >0000 (T=0,
W=11, P P = 00000) .

After instruction execution, memory will contain the following values:

X Address
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF
A
d
d

41 3333333339 ABCDEF 0123333333333333

r
e
s

42

43

3333333339 ABCDEF 0123333333333333

3

This example uses plane masking; the third least significant bit is masked.
Before instruction execution, PMASK = >5555 and CONTROL = >0000
(T=0, W=00, PP-00000).

After instruction execution, memory will contain the following values:

X Address
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 ABCDEF 0 1 2 3 4 5 6 7 8 9 ABCDEF

A
d 41 3333113399 BB99 BB1133113399333333
d
r 42 333311 3399BB99BB1 1 3311 3399333333
e
s43 3333113399BB99BB1133113399333333

12-190

Syntax

Execution

Encoding

PIXT <Rs>,*<Rd>

(pixel)Rs 	(pixel)*Rd

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
	

1 	1 	1 	1 	0 	0
	

Rs
	

R
	

Rd

PIXT
	

Pixel Transfer - Register to Indirect 	PIXT

Operands 	Rs The source pixel is right justified in the specified register.

*Rd Destination register indirect. The destination location is at the linear
memory address contained in the specified register.

Description 	PIXT transfers a pixel from the source register to the linear memory address
contained in the destination register. The source pixel is the 1, 2, 4, 8, or
16 LSBs of the source register, depending on the pixel size specified in the
PSIZE I/O register. The source and destination registers must be in the
same register file.

Implied
Operands I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
T 	—Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

Pixel
Processing 	The PP field of the CONTROL I/O register selects the pixel processing op-

eration to be applied to the pixel as it is transferred to the destination lo-
cation. The default case at reset is the pixel processing rep/ace operation.
For more information, see Section 7.7, Pixel Processing, on page 7-15.

Window
Checking 	Window checking cannot be used with this instruction. The W bits are

ignored.

Transparency Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

Plane Mask 	The plane mask is enabled for this instruction.

Status Bits

1

Pixel Processing Operation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX

1,2,4,8
16

2+(3),8
2+(1),6

4+(3),10
4+(1),8

4+(3),11
4+(1),8

5+(3),11
5+(1),9

5+(3),12
5+(1),9

6+(3),11
6+(1),10

5+(3),10
5+(1),9

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Words

Machine
States

12-191

PIXT Pixel Transfer - Register to Indirect PIXT

Examples

Before

PIXT A0,*A1

Al @>20500 PSIZE PP

After

@>20500 AO T PMASK
1) >0000 FFFF >0002 0500 >0000 >0001 00000 0 >0000 >0001
1) >0000 FFFF >0002 0500 >0000 >0002 00000 0 >0000 >0003
1) >0000 FFFF >0002 0500 >0000 >0004 00000 0 >0000 >000F
1) >0000 FFFF >0002 0500 >0000 >0008 00000 0 >0000 >00FF
1) >0000 FFFF >0002 0500 >0000 >0010 00000 0 >0000 >FFFF
1) >0000 0006 >0002 0508 >0000 >0004 00000 0 >0000 >0600
2) >0000 0006 >0002 0508 >0300 >0004 01010 0 >0000 >0500
3) >0000 0006 >0002 0508 >0100 >0004 00001 0 >0000 >0000
4) >0000 0006 >0002 0508 >0100 >0004 00001 1 >0000 >0100
5) >0000 0006 >0002 0508 >0000 >0004 00000 0 >AAAA >0400

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D is not replaced
5) S replaces unmasked bits of D

12-192

Syntax

Execution

Encoding

PIXT <Rs>,*<Rd>.XY

(pixel)Rs 	(pixel)*Rd.XY

15 14 13 12 11 10 	9 8 7
	

6 5 4 3 2 1 0

1
	

1 	1 	1 	0 	0 	0
	

Rs
	

R
	

Rd

PIXT 	Pixel Transfer - Register to Indirect XY 	PIXT

Operands 	Rs 	The source pixel is right justified in the specified register.

•Rd.XY Destination register indirect in XY format. The destination lo-
cation is the XY address contained in the specified register. The
X value occupies the 16 LSBs of the register and the Y value oc-
cupies the 16 MSBs.

Description 	PIXT transfers a pixel from the source register to the XY memory address
contained in the destination register. The source pixel is the 1, 2, 4, 8, or
16 LSBs of the source register, depending on the pixel size specified in the
PSIZE I/O register. The source and destination registers must be in the
same register file.

Implied
Operands

Window
Checking

B File Registers

Register Name Format Description

B3 DPTCH Linear Destination pitch

B4 ' OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP— Pixel processing operations (22 options)
W —Window clipping or pick operation
T —Transparency operation

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window checking can be selected by setting the W bits in the CONTROL
register to the desired value. If one of the three active window modes (1,
2, or 3) is selected, the WSTART and WEND registers define the starting
and ending window corners. When an attempt is made to write a pixel in-
side or outside a window, the results depend on the selected window
checking mode:

0 No window checking. The pixel is drawn and the WVP and V bits are
unaffected.

1 Window hit. No pixels are drawn. The V bit is set to 0 if the pixel lies
within the window; otherwise, it is set to 1.

2 Window miss. If the pixel lies outside the window, the V and WVP bits
are set to 1 and the instruction is aborted (no pixels are drawn). Other-
wise, the pixel is drawn and the V bit is set to 0.

12-193

PIXT Pixel Transfer - Register to Indirect XV 	PIXT

Pixel
Processing

Transparency

Plane Mask

Words

Machine
States

3 Window clip. If the pixel lies outside the window, the V bit is set to 1
and the instruction is aborted (no pixels are drawn). Otherwise, the pixel
is drawn and the V bit is set to 0.

For more information, see Section 7.10, Window Checking, on page 7-25.

The PP field of the CONTROL I/O register specifies the pixel processing
operation of that will be applied to the pixel as it is transferred to the des-
tination location. The default case at reset is the pixel processing replace
operation. For more information, see Section 7.7, Pixel Processing, on page
7-15.

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

6+(3),12
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

6,9
6,9

6,9
6,9

4,7
4,7

Status Bits N Unaffected
C Unaffected
Z Unaffected
V 1 if window clipping enabled and window violation or pick occurs, 0

if no window violation occurs. Unaffected if window clipping is not
enabled.

12-194

Pixel Transfer - Register to Indirect XY
	

PIXT PIXT

Before the PIXT instruction can be executed, the implied operand registers
must be loaded with appropriate values. These PIXT examples use the fol-
lowing implied operand setup.

Examples

Before

Register File B:
DPTCH (B3) 	= >00000800
OFFSET (B4) 	= >00000000
WTART (B5) 	= >00300020
WEND (B6) 	= >00500142

PIXT 	A0,*Al.XY

I/O Registers:
CONVDP = >0014

After

AO Al @>20500 PSIZE PP W T PMASK @>20500

1) >0000 FFFF >0040 0500 >0000 >0001 00000 00 0 >0000 >0001
1) >0000 FFFF >0040 0280 >0000 >0002 00000 00 0 >0000 >0003
1) >0000 FFFF >0040 0140 >0000 >0004 00000 00 0 >0000 >000F
1) >0000 FFFF >0040 00A0 >0000 >0008 00000 00 0 >0000 >OOFF
1) >0000 FFFF >0040 0050 >0000 >0010 00000 00 0 >0000 >FFFF
1) >0000 0006 >0040 0142 >0000 >0004 00000 00 0 >0000 >0600
2) >0000 0006 >0040 0142 >0300 >0004 01010 00 0 >0000 >0500
3) >0000 0006 >0040 0142 >0100 >0004 00001 00 0 >0000 >0000
4) >0000 0006 >0040 0142 >0100 >0004 00001 00 1 >0000 >0100
5) >0000 0006 >0040 0142 >0000 >0004 00000 00 0 >AAAA >0400
6) >0000 0006 >0040 0142 >0000 >0004 00000 11 0 >0000 >0600
7) >0000 0006 >0040 0143 >0000 >0004 00000 11 0 >0000 >0000
8) >0000 0006 >0040 0143 >0000 >0004 00000 10 0 >0000 >0000

XY Address in Al = Linear Address >20500

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D
6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

generated, V bit set in status register

12-195

PIXT Pixel Transfer - Indirect to Register 	PIXT

Syntax
	

PIXT *<Rs>,<Rd>

Execution
	

(pixel)`Rs 	(pixel)Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Implied
Operands

Rs
	

R I 	Rd

*Rs Source register indirect. The source pixel is located at the linear
memory address contained in the specified register.

PIXT transfers a pixel from the linear memory address contained in the
source register to the destination register. When the pixel is moved into the
register, it is right justified and zero extended to 32 bits according to the
pixel size specified in the PSIZE I/O register. The source and destination
registers must be in the same register file.

I/O Registers

Address Name Description and Elements (Bits)

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask — pixel format

Window checking cannot be used with this instruction. The W bits are
ignored.

Pixel processing cannot be used with this instruction.

Transparency cannot be used with this instruction.

The plane mask is enabled for this instruction.

1

4,7

N Undefined
C Undefined

Undefined
V Set to 1 if the pixel is 1, set to 0 if the pixel is 0.

Operands

Description

Window
Checking

Pixel
Processing

Transparency

Plane Mask

Words

Machine
States

Status Bits

12-196

PIXT 	Pixel Transfer - Indirect to Register 	PIXT

Examples 	Assume that memory

Address
@>20500
@>20510

PIXT 	*AO,A1

Before

contains the following

Data
>FFFF
>3333

values:

After

AO PSIZE PMASK Al
>0002 0500 >0001 >0000 >0000 0001
>0002 0500 >0001 >FFFF >0000 0000
>0002 0500 >0002 >0000 >0000 0003
>0002 0500 >0002 >5555 >0000 0002
>0002 0500 >0004 >0000 >0000 000F
>0002 0510 >0004 >9999 >0000 0002
>0002 0500 >0008 >0000 >0000 ()0FF
>0002 0510 >0008 >5454 >0000 0023
>0002 0500 >0010 >0000 >0000 FFFF
>0002 0500 >0010 >BA98 >0000 4567
>0002 0510 >0010 >BA98 >0000 0123

12-197

PIXT
	

Pixel Transfer - Indirect to Indirect 	PIXT

Syntax
	

PIXT <Rs>,* <Rd>

Execution 	pixel(*Rs) 	pixel(*Rd)

Encoding
	

15 14 13 12 11 10 9
	

8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Implied
Operands

Pixel
Processing

Rs
	

I 	I
	

Rd

*Rs Source register indirect. The source pixel is located at the linear
memory address contained in the specified register.

*Rd Destination register indirect. The destination location is at the linear
memory address contained in the specified register.

PIXT transfers a pixel from the linear memory address contained in the
source register to the linear memory address contained in the destination
register. The source and destination registers must be in the same register
file.

I/O Registers

Address Name Description and Elements (Bits)

>C00000E30 CONTROL PP- Pixel processing operations (22 options)
T 	-Transparency operation

>C0000150 PSIZE Pixel size (1,2,4,6,8,16)

>C0000160 PMASK Plane mask - pixel format

The PP field of the CONTROL I/O register selects the pixel processing op-
eration that will be applied to the pixels as they are transferred to the des-
tination array. The default case at reset is the pixel processing replace
operation. For more information, see Section 7.7, Pixel Processing, on page
7-15.

Window checking cannot be used with this instruction. The W bits are
ignored.

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Window
Checking

Transparency

Plane Mask

Words

Machine
States

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

4+(3),10
4+(1),8

6+(3),12
6+(1),10

6+(3),12
6+(1),10

7+(3),13
7+(1),11

7+(3),13
7+(1),11

8+(3),14
8+(1),12

7+(3),13
7+(1),11

-
-

-
-

-
-

12-198

PIXT

Status Bits

Examples

Pixel Transfer - Indirect to Indirect 	PIXT

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

PIXT *AO ,*A1

AO

Before

@>20500 PSIZE PP T PMASK

After

@>20510 Al @>20500
1) >0002 0500 >0002 0508 >000F >0001 00000 0 >0000 >010F xxxx
1) >0002 0500 >0002 0508 >000F >0002 00000 0 >0000 >030F xxxx
1) >0002 0500 >0002 0508 >000F >0004 00000 0 >0000 >OFOF xxxx
1) >0002 0500 >0002 0508 >00EF >0008 00000 0 >0000 >EFEF xxxx
1) >0002 0500 >0002 0508 >1234 >0010 00000 0 >0000 >3434 >xx12
2) >0002 0500 >0002 0508 >030F >0004 01010 0 >0000 >OCOF xxxx
3) >0002 0500 >0002 0508 >010E >0004 00001 0 >0000 >000E xxxx
4) >0002 0500 >0002 0508 >020E >0004 00001 1 >0000 >020E xxxx
5) >0002 0500 >0002 0508 >000F >0004 00000 0 >AAAA >050F xxxx

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D

12-199

PIXT 	Pixel Transfer - Indirect XY to Register 	PIXT

Syntax
	

PIXT *<Rs>.XY,<Rd>

Execution
	

(pixel)*Rs.XY -4 (pixel)Rd

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

1
	

1 	1 	1 	0 	0 	1
	

Rs
	

R
	

Rd

Operands 	•Rs.XY Source register indirect in XY format. The source operand is at
the XY memory address contained in the specified register. The
X value occupies the 16 LSBs of the register and the Y value oc-
cupies the 16 MSBs.

Description 	PIXT transfers a pixel from the XY memory address contained in the source
register to the destination register. When the pixel is moved into the regis-
ter, it is right justified and zero extended to 32 bits according to the pixel
size specified in the PSIZE I/O register. The source and destination regis-
ters must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

83 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

I/O Registers

Address Name Description and Elements (Bits)

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window
Checking 	Window checking cannot be used with this instruction. The W bits are

ignored.
Pixel
Processing 	Pixel processing cannot be used with this instruction.

Transparency Transparency cannot be used with this instruction.

Plane Mask 	The plane mask is enabled for this instruction.

Words 	1

Machine
States
	

6,9

Status Bits 	N Undefined
C Undefined
Z Undefined
V Set to 1 if the pixel is 1, set to 0 if the pixel is 0.

12 - 200

PIXT 	Pixel Transfer - Indirect XY to Register 	PIXT

Examples 	These PIXT examples use the following implied operand setup.

Register File B: 	 I/O Registers:
DPTCH (B3) = >800 	CONVSP = >0014
OFFSET (B4) = >00000000

Assume that memory address @>20500 contains >CF3F before instruction
execution.

PIXT *AO.XY,A1

Before

PSIZE PMASK

After

AO Al
>0040 0500 >0001 >0000 >0000 0001
>0040 0500 >0001 >FFFF >0000 0000
>0040 0280 >0002 >0000 >0000 0003
>0040 0280 >0002 >AAAA >0000 0001
>0040 0140 >0004 >0000 >0000 000F
>0040 0140 >0004 >9999 >0000 0006
>0040 00A0 >0008 >0000 >0000 003F
>0040 00A0 >0008 >8989 >0000 0036
>0040 0050 >0010 >0000 >0000 CF3F
>0040 0050 >0010 >7310 >0000 8C2F

Note:

The XY addresses stored in register Al in these examples translate to
the linear memory address >20500. The pitch of the source was not
changed for any of these examples.

12-201

PIXT 	Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Syntax
	

PIXT *<Rs>.XY, *<Rd>.XY

Execution
	

(pixel)*Rs.XY 	(pixel)*Rd.XY

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1
	

1 	1 	1 	0 	1 	0
	

Rs
	

R
	

Rd

Operands 	*Rs.XY Source register indirect XY format. The source pixel is at the XY
memory address contained in the specified register. The X value
occupies the 16 LSBs of the register and the Y value occupies the
16 MSBs.

*Rd.XY Destination register indirect XY format. The destination location
is the XY address contained in the specified register. The X value
occupies the 16 LSBs of the register and the Y value occupies the
16 MSBs.

Description 	PIXT transfers a pixel from the XY memory address contained in the source
register to the XY memory address contained in the destination register.
The source and destination registers must be in the same register file.

Implied
Operands B File Registers

Register Name Format Description

B1 SPTCH Linear Source pitch

B3 DPTCH Linear Destination pitch

B4 OFFSET Linear Screen origin (0,0)

B5 WSTART XY Window starting corner

B6 WEND XY Window ending corner

I/O Registers

Address Name Description and Elements (Bits)

>C00000B0 CONTROL PP—Pixel processing operations (22 options)
W —Window clipping or pick operation
T 	— Transparency operation

>C0000130 CONVSP XY-to-linear conversion (source pitch)

>C0000140 CONVDP XY-to-linear conversion (destination pitch)

>C0000150 PSIZE Pixel size (1,2,4,8,16)

>C0000160 PMASK Plane mask — pixel format

Window
Checking 	Window clipping can be selected by setting the W bits in the CONTROL

I/O register to 2 or 3. Pick can be selected by setting the W bits to 1. The
WSTART and WEND registers define the window in XY-coordinate space.
If window clipping or pick is not selected, then the WSTART and WEND
registers are ignored. The default case at reset is no window clipping. For
more information, see Section 7.10, Window Checking, on page 7-25.

Pixel
Processing 	The PP field of the CONTROL I/O register specifies the pixel processing

operation to be applied to pixels as they are transferred to the destination
array. The default case at reset is the pixel processing replace operation.
For more information, see Section 7.7, Pixel Processing, on page 7-15.

12-202

PIXT
	

Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Transparency

Plane Mask

Words

Transparency can be enabled for this instruction by setting the T bit in the
CONTROL I/O register to 1. The TMS34010 checks for 0 (transparent)
pixels after it processes the source data. At reset, the default case for tran-
sparency is off.

The plane mask is enabled for this instruction.

1

Machine
States

Pixel Processing Operation
Window
Violation

PSIZE Replace Boolean ADD ADDS SUB SUBS MIN/MAX W=1 W=2 W=3

1,2,4,8
16

7+(3),13
7+(1),11

9+(3),15
9+(1),13

9+(3),15
9+(1),13

10+(3),1610+(3),16
10+(1),1410+(1),14

11 +(3),17
11 +(1),15

10+(3),16
10+(1),14

-
-

8,11
8,11

6,9
6,9

Status Bits

Examples

N Unaffected
C Unaffected
Z Unaffected
V 1 if window clipping enabled and window violation occurs, 0 if no

window violation occurs. Unaffected if window clipping is not ena-
bled.

These PIXT examples use the following implied operand setup.

Register File B:
SPTCH (B1) = >800
DPTCH (B3) = >800
OFFSET (B4) = >00000000
WSTART (B5) = >00300020
WEND (B6) 	= >00500142

I/O Registers:
CONVSP = >0014
CONVDP = >0014

AO

PIXT 	*AO.XY,*Al.XY

Before

@>20500 PSIZE PP W T PMASK @>20500

After

Al @>20510
1) >0040 0500 >0040 0508 >000F >0001 00000 00 0 >0000 >010F xxxx
1) >0040 0280 >0040 0284 >000F >0002 00000 00 0 >0000 >030F XY.XX

1) >0040 0140 >0040 0142 >000F >0004 00000 00 0 >0000 >OFOF xxxx
1) >0040 00A0 >0040 00A1 >00EF >0008 00000 00 0 >0000 >EFEF xxxx
1) >0040 0050 >0040 0051 >CDEF >0010 00000 00 0 >0000 >CDEF >CDEF
2) >0040 0140 >0040 0142 >0306 >0004 01010 00 0 >0000 >0506 xxxx
3) >0040 0140 >0040 0142 >0106 >0004 00001 00 0 >0000 >0006 xxxx
4) >0040 0140 >0040 0142 >0106 >0004 10001 00 1 >0000 >0106 xxxx
5) >0040 0140 >0040 0142 >0006 >0004 00000 00 0 >AAAA >0406 xxxx
6) >0040 0140 >0040 0142 >0006 >0004 00000 11 0 >0000 >0606 xxxx
7) >0040 0140 >0040 0143 >0006 >0004 00000 11 0 >0000 >0006 xxxx
8) >0040 0140 >0040 0143 >0006 >0004 00000 100 >0000 >0006 xxxx

XY Address in AO = Linear Address >20500

12-203

PIXT 	Pixel Transfer - Indirect XY to Indirect XY 	PIXT

Notes:

1) S replaces D
2) (S XOR D) replaces D
3) (S AND D) = 0, transparency is off, D is replaced
4) (S + D) = 0, transparency is on, D not replaced
5) S replaces unmasked bits of D
6) Window Option = 3, D inside window, S replaces D
7) Window Option = 3, D outside window, D not replaced, V bit set in

status register
8) Window Option = 2, D outside window, D not replaced, WV interrupt

generated, V bit set in status register

12-204

3130 29 28 27 28 25 24 23 22 212019 18 17 18 15 14 13 12 11 10 9 8 7' 8 5 4 3 2 1 0
P
B
X

F
E
1

F
E
0

N C V Rem E R FS1 FS0

POPST 	Pop Status Register from Stack 	POPST

Syntax
	

POPST

Execution
	

*SP+ -0 ST

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	1 	1 	0 	0 	0 	0 	0 0

Description 	POPST pops the status register from the stack and increments the SP by
32 after the status register is removed from the stack.

Status Register

Words

Machine
States

Status Bits

1

8,11 (SP aligned)
10,13 (SP nonaligned)

N Set from bit 31 of stack status.
C Set from bit 30 of stack status.
Z Set from bit 29 of stack status.
V Set from bit 28 of stack status.
IE Set from bit 21 of stack status.

Examples 	Assume that memory contains the following values before instruction exe-
cution:

Add ress
	

Data
>OFFO 0000
	

>0010
>OFFO 0010
	

>C000

Code 	Before 	 After

SP 	 ST 	 SP
POPST 	>OFFO 0000 	>C000 0010 >OFFO 0020

12-205

PUSHST 	Push Status Register onto Stack 	PUSHST

Syntax
	

PUSHST

Execution
	

ST -■ -*SP

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	0 	0 	1 	1 	1 	1 	0 	0 	0 	0 0

Description PUSTST pushes the status register onto the stack and then decrements the
SP by 32.

3130 29 28 27 28 25 24 23 22 212019 18 17 IQ 15 14 1:3 12 11 10 9 8 7 8 5 4 3 2 1 0

NC ZV A111 .: El zzltelt---11 E •:::-.----z :- :Miliff.:--- 	E 	F131 	E 	FSO

	

..... •._ r .,-,..,,,,,-• •-:-......-:, : 	1 	 a, 	,

Status Register

Words

Machine
States

Status Bits

Example

1

2+(3),8 (SP aligned)
2+(8),13 (SP nonaligned)

N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Code 	 Before

SP
PUSHST 	>OFFO 0020

After

ST 	 SP
> C000 0010 	>OFFO 0000

Memory will contain the following values after instruction execution:

Address
	

Data
>OFFO 0010
	

>0010
>OFFO 0020
	

>C000

12-206

Syntax

Execution

Encoding

PUTST <Rs>

(Rs) 	ST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 	0 	0 	0 	0 	0
	

1 	1 	0 	1
	

R
	

Rs

PUTST 	 Copy Register into Status 	 PUTST

Description 	PUTST copies the contents of the specified register into the status register.

3130 29 28 27 28 25 24 23 22 2120 19 18 17 18 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N C

V Res B
P(1,

F
E
1

F 1
F61 	E I 	F60 	I

Status Register

Words

Machine
States

Status B its

1

3,6

N Set to value of bit 31 in source register
C Set to value of bit 30 in source register
Z Set to value of bit 29 in source register
V Set to value of bit 28 in source register
IE Set to value of bit 21 in source register

Example 	Code 	 Before 	 After

AO 	 ST 	 ST
PUTST AO 	>C000 0010 >xxxx xxxx 	>C000 0010

12-207

RETI 	 Return from Interrupt 	 RETI

Syntax
	

RETI

Execution
	

*SP+ 	ST
*SP+ 	PC

Encoding
	

15 14 13 12 11 10 9 8 7
	

6
	

5 4 3 2 1
	

0

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	0 	1 	0 	0 	1 	0 	1 	0 	0 	0 	0 	0 0

RETI returns from an interrupt routine. It pops the status register and then
the program counter from the stack. Execution then continues according
to the values loaded.

The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows in the direction of decreasing linear address.
The ST and PC are popped from the stack and the SP is incremented by
32 after each register is removed from the stack.

Note:

If the PBX status bit is set in the restored ST value, then the bit is
cleared and a PIXBLT or FILL will be resumed, depending on the values
stored in the B-file registers.

The CONTROL register and any B-file registers modified by an interrupt
routine should be restored before RETI is executed. Otherwise, inter-
rupted PIXBLT and FILL instructions may not resume execution cor-
rectly.

1

11,14 (aligned stack)
15,18 (nonaligned stack)

N Copy of corresponding bit in stack location
C Copy of corresponding bit in stack location

Copy of corresponding bit in stack location
V Copy of corresponding bit in stack location
IE Copy of corresponding bit in stack location

Assume that memory contains the following values before instruction exe-
cution:

Address
>OCCC 0000
>OCCC 0010
>OCCC 0020
>OCCC 0030

Data
>0010
>C000
>FFFO
>0044

Code 	Before
	

After

SP 	 ST
	

PC 	 SP
RETI >OCCC 0000 >C000 0010

	
>0044 FFFO >OCCC 0040

12 - 208

RETS 	 Return from Subroutine 	 RETS

Syntax

Execution

RETS [<N>]

*SP 	PC (N defaults to 0)
(SP) + 32+ (16N) —■ SP

Encoding
	

15 14 13 12 11 10 9 8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Fields

Description

Words

Machine
States

Status Bits

Examples

0 	0 	0 	0 	1 	0 	0 	1 	0 	1 	1
	

N

N Optional stack pointer adjustment (0 to 31 words)

RETS returns from a subroutine by popping the program counter from the
stack and incrementing the stack pointer by N +2 words. If N is specified,
the stack pointer is incremented by 32 + 16N. If N is not specified, the
stack is incremented by 32. Execution then continues according to the PC
value loaded.

1

7,10 (Aligned stack)
9,12 (Unaligned stack)

N Unaffected
C Unaffected
Z Unaffected
✓ Unaffected

Assume that memory contains the following values before instruction exe-
cution:

Address 	Data
>OFFO 0000 	>FFFO
>OFFO 0010 	>0001

Code 	 Before 	 After

SP 	 PC 	 SP
RETS 	>OFFO 0000 	>0001 FFFO >OFFO 0020
RETS 1 	>OFFO 0000 	>0001 FFFO >OFFO 0030
RETS 2 	>OFFO 0000 	>0001 FFFO >OFFO 0040
RETS 16 	>OFFO 0000 	>0001 FFFO >OFFO 0120
RETS 31 	>OFFO 0000 	>0001 FFFO >OFFO 0210

12-209

REV 	 Store Revision Number
	

REV

Syntax
	

REV <Rd>

Execution
	

Revision numer - Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	

0 	0 	0 	0 	0 	0 	0 	0 	0 	0 	1 1 R 1
	

Rd
	

1
Description 	REV stores the revision number of the TMS340 family device in the desti-

nation register. The revision number information is stored in the following
format:

31 30 29
	

4 3 2 1 0

1 0 	0 	0
	

0 	1 I Reserved I

Words 	1
Machine
States 	1,4

Status Bits 	N Unaffected
C Unaffected
Z Unaffected
V Unaffected

Examples 	Code 	 Before 	After

Al 	 Al
REV Al 	>FFFF FFFF 	>0000 0008

12-210

RL 	 Rotate Left - Constant
	

RL

Syntax
	

RL <K>,<Rd>

Execution
	

(Rd) rotated left by K 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	1 	1 	0 	0
	

K
	

R
	

Rd

Operands 	K is a rotate count from 0 to 31.

Description 	RL rotates the destination register contents by left the number of bits spe-
cified by K. This is a circular rotate so that bits shifted out the MSB are
shifted into the LSB.

C 	31

0

LsB-1

The left rotate count is contained in the 5-bit K field of the instruction word.
The assembler will only accept absolute expressions as valid K operand
values. If the value specified is greater than 31, the assembler will issue a
warning and set the value of the K field equal to the five LSBs of the K
operand value specified.

The rotate count of 0 can be used to clear the carry and test a register for
0 simultaneously.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Set to value of last bit rotated out, 0 for rotate count of 0.
Z 	1 if result is 0, 0 otherwise.
V Unaffected

Examples Code Before After

Al NCZ V
RL 0 , Al >0000 000F x 00x
RL 1 A1 > F000 0000 x10x
RL 4 , Al > F000 0000 x 10x
RL 5 , Al > F000 0000 x00x
RL 30 , Al > F000 0000 x10x
RL 5 , Al >0000 0000 x 01x

Al
>0000 000F
>E000 0001
>0000 000F
>0000 001E
>3C00 0000
>0000 0000

12-211

RL
	

Rotate Left - Register

Syntax
	

RL <Rs>,<Rd>

Execution
	

(Rd) rotated left by Rs --+ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3
	

2
	

1
	

0

RL

Words

Machine
States

Status B its

Examples

0 	1 	1 	0 	1 	0 	0
	

Rs
	

R
	

Rd

Rs The five LSBs of the source register specify the left rotate count (a
value from 0 to 31). The 27 MSBs are ignored.

RL rotates the destination register contents left by the number of bits spe-
cified. This is a circular rotate, so that bits shifted out of the MSB are
shifted into the LSB.

31

MSB 	 L68

Note that the you must designate Rs with a keyword or symbol which has
been defined to be a register, for instance A9. Otherwise, the assembler
will use the RL K, Rd instruction.

The source and destination registers must be in the same register file.

1

1,4

N Unaffected
C Set to value of last bit rotated out, 0 for rotate count of 0.
Z 	1 if result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 NCZV 	Al
RL AO,A1 	00000 	>0000 000F 	x00x >0000 000F
RL A0,A1 	00100 	>F000 0000 	x10x >0000 000F
RL A0,A1 	00101 	>F000 0000 	x00x >0000 001E
RL AO , A1 	11111 	>F000 0000 	x00x >7800 0000
RL AO,A1 	xxxxx 	>0000 0000 	x01x >0000 0000

Operands

Description

04 	

12-212

SETC 	 Set Carry SETC

Syntax
	

SETC

Execution
	

1 -■ C

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

. 0 	o 1 0 	1 	0 	1 	1 1 	 0 1 	0 	0 	0 0

Description 	SETC sets the carry bit (C) in the status register to 1. The rest of the status
register is unaffected.

This instruction is useful for returning a true/false value (in the carry bit)
from a subroutine without using a general-purpose register.

Words

Machine
States

Status Bits

Examples

1

1,4

N Unaffected
 Cl

Z Unaffected
V Unaffected

Code Before

NCZV

After

NCZV ST ST
SETC >0000 0000 0000 >4000 0000 0100
SETC >B000 0010 1011 >F000 0010 1111
SETC >4000 001F 0100 >4000 001F 0100

12-213

SETF

Syntax

Execution

Encoding

SETF <FS> ,<FE>[,<F>]

(FS, FE) -* ST

15 14 13 12 11 10 9

SETF

1
	

0

Set Field Parameters

8 7 6 5 4 3 2

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	1 I FE I 	FS

Operands 	FS is the field size to be stored in status register (1-32).

FE is the field extend to be stored in status register - 0 for zero extend, 1
for sign extend.

F 	is an optional operand; it defaults to 0.
F=0 selects FSO, FEO to be altered.
F=1 selects FS1, FE1 to be altered.

Description 	SETF loads the values specified for the field size (FS) and the field exten-
sion (FE) into the status register. The rest of ST is unchanged. The F bit
specifies whether the Field 0 or Field 1 parameters are to be set. FS can
be in the range 1-32, FE is either 0 or 1, and F is optional. If F is not spe-
cified, it defaults to 0. An FS of 0 in the opcode corresponds to a field size
of 32. This instruction is used to set either of the two sets of field move
parameters in the status register. These determine the field size for MOVE
field instructions and the field-extension rule for MOVE into a register. Ei-
ther set of parameters can be chosen by an individual MOVE instruction,
by specifying the F parameter.

Words

Machine
States

1

1,4
2,5

313(1213219272.1326 24 25 221201E4 1E 17 le 1s 14 13 t2

N C z V Reis
P
B ReEpj I

e,

• 	 • F
S 	F64)
■I■1■I■i■

for F=0
for F=1

Status Register

Status Bits N 	Unaffected
C 	Unaffected
Z 	Unaffected
V 	Unaffected

Examples Code Before After

ST ST
SETF 	32,0,0 >xxxx x000 >xxxx x000
SETF 	32,1,0 > xxxx x000 >xxxx x020
SETF 	31,1,0 >xxxx x000 >xxxx x03F
SETF 	16,0,0 >xxxx x000 >xxxx x010
SETF 	32,0,1 >xxxx x000 >xxxx x000
SETF 	32,1,1 >xxxx x000 >xxxx x800
SETF 	31,1,1 >xxxx x000 >xxxx xFC0
SETF 	16,0,1 >xxxx x000 >xxxx x400

12-214

SEXT 	 Sign Extend to Long SEXT

SEXT <Rd>[,<F>]

(field)Rd —■ (sign-extended field) Rd

15 14 13 12 11 10 9 	8 	7 	6

F Is an optional operand; it defaults to 0
0 selects FSO for the field size
1 selects FS1 for the field size

Syntax

Execution

Encoding

Operands

5 4 3 2 1 0

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	0 	0 R
	

Rd

Description 	SEXT sign extends the right-justified field contained in the destination re-
gister by copying the MSB of the field data into all the nonfield bits of the
destination register. The field size for the sign extension is specified by the
FSO or FS1 bits in the status register, depending on the F bit specified.

Words

Machine
States

Status Bits

1

3,6

N 1 if the result is negative, 0 otherwise.
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

FSO/1 	 AO 	 NCZ V 	AO
SEXT AO , 0 	17/x 	>0000 8000 	OxOx >0000 8000
SEXT AO , 0 	16/x 	>0000 8000 	1 x0x > FFFF 8000
SEXT AO , 0 	15/x 	>0000 8000 	Ox1x >0000 0000
SEXT AO , 1 	x/17 	>0000 8000 	OxOx >0000 8000
SEXT A0, 1 	x/16 	>0000 8000 	1x0x >FFFF 8000
SEXT AO , 1 	x/15 	>0000 8000 	Ox 1x >0000 0000

12-215

SLA
	

Shift Left Arithmetic - Constant 	SLA

Syntax
	

SLA <K>,<Rd>

Execution
	

(Rd) shifted left by K - Rd

Encoding
	

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 	0 	1 	0 	0 	0I
	

K
	

I R 	Rd

Operands 	K is a shift value from 0 to 31.

Description 	SLA shifts the destination register contents left by the number of bits spe-
cified. As shown in the diagram, zeros are shifted into the least significant
bits. The last bit shifted out of the destination register is shifted into the
carry bit. If either the sign bit (N) or any of the bits shifted out of the reg-
ister differ from the original sign bit, the overflow bit (V) is set.

04-
MSB

Change
Detect

31

4 	Shift 4-1-- 0

MSB 	 LSB

The left shift count is contained in the 5-bit K field of the instruction word.
The assembler accepts only absolute expressions as valid K operand values.
SLA executes slower than SLL because overflow detection. If the value
specified is greater than 31, the assembler issues a warning and sets the
value of the K field equal to the five LSBs of the K operand value specified.

Words

Machine
States

Status Bits

Examples

1

3,6

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 1 if a 0 result generated, 0 otherwise.
V 1 if the MSB changes during shift operation, 0 otherwise.

Code Before After

NCZV Al Al
SLA 0 Al >3333 3333 >3333 3333 0000
SLA 0 , A1 > CCCC CCCC > CCCC CCCC 1000
SLA 1,A1 >CCCCCCCC >9999 9998 1100
SLA 2,A1 >33333333 >CCCCCCCC 1001
SLA 2 , Al >CCCCCCCC >3333 3330 0101
SLA 3 , Al >CCCCCCCC >6666 6660 0001
SLA 5 , Al >CCCCCCCC >9999 9980 1101
SLA 30 , Al >CCCCCCCC >0000 0000 0111
SLA 31, Al > CCCC CCCC >0000 0000 0011
SLA 31 , A1 >0000 0000 >0000 0000 0010

12-216

SLA
	

Shift Left Arithmetic - Register 	 SLA

Syntax
	

SLA <Rs>,<Rd>

Execution
	

(Rd) shifted left by (Rs) —> Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	1 	0 	0 	0 	0
	

Rs
	

R
	

Rd

Operands
	

Rs The five LSBs of the source register specify the left-shift count (a va-
lue from 0 to 31). The 27 MSBs are ignored.

Description
	

SLA shifts the destination register contents left by the number of bits spe-
cified the source register. The last bit shifted out of the destination register
is shifted into the carry bit. If either the sign bit (N) or any of the bits
shifted out of the register differ from the original sign bit, the overflow bit
(V) is set.

Shift 4---- 14-0

LS8

MSB
Change
Detect

31

Words

Machine
States

Status Bits

Examples Code 	 Before

5 LS Bs 	AO 	Al
SLA AO , Al 	00000 	>3333 3333
SLA AO , Al 	00000 	>CCCC CCCC
SLA AO , Al 	00001 	>CCCC CCCC
SLA AO , Al 	00010 	>3333 3333
SLA AO , Al 	00010 	>CCCC CCCC
SLA AO , Al 	00011 	>ccCC CCCC
SLA AO , Al 	00101 	>CCCC CCCC
SLA AO , Al 	11110 	>CCCC CCCC
SLA AO , Al 	11111 	>CCCC CCCC
SLA AO ,A1 	11111 	>0000 0000

After

Al
>3333 3333
>CCCC cCCC
>9999 9998
>CCCc ccCC
>3333 3330
>6666 6660
>9999 9980
>0000 0000
>0000 0000
>0000 0000

The left shift count is specified by the five LSBs of the source register.

Note that you must designate Rs with a keyword or symbol which has been
defined to be a register, for instance A9. Otherwise, the assembler will use
the SLA K , Rd instruction. SLA executes slower than SLL because the
overflow detection. The source and destination registers must be in the
same register file.

1

3,6

N 1 if the result is negative, 0 otherwise.
C Set to value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V 1 if the MSB changes during shift operation, 0 otherwise.

NCZV
0000
1000
1100
1001
0101
0001
1101
0111
0011
0010

12-217

SLL
	

Shift Left Logical - Constant 	 SLL

Syntax
	

SLL <K>,<Rd>

Execution
	

(Rd) shifted left by K — ■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

0 	0 	1 	0 	0 	1
	

K
	

R
	

Rd

K is a shift value from 0 to 31.

SLL shifts the destination register contents left by the number of bits spec-
ified. The last bit shifted out of the destination register is shifted into the
carry bit. Zeros are shifted into the least significant bits. This instruction
differs from the SLA instruction only in its effect on the overflow (V) bit.

3'KMSB) 	 00-SB)

[4— Shift 4---- 14 	 0

The left shift count is contained in the 5'-bit K field of the instruction word.
The assembler will only accept absolute expressions as valid K operand
values. If the value specified is greater than 31, the assembler will issue a
warning and set the value of the K field equal to the five LSBs of the K
operand value specified.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C / to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples Code 	 Before 	 After

Al 	 Al 	 NCZV
SLL 0 , Al 	>0000 0000 	>0000 0000 x0lx
SLL 0 , Al 	>8888 8888 	>8888 8888 x00x
SLL 1 , Al 	>8888 8888 	>1111 1110 	x10x
SLL 4 , Al 	>8888 8888 	>8888 8880 x 00x
SLL 30 , Al 	>FFFF FFFC 	>0000 0000 x11x
SLL 31 , Al 	>FFFF FFFC 	>0000 0000 x 01x

12-218

4 3 2 1 0

R
	

Rd

Shift Left Logical - Register 	 SLL SLL

Syntax 	SLL <Rs>,<Rd>

Execution 	(Rd) shifted left by (Rs) 	Rd

Encoding 	15 14 13 12 11 10 9 	8 	7 	6 	5

0 	1 	1 	0 	0 	0 	11 	Rs

Description 	SLL shifts the destination register contents left by the number of bits spec-
ified in the source register. The last bit shifted out of the destination register
is shifted into the carry bit. Zeros are shifted into the least significant bits.
The left shift count is specified by the five LSBs of the source register. This
instruction differs from the SLA instruction only in its effect on the overflow
(V) bit.

31(MSB) 	 O(LSB)

1.4- Shift 4 	 I I 	0

Note that you must designate Rs with a keyword or symbol which has been
defined to be a register, for instance A9. Otherwise, the assembler will use
the SLA K, Rd instruction.

The source and destination registers must be in the same register file.

Words 	1

Machine
States 	1,4

Status Bits 	N Unaffected
C Set to the value of last bit shifted out, 0 for shift value of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

5 LSBs AO 	Al 	 Al 	 NCZV
SLL A0,A1 	00000 	>0000 0000 	>0000 0000 x01 x
SLL A0,A1 	00000 	>8888 8888 	>8888 8888 x00x
SLL AO ,A1 	00001 	>8888 8888 	>1111 1110 	x10x
SLL AO , Al 	00100 	>8888 8888 	>8888 8880 x 00x
SLL AO , Al 	11110 	>FFFF FFFC 	>0000 0000 	xlix
SLL AO , Al 	11111 	>FFFF FFFC 	>0000 0000 	x 01x

12-219

SRA Shift Right Arithmetic - Constant 	 SRA

Syntax
	

SRA <K>,<Rd>

Execution
	

(Rd) shifted right by K —■ Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Operands

Description

Words

Machine
States

Status Bits

Examples

0 	0 	1 	0 	1 	01 2s Complement of K 	1 R 1 	Rd

K is a shift count from 0 to 31.

SRA shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. The sign bit (MSB) is extended into the most significant bits.

MSB

The 5-bit K field of the instruction opcode contains the 2's complement of
the right shift count specified by the K operand. The assembler will only
accept absolute expressions for the shift operand value. If the value speci-
fied is greater than 31, the assembler will issue a warning and set the value
of the K field of the instruction opcode equal to the 2's complement of the
five LSBs of the specified operand value.

1

1,4

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
✓ Unaffected

Code 	 Before 	After

Al 	 Al 	 NCZ V
SRA 0,A1 >0000 0000 	>0000 0000 001x
SRA 0,A1 >FFFF 0000 	>FFFF 0000 100x
SRA 8 , Al >7FFF 0000 	>007F FF00 000x
SRA 8,A1 >FFFF 0000 	>FFFF FFOO 	100x
SRA 30,A1 >7FFF 0000 	>0000 0001 	010x
SRA 31,A1 > 7 FFF 0000 	>0000 0000 011x
SRA 31,A1 	>FFFF 0000 	>FFFF FFFF 	110x

12-220

SRA 	 Shift Right Arithmetic - Register 	 SRA

Syntax
	

SRA <Rs>,<Rd>

Execution
	

(Rd) shifted right by - (Rs) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

Examples

0 	1 	1 	0 	0 	1 	0
	

Rs
	

R
	

Rd

Rs The 2's complement of the source register's five LSBs specify a shift
count from 0-31 bits. The 27 MSBs are ignored.

SRA shifts the destination register contents right by the number of bits
specified in the source register. The last bit shifted out of the destination
register is shifted into the carry bit. The sign bit (MSB) is extended into the
most significant bits.

MSB

Note:

The five LSBs of the source register contain the 2's complement of the
right shift count.

You must specify Rs with a keyword or a symbol which has been defined
to be a register, for instance A9. Otherwise, the assembler will use the SRA
K, Rd instruction. The source and destination registers must be in the same
register file.

1

1,4

N 1 if the result is negative, 0 otherwise.
C Set to the value of last bit shifted out, 0 for shift count of 0.

1 if the result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 Al 	 NCZV
SRA AO , Al 	00000 	>0000 0000 	>0000 0000 001x
SRA A0,A1 	00000 	>FFFF0000 	>FFFF 0000 100x
SRA A0,A1 	11111 	>7FFF 0000 	>3FFF 8000 000x
SRA A0,A1 	11111 	>FFFF0000 	>FFFF 8000 100x
SRA A0,A1 	11000 	>7FFF 0000 	>007F FF00 000x
SRA AO , A1 	11000 	>FFFF0000 	>FFFF FF00 100x
SRA AO,A1 	00010 	>7FFF 0000 	>0000 0001 	010x
SRA AO , Al 	00001 	>7FFF 0000 	>0000 0000 011x
SRA A0,A1 	00001 	>FFFF 0000 	>FFFF FFFF 110x

Operands

Description

12-221

SRL <K>,<Rd>

(Rd) shifted right by K -* Rd

15 14 13 12 11 10 9 	8 	7 	6 	5

0 	0 	1 	0 	1 	1 I 2s Complement of K

Syntax

Execution

Encoding 4 3
	

2
	

1
	

0

R
	

Rd

Shift Right Logical - Constant 	 SRL SRL

Operands
	

K is a shift value from 0 to 31.

Description
	

SRL shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. Zeros are shifted into the most significant bits.

MSB
	

L6B

Words

Machine
States

Status Bits

Examples

The 5-bit K field of the instruction opcode contains the 2's complement of
the right shift count specified by the K operand. The assembler accepts
only absolute expressions for the shift operand value. If the specified value
is greater than 31, the assembler issues a warning and set the value of the
K field of the instruction opcode equal to the 2's complement of the five
LSBs of the specified operand value.

1

1,4

N Unaffected
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
✓ Unaffected

Code 	 Before 	 After

SRL 0 , A1
Al

>0000 0000
Al

>0000 0000
NCZV
x 01x

SRL 0,A1 >7FFF FFFF >7FFF FFFF x00x
SRL 1,A1 >7FFF FFFF >3FFF FFFF x10x
SRL 8,A1 >7FFF0000 >007F FFOO x00x
SRL 30,A1 >7FFF 0000 >0000 0001 x10x
SRL 31,A1 >7FFF0000 >0000 0000 xllx
SRL 31,A1 >3FFF 0000 >0000 0000 x 01x

12-222

SRL
	

Shift Right Logical - Register 	 SRL

Syntax
	

SRL <Rs>,<Rd>

Execution
	

(Rd) shifted right by -(Rs) - ■ Rd

Encoding
	

15 14 13 12 11 10 9 	8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

Words

Machine
States

Status Bits

Examples

0 	1 	1 	0 	0 	1 	1
	

Rs
	

R
	

Rd

Rs The 2's complement of the source register's five LSBs specify a shift
count from 0-31 bits. The 27 MSBs are ignored.

SRL shifts the destination register contents right by the number of bits
specified. The last bit shifted out of the destination register is shifted into
the carry bit. Zeros are shifted into the most significant bits.

Note: The five LSBs of the source register contain the 2's complement
of the right shift count.

You must specify Rs with a keyword or symbol which has been defined to
be a register, for instance A9. Otherwise, the assembler will use the SRL
K,Rd instruction. The source and destination registers must be in the same
register file.

1

1,4

N Unaffected
C Set to the value of last bit shifted out, 0 for shift count of 0.
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Code 	 Before 	 After

5 LSBs 	AO 	Al 	 Al 	 NCZV
SRL AO , Al 	00000 	>0000 0000 	>0000 0000 x01x
SRL AO , Al 	00000 	>7FFF FFFF 	>7FFF FFFF x00x
SRL AO ,A1 	11111 	>7FFF FFFF 	>3FFF FFFF 	xl Ox
SRL AO ,A1 	11000 	>7FFF 0000 	>007F FF00 x 00x
SRL AO , Al 	00010 	>7FFF 0000 	>0000 0001 xl0x
SRL AO , Al 	00001 	>7FFF 0000 	>0000 0000 xllx
SRL AO , Al 	00001 	>3FFF 0000 	>0000 0000 x01x

Operands

Description

12-223

SUB Subtract Registers SUB

Syntax
	

SUB <Rs>,<Rd>

Execution
	

(Rd) - (Rs) 	Rd

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4 3 2
	

1
	

0

0 	1 	0 	0 	0 	1 	0 1 	Rs I 	I 	Rd

Operands

Description

Rs contains the 32-bit subtrahend.

Rd contains the 32-bit minuend.

SU B subtracts the contents of the source register from the contents of the
destination register; the result is stored in the destination register. Multi-
ple-precision arithmetic can be accomplished by using this instruction in
conjunction with the SUBB instruction.

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO 	 Al NCZ V AO
SUB Al , AO 	>7FFF FFF2 	>7FFF FFF1 0000 >0000 0001
SUB Al AO 	>7FFF FFF2 	>7FFF FFF2 0010 >0000 0000
SUB Al AO 	>7FFF FFF1 	>7FFF FFF2 1100 >FFFF FFFF
SUB Al , AO 	>7FFF FFF1 	>FFFF FFFF 0100 >7FFF FFF2
SUB Al AO 	>7FFF FFFF 	>FFFF FFFF 1101 >8000 0000
SUB Al , AO 	>FFFF FFFD 	>FFFF FFFF 1100 >FFFF FFFE
SUB Al , AO 	>FFFF FFFD 	>FFFF FFFD 0010 >00000000
SUB Al ,A0 	>FFFF FFFE 	>FFFF FFFD 0000 >0000 0001
SUB Al, AO 	>FFFF FFFF 	>0000 0001 1000 >FFFF FFFE
SUB Al AO 	>8000 0000 	>0000 0001 0001 >7FFF FFFF

12 - 224

SUBB 	Subtract Registers with Borrow 	SUBB

SUBB <Rs>,<Rd>

(Rd) - (Rs) - (C) 	Rd (C acts as borrow)

15 14 13 12 11 10 9 	8 	7 	6
	

5
	

4
	

3
	

2
	

1
	

0

0 	1 	0 	0 	0 	1 	1
	

Rs
	

R
	

Rd

Rs contains the 32-bit subtrahend.

Rd contains the 32-bit minuend.

SUBB subtracts both the contents of the source register and the carry bit
from the contents of the destination register; the result is stored in the des-
tination register. This instruction can be used with the SUB, SUBK, and
SUBI instructions for extended-precision arithmetic.

Syntax

Execution

Encoding

Operands

Description

The source and destination registers must be in the same register file.

Words

Machine
States

1

1,4

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

C 	AO 	 Al NCZV AO
SUBB Al,A0 	0 	>0000 0002 	>0000 0001 0000 > 0000 0001
SUBB Al,A0 	1 	>0000 0002 	>0000 0001 001 0 >0000 0000
SUBB Al,A0 	0 	>0000 0002 	>0000 0002 001 0 >0000 0000
SUBB Al,A0 	1 	>0000 0002 	>0000 0002 1100 >FFFF FFFF
SUBB Al,A0 	0 	>0000 0002 	>0000 0003 11 00 >FFFF FFFF
SUBB Al,A0 	0 	>7FFF FFFE 	>FFFF FFFF 01 00 >7FFF FFFF
SUBB Al,A0 	0 	>7FFF FFFE 	>FFFF FFFE 11 01 >8000 0000
SUBB Al,A0 	1 	>7FFF FFFE 	>FFFF FFFE 0100 >7FFF FFFF
SUBS Al,A0 	0 	>FFFF FFFE 	>FFFF FFFF 1100 >FFFF FFFF
SUBS Al,A0 	0 	>FFFF FFFE 	>FFFF FFFE 0010 >0000 0000
SUBB Al,A0 	1 	>FFFF FFFE 	>FFFF FFFE 1100 >FFFF FFFF
SUBB Al,A0 	0 	>FFFF FFFE 	>FFFF FFFD 0000 >0000 0001
SUBB Al,A0 	1 	>FFFF FFFE 	>FFFF FFFD 001 0 >0000 0000
SUBB Al,A0 	0 	>8000 0001 	>0000 0001 1 000 >8000 0000
SUBB Al,A0 	1 	>8000 0001 	>0000 0001 0001 >7FFF FFFF
SUBB Al,A0 	0 	>8000 0001 	>0000 0002 0001 >7FFF FFFF

12-225

Syntax

Execution

Encoding

SUBI <IW>,<Rd>[,W]

(Rd) - IW -+ Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

	

Subtract Immediate - 16 Bits 	 SUBI SUBI

0 	0 	0 	0 	1 	0 	1 	1 	1 	1 	1
	

R
	

Rd

-IW

Operands 	1W 	is a signed 16-bit immediate value.

Description 	SUBI subtracts the sign-extended, 16-bit immediate value from the con-
tents of the destination register; the result is stored in the destination reg-
ister.

The assembler will use the short form if the immediate value has been pre-
viously defined and is in the range -32,768 5 IW < 32,767. You can force
the assembler to use the short form by by following the register specifica-
tion with ,W:

Words

Machine
States

SUBI 	IW,Rd,W

The assembler will truncate any upper bits and issue an appropriate warning
message. Multiple-precision arithmetic can be accomplished by using this
instruction in conjunction with the SUBB instruction.

2

2,8

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if a borrow is generated, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO AO NCZV
SUBI 	32765,A0 	>0000 7FFE >0000 0001 0000
SUBI 	32766,A0 	>0000 7FFE >0000 0000 0010
SUBI 	32767,A0 	>0000 7FFE >FFFFFFFF 1100
SUBI 	32766,A0 	>8000 7FFE >8000 0000 1000
SUBI 	32767 ,A0 	>8000 7FFE >7FFF FFFF 0001
SUBI -32766,A0 	>FFFF 8001 >FFFFFFFF 1100
SUBI 	-32767 , AO 	>FFFF 8001 >0000 0000 0010
SUBI -32768,A0 	>FFFF 8001 >0000 0001 0000
SUBI -32767,A0 	>7FFF 8000 >7FFF FFFF 0100
SUBI -32768,A0 	>7FFF 8000 >8000 0000 1101

12-226

Syntax

Execution

Encoding

SUBI </L>,<Rd>[,L]

(Rd) - IL -* Rd

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

	

Subtract Immediate - 32 Bits 	 SUBI SUBI

0 	0 	0 	0 	1 	1 	0 	1 	0 	0 	0 R
	

Rd

-IL (LSW)

-IL (MSW)

Operands 	IL is a signed 32-bit immediate value.

Description 	SUBI subtracts the signed 32-bit immediate value from the contents of the
destination register; the result is stored in the destination register. The as-
sembler will use this opcode if it cannot use the SUBI IW,Rd opcode,
or if the long opcode is forced by following the register specification with
,L:

Words

Machine
States

SUBI 	IL , Rd, L

Multiple-precision arithmetic can be accomplished by using this instruction
in conjunction with the SUBB instruction.

3

3,12

Status Bits N 	1 if the result is negative, 0 otherwise.
C 	1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
V 	1 if there is an overflow, 0 otherwise.

Examples Code 	 Before After

AO AO NCZy
SUBI 	2147483647, AO 	>7FFFFFFF >0000 0000 0010
SUBI 	32768 , AO 	>0000 8001 >0000 0001 0000
SUBI 	32769,A0 	>0000 8001 >0000 0000 0010
SUBI 	32770 , AO 	>0000 8001 >FFFF FFFF 1100
SUBI 	32768,A0 	>8000 8000 >8000 0000 1000
SUBI 	32769,A0 	>8000 8000 >7FFF FFFF 0001
SUBI -2147483648, AO 	>8000 0000 >0000 0000 0010
SUBI 	-32769, AO 	>FFFF7FFE >FFFF FFFF 1100
SUBI 	-32770,A0 	>FFFF 7FFE >0000 0000 0010
SUBI 	- 32771,A0 	>FFFF7FFE >0000 0001 0000
SUBI 	-32770 , AO 	>7FFF 7FFD >7FFFFFFF 0100
SUBI 	-32771,A0 	>7FFF 7FFD >8000 0000 1101

12-227

Syntax

Execution

Encoding

SUBK <K>,<Rd>

(Rd) - K 	Rd

15 14 13 12 11 10 4 3 	2 	1 	0

Rd

9 8 7 6 5

0 	0 	0 	1 	0 	1
	

K
	

R

SUBK Subtract Constant SUBK

K is a constant from 1 to 32.

Before 	After

1

Operands

Description

Words

Machine
States

Status Bits

Examples

1,4

Code

SUBK 5,A0
SUBK 9,A0
SUBK 32,A0
SUBK 1,A0

AO
>0000 0009
>0000 0009
>0000 0009
>8000 0000

AO 	 NCVZ
>0000 0004 0000
>0000 0000 0010
>FFFF FFE9 1100
>7FFF FFFF 0001

N 1 if the result is negative, 0 otherwise.
C 1 if there is a borrow, 0 otherwise.
Z 	1 if the result is 0, 0 otherwise.
✓ 1 if there is an overflow, 0 otherwise.

SUBK subtracts the 5-bit constant from the contents of the destination re-
gister; the result is stored in the destination register. The constant is treated
as an unsigned number in the range 1-32, where K = 0 in the opcode cor-
responds to the value 32. The assembler converts the value 32 to 0. The
assembler issues an error if you try to subtract 0 from a register. Multi-
ple-precision arithmetic can be accomplished by using this instruction in
conjunction with the SUBB instruction.

12 - 228

SUBXY 	Subtract Registers in XY Mode 	SU BXY

Syntax 	SUBXY <Rs>,<Rd>

Execution 	(RdX) - (RsX) 	RdX
(RdY) - (RsY) 	RdY

Encoding
	

15 14 13 12 11 10 9
	

8
	

7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

1 	1 	1 	0 	0 	0 	1
	

Rs
	

R
	

Rd

Description 	SUBXY subtracts the source X and Y values individually from the destina-
tion X and Y values; the result is stored in the destination register.

This instruction can be used for manipulating XY addresses and is partic-
ularly useful for incremental figure drawing. These addresses are stored as
XY pairs in the register file.

The source and destination registers must be in the same register file.

Words

Machine
States

Status Bits

Examples

1

1,4

N 1 if source X field = destination X field, 0 otherwise.
C 1 if source Y field > destination Y field, 0 otherwise.
Z 1 if source Y field = destination Y field, 0 otherwise.
V 1 if source X field > destination X field, 0 otherwise.

Code Before

Al

After

NCZV AO AO
SUBXY Al,AO >0009 0009 >0001 0001 >0008 0008 0000
SUBXY Al ,AO >0009 0009 >0009 0001 >0000 0008 0010
SUBXY Al,AO >0009 0009 >0001 0009 >0008 0000 1000
SUBXY Al,AO >0009 0009 >0009 0009 >0000 0000 1010
SUBXY Al, AO >0009 0009 >0000 0010 >0009 FFF9 0001
SUBXY Al,AO >0009 0009 >0009 0010 >0000 FFF9 0011
SUBXY Al,AO >0009 0009 >0010 0000 >FFF9 0009 0100
SUBXY Al,AO >0009 0009 >0010 0009 >FFF9 0000 1100
SUBXY Al,AO >0009 0009 >0010 0010 >FFF9 FFF9 0101

12-229

TRAP
	

Software Interrupt
	

TRAP

Syntax

Execution

Encoding

TRAP <N>

(PC) 	-*SP
(ST) 	-*SP
Trap Vector(N) -* PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operands

Description

0 	0 	0 	0 	1 	0 	0 	1 	0 	0 	0
	

N

N is a trap number from 0 to 31.

TRAP executes a software interrupt. The return address (the address of
next instruction) and then the status register are pushed onto the stack.
The IE (interrupt enable) bit in ST is set to 0, disabling maskable interrupts,
and ST is set to >0000 0010. Finally, the trap vector is loaded into the PC.
The TMS34010 generates the trap vector addresses as shown below:

Trap
Number

 0
1 >FFFF FFCO
2 	>FFFF FFAO
3 	>FFFF FF80
4 	>FFFF FF80
5 	>FFFF FF40
6 	>FFFF FF20
7 	>FFFF FPrin
8 	>FFFF FEN
9 	>FFFF FECC

10 	>FFFF FFAO
11 	>FFFF FEBO
12 	>FFFF FFR0
13 	>FFFF
14 	>FFFF
15 	'FFFF
16 	>FFFF hAf
17 	>FFFF ra
18 	>FFFF cnA^
19 	>FFFF
20 	>FFFF
21 	>FFFF
22 	>FFFF
23 	>FFFF
24 	>FFFF r."1":
25 	>FFFF r.:
26 	>FFFF FCAO
27 	>FFFF
28 	>FFFF
29 	'FFFF F•.40
30 	>FFFF =.L2•
31 	>FFFF FC00

Reset
External Interrupt 1
External Interrupt 2

Non Mas•ab's Interrupt
Host litervipt
Display interrapt
Window Violation

Illegal Opcode

The stack is located in external memory and the top is indicated by the stack
pointer (SP). The stack grows in the direction of decreasing linear address.
The PC and ST are pushed on the stack MSW first, and the SP is predec-
remented before each word is loaded onto the stack.

12-230

Examples
Code Before

PC SP PC
TRAP 0 	>xxxx xxxx >8000 0000 @FFFF FFEO
TRAP 1 	>xxxx xxxx >8000 0000 @FFFF FFCO

TRAP 30 >xxxx xxxx >8000 0000 @FFFF FC20
TRAP 31>xxxx xxxx >8000 0000 @FFFF FC00

After
SP 	 ST

>8000 0000 >0000 0010
>7FFF FFCO >0000 0010

>7FFF FFCO >0000 0010
>7FFF FFCO >0000 0010

TRAP 	 Software Interrupt TRAP

Notes:

1. The level 0 trap differs from all other traps; it does not save the old
status register or program counter. This may be useful in cases
where the stack pointer is corrupted or uninitialized; such a situ-
ation could cause an erroneous write.

2. The NMI bit does not affect the operation of TRAP 8.

Words 1

Machine
States 	16,19 (SP aligned)

30,33 (SP nonaligned)

Status Bits 	N 0
C 0
Z 0
V 0

12-231

XOR 	 Exclusive OR Registers XOR

Syntax
	

XOR <Rs>,<Rd>

Execution
	

(Rs) XOR (Rd) --0 Rd

Encoding
	

15 14 13 12 11 10 9
	

8 7
	

6
	

5
	

4 3
	

2
	

1
	

0

0 	1 	0 	1 	0 	1 	1 I 	Rs 	 R I 	Rd

Description 	XOR bitwise-exclusive-ORs the contents of the source register with the
contents of the destination register; the result is stored in the destination
register.

You can use this instruction to clear registers (for example, XOR BO ,B0);
the CLR instruction also supports this function.

The source and destination registers must be in the same register file.

Words

Machine
States

Status B its

1

1,4

N Unaffected
C Unaffected
Z / if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	 After

AO 	 Al 	 NCZ V 	Al
XOR AO ,A1 	>FFFF FFFF >00000000 	xx0x >FFFF FFFF
XOR A0,A1 	>FFFF FFFF >AAAAAAAA 	xx0x >5555 5555
XOR A0,A1 	>FFFF FFFF >FFFF FFFF 	xxlx >0000 0000

12-232

Syntax

Execution

Encoding

XORI </L>,<Rd>

IL XOR (Rd) y Rd

15 14 13 12 11 10 9 8 7
	

6 5 4 3 2 1 0

0 	0 	0 	0 	1 	0 	1 	1 	1 	1 	0 R
	

Rd

IL (LSW)

IL (MSW)

XORI 	 Exclusive OR Immediate Value 	 XORI

Operands 	IL is a 32-bit immediate value.

Description 	XORI bitwise exclusive ORs the 32-bit immediate data with the contents
of the destination register; the result is stored in the destination register.

Words 	3

Machine
States 	3,12

Status Bits 	N Unaffected
C Unaffected
Z 	1 if the result is 0, 0 otherwise.
V Unaffected

Examples 	Code 	 Before 	After

AO 	 NCZ V AO
XORI >FFFFFFFF,A0 	>00000000 	xx0x >FFFF FFFF
XORI >FFFFFFFF,A0 	>AAAAAAAA 	xx0x >5555 5555
XORI >FFFFFFFF,A0 	>FFFFFFFF 	xxlx >0000 0000
XORI >00000000,A0 	>00000000 	x x 1 x >00000000
XORI >00000000,A0 	>FFFFFFFF 	xx0x >FFFF FFFF

12-233

ZEXT 	 Zero Extend to Long ZEXT

Description

ZEXT <Rd>[,<F>]

(field) Rd -- ■ (zero-extended field) Rd

15 14 13 12 11 10 9 	8 	7
	

6
	

5
	

4
	

3
	

2
	

1
	

0

0 	0 	0 	0 	0 	1
	

F
	

1 	0 	0 	1
	

R
	

Rd

F 	is an optional parameter, it defaults to 0.
F=0 selects FS0 for the field size.
F=1 selects FS1 for the field size.

ZEXT zero extends the right-justified field contained in the destination reg-
ister by zeroing all the nonfield bits of the destination register. The field size
for the zero extension is specified by the FS0 or FS1 bits in the status reg-
ister, depending on the value of F.

Syntax

Execution

Encoding

Operands

Words
	

1

Machine
States
	

1,4

Status Bits
	

N Unaffected
C Unaffected

1 if the result is 0, 0 otherwise.
V Unaffected

Examples Code Before After

FSO FS1 AO NCZV AO
ZEXT AO , 0 32 x >FFFF FFFF xx0x >FFFF FFFF
ZEXT AO , 0 31 x >FFFF FFFF xx0x >7FFF FFFF
ZEXT AO , 0 1 x >FFFF FFFF xx0x >00000001
ZEXT A0,0 1 6 x >FFFF0000 xx1x >0000 0000
ZEXT AO , 1 x 16 >FFFF0000 x x 1x >0000 0000

12 - 234

13. Instruction Timings

Section 12, The TMS34010 Instruction Set, describes each GSP instruction,
including instruction cycle timings. This section provides details pertaining to
instruction timings for the following groups of instructions:

Section 	 Page
13.1 General Instructions 	 13-2
13.2 MOVE and MOVB Instructions 	 13-4
13.3 FILL Instructions 	 13-9
13.4 PIXBLT Instructions 	 13-16
13.5 PIXBLT Expand Instructions 	 13-26
13.6 The LINE Instruction 	 13-34

13-1

Instruction Timings - General Instructions

13.1 General Instructions

General instructions include all GSP instructions except MOVEs, MOVBs,
Fins, PIXBLTs, and LINE.

Each instruction description in Section 12 contains a Machine States field
that lists the number of CPU states required to execute the instruction. This
description appears as:

Machine
States 	<cache hit case>, <cache disabled case>

These two values represent the number of CPU states required to execute the
instruction for each of two cases:

• The cache hit case gives the number of execution states if the in-
struction and its extension words reside entirely in cache. Thus, only
actual execution states (using the CPU) and external memory cycles for
data transfer are counted with the instruction.

• The cache disabled case gives the number of execution states if the
cache is disabled when the instruction is executed. In this case, external
memory cycles for fetching the instruction word and any extension
words are counted with the instruction in addition to states through the
CPU and memory states for data transfer. Cache is usually only disabled
during debugging.

Cache disabled timing is not necessarily worst case timing. It may sometimes
be exceeded when the cache is enabled but the instruction is not in the cache
(this is known as a cache miss).

13.1.1 Best Case Timing — Considering H idden States

Best case timing occurs when an instruction is executed entirely in parallel
with the end of a previous instruction. According to some microprocessor
conventions, many TMS34010 instructions would have a best case timing of
0 states. Since this is unrealistic, the convention used here assigns a finite
(nonzero) timing value but allows for instruction overlap by using the concept
of hidden states.

Hidden states are memory write cycles that occur at the end of a given in-
struction. Parallelism is achieved when the CPU is executing instructions at
the same time the memory controller is writing to memory. The machine states
consumed by the instructions that the CPU is executing hide the machine
states consumed by the write cycles. These hidden machine states are not
counted against the instruction that incurs them, but are counted against
subsequent instructions. If an instruction uses the local bus before all of the
hidden cycles have been overlapped by subsequent instructions, that instruc-
tion must wait for the hidden cycles to complete. Up to nine machine states
may be hidden by write cycles incurred by a single instruction.

13-2

Instruction Timings - General Instructions ,

In the timing charts in this section and in the Machine States portions of the
instruction descriptions, hidden states are indicated by parentheses as shown
below:

Machine
States 	<cache hit case>+(<hidden states>), <cache disabled case>

13.1.2 Other Effects on Instruction Timing

Instruction timing varies, depending on:

• Whether the cache is enabled

• Whether the instruction and extension words are in cache or not

• The field size and the word alignment of memory data manipulated
by the instruction

The timing for some instructions (particularly the MOVE, MOVEB, LINE, FILL,
and PIXBLT instructions) is affected by the values of implied operands and
on the alignment and field sizes of any associated memory accesses.

In addition, several system-dependent factors that are not included in timing
values may further influence the instruction timings:

• Wait states on the local memory bus

• Host accesses via the host port

• Display refresh operations

• DRAM refresh operations

• HOLD/HLDA accesses

13-3

Instruction Timings - MOVE and MOVB Instructions

13.2 MOVE and MOVB Instructions

Timings for MOVE and MOVB instructions are in the following tables:

Table 	 Page
13-1 MOVE and MOVB Memory-to-Register Timings 	 13-5
13-2 MOVE and MOVB Register-to-Memory Timings 	 13-6
13-4 MOVE Memory-to-Memory Timings 	 13-7

MOVE and MOVB instructions are field operations, so their timings are af-
fected by factors such as memory address, field size, and field extensions.
These factors define the field alignment, which in turn defines the number of
memory states required to insert or extract the field from memory. Figure 13-1
illustrates seven cases of alignment, labelled A-G, that are used in the MOVE
and MOVB timing tables.

Case A 	Word N _41
18-Ellt Field

Case B

Case C 4 Word N+1 I 	Word N
	32-Blt Field 	4.

Case D
	

Word N+1 I 	Word N 	1
*-Fleld --Pi

Case E 	Word N+1 I 	Word N j
14- Field 	

Case F 	Word N+1 	I 	Word N 	1
14-- Field ---101

	

Case G I Word N+2 I Word N+1 I 	Word N 	I
14 	 Feld 	 01

Figure 13-1. Field Alignments in Memory

Case A A 16-bit field is aligned on word boundaries.

Cases B1-B3
The field length is less than 16 bits.

13-4

Instruction Timings - MOVE and MOVB Instructions

• In Case B1, the field starting address is not aligned to a word
boundary, although the end of the field coincides with the end
of the word.

• In Case B2, the field starting address is aligned to a word
boundary, but the end of the field does not coincide with the
end of the word.

• In Case B3, the field length is 14 bits or less, and neither the
start nor the end of the field is aligned to a word boundary.

Case C A 32-bit field is aligned on word boundaries.

Case D The field size is greater than 16 bits. The field starting address is not
aligned to a word boundary, although the end of the field coincides
with the end of a word.

Case E The field size is greater than 16 bits. The field starting address is
aligned to a word boundary, but the end of the field does not coin-
cide with the end of a word.

Case F The field straddles the boundary between two words. Neither the
start nor the end of the field is aligned to a word boundary.

Case G The field size ranges from 18 to 32 bits, and the field straddles two
word boundaries. Neither the start nor the end of the field is aligned
to a word boundary.

13.2.1 Moves Between Registers and Memory

Table 13-1 lists the timing for memory-to-register moves for each case of the
destination alignment in Figure 13-1. Table 13-2 lists the timing for regis-
ter-to-memory moves. Note that there are no hidden states for memory-to-
register moves.

Table 13-1. MOVE and MOVB Memory-to-Register Timings

Instruction
Field Alignment Type

A or B C, D, E, F G

MOVB *Rs,Rd 3,6 5,8 N/A

MOVB *Rs(Disp),Rd 5,11 7,13 N/A

MOVB @Address,Rd 5,14 7,16 N/A

MOVE *Rs, Rd 3,6 5,8 7,10

MOVE *Rs+,Rd 3,6 5,8 7,10

MOVE -*Rs,Rd 4,7 6,9 8,11

MOVE *Rs(Disp),Rd 5,11 7,13 9,15

MOVE @Address,Rd 5,14 7,16 9,19

Notes: 1. Add 1 state to MOVES for sign extension.
2. The first number specifies the number of cycles required when the entire in-

struction is contained within cache (cache hit case). The second number
specifies the number of cycles required when the cache is disabled (cache
disabled case).

13-5

Instruction Timings - MOVE and MOVB Instructions

Table 13-2. MOVE and MOVB Register-to-Memory Timings

Instruction
Field Alignment Type

A B or C D or E F G

MOVB Rs,*Rd N/A 1 +(3),7 N/A 1 +(7),11 N/A

MOVB 	Rs,*Rd(Disp) N/A 3+(3),7 N/A 3+(7),13 N/A

MOVB Rs,@Address N/A 1 +(3),7 N/A 3+(7),13 N/A

MOVE Rs,*Rd 1 + (1),5 1 +(3),7 1 +(5),9 1 +(7),11 1 +(9),13

MOVE Rs,"Rd+ 1 +(1),5 1 +(3),7 1 + (5),9 1 +(7),11 1 +(9),13

MOVE Rs,-"Rd 2+(1),6 2+(3),8 2+(5),10 2+(7),12 2+(9),14

MOVE Rs,.Rd(Disp) 3+(1),7 3+(3),9 3+(5),11 3+(7),13 3+(9),15

MOVE Rs,@Address 3+(1),7 3+(3),9 3+(5),11 3+(7),13 3+(9),15

Note: The first number specifies the number of cycles required when the entire instruction is contained
within cache (cache hit case). The second number specifies the number of cycles required when
the cache is disabled (cache disabled case). Hidden states are indicated by parentheses.

13.2.2 Memory-to-Memory Moves

Table 13-4 lists memory-to-memory move timings for each combination of
source and destination alignment. Table 13-3 lists numeric indices which are
used in Table 13-4. The indices are associated with each source and desti-
nation alignment pair (the alignments are shown in Figure 13-1 on page
13-4). To use these tables:

1) Determine the source and destination alignment,
2) Locate the alignment and its index in Table 13-3, and
3) Use the index to select the correct column for a particular MOVE

addressing mode in Table 13-4.

Table 13-3. Alignment Indices for Memory-to-Memory Moves

Source Field
Alignment

Destination Field Alignment

A B C D E F G

A 1 - - - - 3 -

B - 2 - - - 3 -

C - - 6 - - - 9

D - - - 7 7 8 9

E - - - 7 7 8 9

F 4 5 - 7 7 8 9

G - - 10 11 11 12 13

13-6

Instruction Timings - MOVE and MOVB Instructions

Table 13-4. MOVE Memory-to-Memory Timings

Instruction
Memory-to-Memory Index - Source to Destination

1 2 3 4 5 6 7

MOVB •Rs,`Rd N/A 3+(3),7 3+(7),13 N/A 5+(3),11 N/A N/A

MOVB • Fis(0),•Fid(D) N/A 5+(3),7 5+(7),21 N/A 6+(3),13 N/A N/A

MOVB @SAddr,@DAddr N/A 7+(3),7 7 +(7),29 N/A 6 +(3),12 N/A N/A

MOVE •Rs,'Fid 3+(1),7 3+(3),9 3 +(7),13 5+(1),9 5+(3),11 5 +(3),11 5+(5),1 3

MOVE *Rs+,•Rd+ 4,7 4+(2),9 4+(6),13 6,9 6+(2),11 6 + (2),11 6+(4),13

MOVE -•Rs,-•Rd 4+(1),8 4+(3),10 4+(7),14 6+(1),10 6+(3),12 6 +(3),12 6+(5),14

MOVE *Rs(S),*Rd+ 5+(1),12 5+(3),14 5 +(7),18 7+(1),14 7+(3),16 7 +(3),13 7+(5),15

MOVE •Rs(S),*ficl(D) 5+(1),15 5+(3),17 5+(7),21 7+(1),17 7 +(3),19 7 + (3),16 7+(5),18

MOVE @SAddr,•Rd+ 5+(1),15 5+(3),17 5+(7),21 7+(1),17 7+(3),19 7 +(3),16 7+(5),18

MOVE @SAddr,@DAddr 7+(1),23 7+(3),25 7 + (7),29 9+(1),25 9+(3),27 9 +(3),24 9+(5),26

Instruction
Memory-to-Memory Index - Source to Destination

8 9 10 11 12 13

MOVB •Rs,`Rd 5+(7),15 N/A N/A N/A N/A N/A

MOVB *Rs(D),"Rd(D) 7+(7),19 N/A N/A N/A N/A N/A

MOVB @SAddr,@DAddr 9+(7),27 N/A N/A N/A N/A N/A

MOVE •Rs,'Rd 5+(7),15 5+(9),17 7+(3),13 7 +(5),15 5+(7),17 9+(9),21

MOVE •Rs+,•Rd+ 6+(6),15 6+(8),17 8+(2),13 8+(4),15 6+(6),17 10+(8),21

MOVE -•Rs,-*Fld 6+(7),15 6+(9),18 8+(3),14 8+(5),16 6 +(7),18 10+(9),22

MOVE •Rs(S),"Rd+ 7 +(7),16 7+(9),19 9+(3),18 9+(5),20 7+(7),22 11+ (9),26

MOVE •Rs(S),•Rd(D) 7+(7),19 7+(9),22 9+(3),21 9+(5),23 7+(7),25 11 +(9),29

MOVE @SAddr,'Rd+ 7+(7),19 7 +(9),22 9+(3),21 9+(5),23 7+(7),25 11 +(9),29

MOVE @SAddr,@DAddr 9+(7),27 9+(9),30 11 +(3),29 11 +(5),31 9+(7),33 13+(9),37

Note: The number on the left specifies the number of cycles required when the entire instruction is con
tained within cache cache hit case). The number on the right specifies the number of cycles re
quired when the cache is disabled (cache disabled case). Hidden states are indicated by
parentheses.

13-7

>110

Word Boundaries

>FO 	>100

>150 >180 >181 	>170 >180

31 bits

Data Write

31 bits

Word Boundaries

Data Read 	1
>E0 >E5

•

Instruction Timings - MOVE and MOVB Instructions

13.2.3 MOVE Timing Example

Figure 13-2 illustrates a MOVE @SAddress ,@DAddress , 0 instruction with
these initial implied operands:

DADDR = >161
SADDR = >E5
FS0 	= >31
FEO 	 don't care

Alignment G

Alignment E

Figure 13-2. MOVE Timing Example

As Figure 13-2 shows, this is a memory-to-memory move with a field size of
31 bits. The source data begins at address >E5 and spans three words; as
Figure 13-1 (page 13-4) shows, the source data has alignment G. The des-
tination location begins at address >161 and spans two words; as Figure 13-1
shows, the destination alignment is type E. Table 13-3 (page 13-6) shows
the source-to-destination alignment indices for Table 13-4; alignment G to E
points to column 11 in Table 13-4. By locating the entry for a MOVE
@SAddress ,@DAddress in column 11 of Table 13-4, we see that the timing
for this example is 11 + (5),31.

Thus, this MOVE example would consume 11 machine states (plus 5 hidden
states) if this code resided in cache. If the instruction cache was not enabled,
this example would consume 31 machine states. The memory accesses at the
end of the MOVE consume 5 machine states, which may be hidden by sub-
sequent cache-resident instructions.

13-8

Instruction Timings - FILL Instructions

13.3 FILL Instructions
The total time for the FILL instruction is calculated by adding a setup time to
a transfer time:

FILL time = FILL setup time + FILL transfer time

• The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. (This may include XY
to linear conversions and window preclipping.) The result of the setup
includes the dimensions of the array that is to be moved.

• The transfer sequence performs the actual data transfer from the
source register to the destination array.

FILL setup and transfer timings are in the following tables:

Table 	 Page
13 - 5 FILL Setup Time 	 13-9
13-6 FILL Transfer Timingt 	 13-10

13.3.1 FILL Setup Time

FILL setup time is the overhead incurred by the FILL instructions from per-
forming initialization, XY conversions, and window operations. Window op-
erations are performed before the FILL transfer begins. Window options that
affect FILL setup timing include:

• No window clipping (W=0)

• A window clip that requires no change (array fits)

• A window clip that affects the starting pointer (start adjust)

• A window clip that affects the array transfer dimensions (dimension
adjust)

• A window clip that affects both the starting and the ending pointers

(adjust both)

• A window miss requesting an interrupt

• A window hit

Table 13-5 illustrates the effects of windowing operations on FILL setup tim-
ing. Corner adjust operations have no effect on FILL setup timing.

Table 13-5. FILL Setup Time

Window Operation Corner Adjust

Instruction W=0
Array
Fits

Start
Adjust

Dimens
Adjust

Adjust
Both Miss Hit

PBH=1
pBV=0

PBH=0
PBV=1

PBH=1
PBV=1

FILL 	L 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

FILL XY 6 9 16 12 20 N/A N/A N/A N/A N/A

Note: These timings are for the cache hit case; add 3 machine states for cache disabled timing.
For example, a FILL XY with preclipping that requires both the starting and
ending array corners to be adjusted would consume 20 states of setup time.

13-9

Instruction Timings - FILL Instructions

13.3.2 FILL Transfer Timing

Table 13-6 lists FILL transfer timings. Transfer timing is the time required (in
addition to the setup time) to execute the actual data transfer to memory.
Transfer timing is based on several parameters such as the number of rows in
the adjusted array (L), the number of words affected per row (N), graphics
operations (G), and four possible destination array alignments (A, B, C, and
D). These factors are described in the list that follows the table.

Table 13-6. FILL Transfer Timingt

Line Length
Array Alignments

A B C D

Short (N=1) (1+ G)L + 2 (2+ G)L+ 2 (2+ G)L + 1 (2+ G)L + 1

Medium (N=2) (2+2 G)L + 2 (3+2 G)L + 2 (3+2 G)L + 2 (4+2 G)L + 1

Long (N>3) (1 + NG)L + 2 (2+ NG)L + 5 (3+ NG)L + 2 (4+ NG)L + 1

t Subtract any alignment/graphics adjustment from these values
Key:
L Number of rows (see page 13-10)
N Number of words per row (see page 13-12)
G Value derived from selected graphics operation (see Table 13-7 on page 13-12)

• Number of Rows in the Adjusted Array (L)

The working dimensions (L rows x M pixels) for the fill are determined by the
originally supplied destination pointer (DADDR) and dimensions (DYDX) in
conjunction with window preclipoing.

• Alignment of Leading and Trailing Words in Rows

After clipping, the data transfer portion of the FILL treats the array as a series
of L rows of M pixels. These M pixels are spread across N words in each row
of the destination array. Figure 13-3 illustrates a single row of a destination
array in memory. The FILL algorithm resolves rows into three portions:

1) The leading edge at the beginning of the row
2) The center N-2 words of the row
3) The trailing edge at the end of the row

Word Boundaries

N Words

Leading
Pixels

4 	

4- Center N-2 Words -41

M Pixels

Trailing
Pixels

	•

	•

Figure 13-3. Pixel Block Alignment in X

13-10

Instruction Timings - FILL Instructions

As Figure 13-3 shows, a row of N words includes one word each for the
leading and trailing parts of the transfer and N-2 words for the center portion.
The FILL always transfers the center portion of the row as a series of 16-bit
words. Thus, the alignment of the leading and trailing words in the row
characterize the alignment type of the array. Figure 13-4 illustrates the four
possible alignments (A, B, C, and D) of destination array rows within pixel
blocks in memory.

Alignment A

Alignment B

Alignment C

N Words

Word Boundaries

Leading 4—Center N-2 Words p 	Trailing

Leading 	 Center N-2 Words —4 	Trailing

Leading 	i4—Center N-2 Words 	 Trailing

Alignment D

Leading 4—Center N-2 Words—P; 	Trailing

	 N Words

Figure 13-4. Pixel Block Alignments

Word alignment is constant from row to row because DPTCH is constrained
to be a multiple of 16 for most FILLs. If a FILL is only one pixel wide, and
all the rows are contained in single words in memory, DPTCH may be any
value. If DPTCH is not a multiple of 16, word alignment may vary between
cases B, C, and D. Average timing for this situation may be derived using
alignment C. Worst case timing for this situation may be derived using align-
ment D.

1 3 -1 1

Instruction Timings - FILL Instructions

• Row Length (Number of Words N per Row)

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words N in a row.
These three cases include:

Short case. The destination array row occupies only one word in me-
mory (N=1). In this case, only one write (or read-modify-write) oper-
ation is required to place the row into the destination array. Alignment
for the short case is either type A for exactly aligned arrays or type B, C,
or D for nonaligned arrays (which require a read-modify-write).

Medium case. The destination row occupies two words in memory
(N=2). In this case, the row has no center portion and the array align-
ment is determined by the alignments of the first and last words in the
row.

Long case. The destination row occupies all or part of at least three
words (N>3). This is the general case for array alignment discussions.

• Transfer Direction in X

Transfer direction does not apply to FILLs. FILL transfers proceed a single
word of pixels at a time in the order of increasing X and increasing Y. This
corresponds to a transfer from left-to-right and top-to-bottom for the default
screen orientation.

• Selected Graphics Operations (G)

Graphics operations such as plane masking, transparency, and pixel process-
ing influence FILL transfer timing because the destination pixels must be read
before they are replaced. However, the effects of these operations vary be-
cause they are performed by different portions of the TMS34010 hardware.
For instance, plane masking, transparency, and field insertion are all performed
by the GSP memory controller; any combination of these operations uses 2
machine states for each word written. Pixel processing, on the other hand, is
performed by the GSP CPU, and requires 2, 4, 5, or 6 states per word (inde-
pendently of other operations). The minimum cycle time for any graphics
operation, then, is 2 machine states (one memory cycle) using the pixel
processing rep/ace operation, with plane masking and transparency disabled.
Table 13-7 shows these values.

Table 13-7. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Graphics Operation Replace
Other

Booleans
or ADD

ADDS,SUB
MAX or

MIN
SUBS

No plane masking or
transparency

2 4 5 6

Read-modify-write, plane
masking, or transparency

4 6 7 8

13-12

Instruction Timings - FILL Instructions

• Alignment/Graphics Adjustment

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-7 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have calculated
the timing using the proper value for the graphics operation, you can sub-
tract 2 states (cases B and C) or 4 states (case D) per row from the transfer
timings for the respective alignment cases. Case A requires no adjustment.

13.3.3 FILL Timing Examples

FILL timing is calculated by adding the FILL setup value to the FILL transfer
value:

FILL time = FILL setup time + FILL transfer time - alignment adjustment

FILL setup timings, transfer timings, and the effects of graphics operations are
in the following tables:

Table 	 Page
13-5 FILL Setup Time 	 13-9
13-6 FILL Transfer Timingt 	 13-10
13-7 Timing Values per Word for Graphics Operations (G) 	 13-12

The following three examples illustrate timing for a FILL XY with these initial
implied operands:

DADDR = >004400E4 (X=228, Y=68)
DPTCH = >800 (X extent = 512 pixels x 4 bits per pixel)
OFFSET = >0
WSTART = >004900EB (X=235, Y=73)
WEND = >005F0140 (X=320, Y=95)
DYDX = >0014003C (DX=60, DY=20)
PSIZE >4
CONVDP = >14 (LMO DPTCH)

13-13

Even word 	 Even word
boundary 	 boundary

4 	 60 	 ►

(320,73)

N= 	53 	=13.52=14
pixels per word

(235,95) 4-

c WEND
(320,45)

DADDR
A

20

• • •
1228 69)

WSTART -), 4-- M-53

(-E-355-1

•

FILL
L=15 Z 	 AREA

Instruction Timings - FILL Instructions

The setup and transfer timings for these examples are the same, except each
uses a different graphics operation. Figure 13-5 illustrates the destination ar-
ray and window used in these examples. The shaded portion is the area of
intersection.

• Setup Time: W=3 is the window preclipping option. This option re-
quires the starting corner to be adjusted. As Table 13-5 shows, the
setup time for a FILL XY with these options is 16 machine states.

• Transfer Time: As Figure 13-5 shows, the window preclipping results
in an array with a Y dimension of 15 (L=15). The resulting X dimension
is 53 pixels and the pixel size is 4; 53 divided by 4 produces 13.25, so
N=14. Since this N is greater than 3, this example conforms to the long
case. The trailing edge is word aligned but the leading edge is not, so
the alignment type is C. As Table 13-6 shows, the transfer time for a
FILL XY with these characteristics is (3+NG)L + 2.

Figure 13-5. FILL XY Timing Example

Example 13 - 1. W=3, T=0, PP=O, No Plane Masking

The pixel processing rep/ace operation has been selected, and transparency
and plane masking are not enabled. According to Table 13-7, G=2. The FILL
timing for this instruction can be calculated as follows:

FILL time = FILL setup time + FILL transfer time
= Adjust pointer

•

(3+NG)L + 2
= 16 	

•

[(3 + (14x2)]15 + 2
= 483 states

The FILL writes 795 pixels (at four bits per pixel) in these 483 states.

13-14

Instruction Timings - FILL Instructions

Example 13-2. W=3, T=0, PP=20, No Plane Masking

The pixel processing MAX operation has been selected, and transparency and
plane masking are not enabled. According to Table 13-7, G=5. The FILL
timing is now calculated as:

FILL time = FILL setup time + FILL transfer time
= Adjust pointer + (3+NG)L + 2
= 16 	 + [3 + (5 x 14)]15 + 2
= 1 ,1 1 3 states

This FILL requires 1,113 states to merge the pixel values in the COLOR1 reg-
ister with those in the destination array using the MAX operation. The portion
of the array lying within the window contains 795 pixels.

Example 13 - 3. W=3, PP=S, T=1, Plane Masking Enabled

The pixel processing XNOR operation has been selected, and transparency
and plane masking are enabled. According to Table 13-7, G=6. Alignment
type C incurs a read-modify-write at the leading edge of each row. The extra
read included in the RMW can be used by the plane masking or transparency
hardware, so an alignment/graphics adjustment is necessary. The adjustment
negates the effect of the extra read cycles in each row that are attributed to the
graphics operations. For this example, the amount subtracted is 2 (the num-
ber of machine states for a read cycle) times L (the number of rows). The FILL
timing is now calculated as:

FILL time 	= FILL setup time + FILL transfer time - 	adjustment
= Adjust pointer + (3+NG)L + 2 - 	2 L
= 16 + 	[3 + (6 x 14)]15 + 2 	- 	(2 x 15)
= 1,293 states

This FILL requires 1,293 states to write the XNOR of the pixel values in the
COLOR1 register with those in the destination array for 795 pixels (at four bits
per pixel).

13.3.4 Interrupt Effects on FILL Timing

The FILL instruction may be interrupted on a word boundary during the
transfer portion of the FILL algorithm. It can also be interrupted at the end
of each row. The context of the FILL is saved in reserved registers, and the
PBX bit is set in the copy of the status register that is pushed onto the stack.
The worst case latency caused by an interrupt is 20 machine states for the in-
terrupt to be recognized. The time for the context switch must be added to
this. See Section 8.4.1, Interrupt Latency (page 8-5) for context switch in-
formation.

13-15

Instruction Timings - PIXBLT Instructions

13.4 PIXBLT Instructions

PIXBLT instructions covered in this section include:

• PIXBLT L,L
• PIXBLT XY,L
• PIXBLT L,XY
• PIXBLT XY,XY

(PIXBLT B,L and PIXBLT B,XY are covered in Section 13.5.)

The total PIXBLT instruction timing is obtained by adding a setup time to a
transfer time:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time

• The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. 	(This includes
XY-to-linear conversion and window preclipping.) The result of the
setup includes the dimensions of the source array.

• The transfer sequence performs the actual data transfer from the
source array to the destination array.

PIXBLT setup and transfer timings are in the following tables:

Table 	 Page
13-8 PIXBLT Setup Time 	 13-16
13-9 PIXBLT Transfer Timingt 	 13-18

13.4.1 PIXBLT Setup Time

Table 13-8 lists PIXBLT setup times. Setup time is the overhead incurred by
the PIXBLT instructions in performing initialization, XY conversions, window
options, and corner adjust. Setup time is affected by both the window and
corner adjust operations. The effects of these operations are described in the
list that follows Table 13-8.

Table 13-8. PIXBLT Setup Time

Window Operation Corner Adjust

Instruction W=0
Array
Fits

Start
Adjust

Dimens
Adjust

Adjust
Both Miss Hit

PBH=1
PBV=0

PBH=0
PBV=1

PBH=1
PBV=1

PIXBLT L,L 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

PIXBLT XY,L 9 N/A N/A N/A N/A N/A N/A +1 +2 +4

PIXBLT L,XY 9 12 19 15 23 N/A N/A +1 +2 +4

PIXBLT XY,XY 12 15 22 18 26 N/A N/A +1 +2 +4

For example, consider a PIXBLT XY,XY instruction with preclipping that re-
quires both the starting and ending array corners to be adjusted (PBH=1 and
PBV=O). The setup timing for this example would be 26+1 =27 states.

13 - 16

Instruction Timings - PIXBLT Instructions

• Window Operations

Window operations are performed before the PIXBLT transfer begins. Win-
dow options that affect PIXBLT setup timing include:

No window checking (W=0)
A window clip that requires no change (array fits)
A window clip that affects the starting pointer (start adjust)
A window clip that affects the array transfer dimensions (dimension
adjust)
A window clip that affects both the starting and ending pointers (adjust
both)
A window miss that requests an interrupt
A window hit

• Corner Adjust (PBH and PBV)

The TMS34010 may need to adjust the starting corner of the source and des-
tination arrays for the PIXBLT L,XY, PIXBLT XY,L, and PIXBLT XY,XY in-
structions. The default starting corner is the upper left corner of the array.
This can be altered by changing the values of the PBH and PBV (PIXBLT
horizontal and vertical) bits. Possible corner adjustments (with default origin
ORG=O) include:

No corner adjust (PBH=O, PBV=0)
Adjust to upper right corner (PBH=1, PBV=0)
Adjust to lower left corner (PBH =0, PBV=1)
Adjust to lower right corner (PBH=1, PBV=1)

The TMS34010 adjusts corners before PIXBLT execution begins. For each
combination of PBH and PBV, the GSP adjusts the source and destination
starting address pointers to point to the appropriate corner of the arrays. This
assures that the same pixel block is moved, despite the difference in X and Y
transfer directions.

The original source and destination pointers must be supplied through soft-
ware. The pointers should indicate the least significant pixel in the array, ex-
cept for PIXBLT L,L. For this instruction, the PBH and PBV bits affect only
the direction of the move; the GSP does not adjust the starting corner.

1 3-1 7

Instruction Timings - PIXBLT Instructions

13.4.2 PIXBLT Transfer Timing

Table 13-9 lists PIXBLT transfer timings. Transfer timing is the time required
(in addition to the setup time) to execute the actual data transfer to memory.
Transfer timing is affected by several factors, including the number of rows in
the adjusted array (L), the number of words affected per row (N), graphics
operations (G), and four possible destination array alignments (A, B, C, and
D). These factors are described in the list that follows the table.

Table 13 - 9. PIXBLT Transfer Timingt

PBH = 0

1:1•11.x .1,r•nrilli...
.ind Aiirinnwill

Destination Array Alignment

A B C D

Short (N=1)
D > S
D 7 S

(G+4)L + 5
(G+4)L + 5

(G+6)L + 3
(G+6)L + 3

(G+6)L + 3
(G+6)L + 3

(G+6)L + 3
(G+6)L + 3

Medium (N=2:
D > S
D < S

[2+(4+2G)]L + 5
[4+(4+2G)]L + 4

[4+(4+2 G)]L + 3
[6+(4+2 G)]L + 2

[4+(4+2 G)]L + 5
[6+(4+2 G)]L + 4

[6+(4+2 G)]L + 3
[8+(4+2 G)]L + 2

Long (N>3)
D > S
D < S

[(2+ G)N]L + 5
[2+(2 G)N]L + 4

[2+(2+ G)N]L + 3
[4+(2 G)N]L + 2

[2+(2+ G)N]L + 5
[4-1-(2 G)N]L. + 4

[2+(4+ G)N]L + 3
[6+(2 G)N]L + 2

PBH = 1

Row .Lniniths
and Ailluirnont

Destination Array Alignment

A B C D

Short (N=1)
D > S
D< S

(G +3)L + 8
(G+3)L + 8

(G+4)L + 7
(G+4)L + 7

(G +4)L -, 7
(G+4)L + 7

(G +4)L + 7
(G +4)L + 7

Medium (N=2)
D > S
D < S

[2+(4+2 G)]L + 4
[4+(4+2 G)]L + 5

[4+(4+2 G)]L + 3
[5+(4+2 G)]L + 4

[4+(4+2 G)]L + 4
[6+(4+2 G)]L + 5

[6+(4+2 G)]L + 3
[7+(4+2 G)]L + 4

Long (N>3)
D > S
D 7 S

[1+(2+ G)N]L + 4
[3+(2+ G)N]L + 5

[3+(2+ G)N]L + 3
[4+(2+ G)N]l. + 4

[3+(2+ G)N]L + 4
[5+(2+ G)N]L + 5

[5+(2+ G)N]L + 3
[6+(2+ G)N]L + 4

t
	

Subtract any alignment/graphics adjustment from these values
Key:
L 	Number of rows in the array (see page 13-19)
N 	Number of destination words per row (see page 13-20)
G 	Value dependent on selected graphics operation (see Table 13-10 on page 13-22)
D>S First destination to source alignment case (see page 13-21)
D<S Second destination to source alignment case (see page 13-21)

13 - 18

Instruction Timings - PIXBLT Instructions

• Number of Rows in the Array (L)

The working dimensions (L rows by N words) for the block transfer are de-
termined by the original destination pointer (DADDR) and dimensions
(DYDX) in conjunction with window preclipping. L represents the number
of rows in the clipped array.

• Alignment of Leading and Trailing Words in Rows

After clipping, the data transfer portion of the PIXBLT treats the array as a
series of L rows of M pixels. These M pixels are spread across N words in
each row of the destination array. N and L affect the transfer timing. Align-
ment does not vary from row to row because DPTCH is constrained to be a
power of two.

Figure 13-6 illustrates a single row of a destination array in memory. The
PIXBLT algorithm resolves rows into three portions:

1) The leading edge at the beginning of a row

2) The center N-2 words of the row

3) The trailing edge at the end of the row

Word Boundaries

N Words

4- Center N-2 Words --Pi

M Pixels

Figure 13-6. Pixel Block Alignment in X

As Figure 13-6 shows, a row of N words includes one word each for the
leading and trailing parts of the transfer and N-2 words for the center portion.
The PIXBLT always transfers the center portion of the row as a series of 16-bit
words. Thus, the alignment of the leading and trailing portions characterize
the alignment type of the array. Figure 13-7 illustrates the four possible
alignments (A, B, C, and D) of a destination array.

Leading
Pixels

I 	

Trailing
Pixels

	■

13-19

Instruction Timings - PIXBLT Instructions

	 N Words 	

l o.--Word Boundaries

Alignment A

Leading 	1:4-Center N1-2 Words 	rl 	Trailing

Alignment B

Alignment C

Leading 	----Center N-2 Words-4i 	Trailing

Leading 	 Center N-2 Words 	>; 	Trailing

Alignment D

Leading io-Center N-2 Words-r.; 	Trailing

N Words

Figure 13-7. Pixel Block Alignments

• Row Length (Number of Words N per Row)

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words N in a row.
These three cases include:

Short case. The destination array row occupies only one word in me-
mory (N=1). In this case, only one write (or read-modify-write) oper-
ation is required to place the row into the destination array. Alignment
for the short case is either type A for exactly aligned arrays or type B, C,
or D for nonaligned arrays (which require a read-modify-write).

Medium case. The destination row occupies two words in memory
(N=2). In this case, there is no center portion to the row and the array
alignment is determined by the alignments of the first and last words in
the row.

Long case. The destination row occupies all or part of at least three
words (N>3). This is the general case for array alignment discussions.

13-20

Instruction Timings - PIXBLT Instructions

• Relative Alignment of Source Rows to Destination Rows

The alignment of the leading pixels in a source row with respect to a destina-
tion row influences PIXBLT transfer timing. This alignment determines
whether one or two words are required from the source array to fully write the
first word of the destination array. This initial condition can be divided into
two cases:

D>S The four LSBs of the destination address are greater than the four
LSBs of the source address. This implies that the amount of data
available from the first word of the source array exceeds the amount
needed to write to the first word of the destination array. The write to
the destination array can proceed immediately.

D<S The four LSBs of the destination address are less than the four LSBs
of the source address. This implies that the amount of data to be
written to the first word of the destination array exceeds the amount
available from the first word of the source array. Another word must
be read from the source array.

Alignment Case 1 : D 2 S

Source Array

Destination Array

0—Word Boundaries

Alignment Case 2 : D <

Source Array

Destination Array

4— Word Boundaries-0i

Increasing bit address

Figure 13-8. Source to Destination Alignments

• Transfer Direction in X (PBH)

PIXBLT transfers proceed a word of data at a time in a consistent direction in
X and Y. The default direction is from the smallest word address to the largest,
corresponding to left-to-right and top-to-bottom for the default screen orien-
tation. The values of the PBH and PBV bits determine the transfer direction
in X and Y.

13-21

Instruction Timings - PIXBLT Instructions

For the four regular PIXBLTs (without expand), PBH determines the order in
which words are written on each row of the destination array:

PBH=0: Words within rows are written in the order of increasing addresses.

PBH=1: Words are written in the order of decreasing addresses. The value
of PBH influences the per-row transfer timings of these PIXBLTs.

The sense of the PBV bit determines the order in which rows are transferred
to the destination array.

PBV=0: Rows are transferred in the order of increasing addresses.

PBV=1: Rows are transferred in the order of decreasing addresses.

This value affects the setup timing, but not the transfer timing.

• Selected Graphics Operations (G)

Graphics operations such as plane masking, transparency, and pixel process-
ing influence PIXBLT transfer timing because the destination pixels must be
read before they are replaced. However, the effects of these operations vary
because they are performed by different portions of the TMS34010 hardware.
For instance, plane masking, transparency, and field insertion are all performed
by the GSP memory controller hardware; any combination of these operations
uses 2 machine states for each word written. Pixel processing, on the other
hand, is performed by the TMS34010 CPU, and requires 2, 4, 5, or 6 states
per word independent, of other operations. The minimum time for any
graphics operation, then, is 2 machine states(one memory cycle) using the
replace operation with plane masking and transparency disabled. These values
are shown in Table 13-10.

Table 13-10. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Graphics Operation Replace
Other

Booleans
or ADD

ADDS,SUB
MAX or

MIN
SUBS

No plane masking or
transparency

2 4 5 6

Read-modify-write, plane
masking, or transparency

4 6 7 8

• Alignment/Graphics Adjustment

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-10 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have computed
the timing using the proper value for the graphics operation, you can sub-
tract 2 states (case B and C) or 4 states (case D) per row from the row tim-
ings for the respective alignment cases. Case A requires no adjustment.

13-22

Instruction Timings - PIXBLT Instructions

13,4.3 PIXBLT Timing Examples

PIXBLT timing is calculated by adding the PIXBLT setup value to the PIXBLT
transfer value:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
- alignment adjustment

PIXBLT setup timings, transfer timings, and the effects of graphics operations
are in the following tables:

Table 	 Page
13-8 PIXBLT Setup Time 	 13-16
13-9 PIXBLT Transfer Timingt 	 13-18

• 13-10 Timing Values per Word for Graphics Operations (G) 	 13-22

The following three examples illustrate timing for a PIXBLT XY,L with these
initial implied operand values:

SADDR = >003A00E6 (X=230, Y= 58)
SPTCH = 	>800 	(X extent = 512 pixels x 4 bits per pixel)
DADDR = 	000030E8 	(linear address)
DPTCH = 	>800 	(X extent = 512 pixels)
OFFSET = 	00040000
WSTART = 	00000000 (ignored)
WEND 	= 	01000100 	(ignored)
DYDX 	= 	000F0036 (DY=15, DX=54)
PSIZE 	= 	 >4
CONVSP = 	 >14
CONVDP = 	 >14 	(ignored)
PMASK = 	>0000
PBH=1,PBV=1

The setup and transfer timings for these examples are the same, except each
uses a different graphics operation. Figure 13-9 illustrates the destination ar-
ray and window used in these examples. The shaded portion is the destination
array.

• Setup Time: Windowing is not enabled for this example. The starting
corner must be adjusted in both the X and Y dimensions. As Table 13-8
shows, the setup time for a PIXBLT XY,L with these options is 9 + 3
machine states.

• Transfer Time: The source and destination arrays have the same pitch;
the X and Y dimensions are the same. The Y dimension is 15, so L=15.
The X dimension is 54 pixels, and the pixel size is four; 54 divided by
produces 13.5, so N=1 4. N is greater than 3, so this example conforms
to the long case. The four LSBs of DADDR are greater than the four
LSBs of SADDR (D>S). The trailing edge is word aligned but the
leading edge is not, so the alignment type is C. As Table 13-9 shows,
the transfer time for this PIXBLT XY,L with PBH=1 is [5+ (2+G)N]L.+5.

13-23

(230,58)

	■ 54

Even word
boundary

SADDR - .4 	I

Adjusted source
starting corner

Instruction Timings - PIXBLT Instructions

DADDR

L.-15

54

Deednation

54 	-13.5=14
• pixels per word

Adjusted destination
starting corner

Figure 13-9. PIXBLT XY,L Timing Example

Example 13-4. W=0, T=0, PP=0, No Plane Masking

The pixel processing rep/ace operation has been selected, and transparency
and plane masking are not enabled. According to Table 13-10, G=4. The
total machine states required for this instruction are:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
= 9 + 4 	 + [5+ (2+G)N]L + 5
= 13 	 + (5 + 4 x14) x15 + 5

920 states

920 states are needed to read and write 810 pixels (at four bits per pixel) with
transparency, plane masking, and pixel processing at their default values.

Example 13-5. W=0, T=0, PP=20, No Plane Masking

The pixel processing MAX operation has been selected, and transparency and
plane masking are not enabled. According to Table 13-10, G=5. Thus, the
timing equation becomes:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
= 9 + 4 	 [5+(2+G)11/]L. + 5
= 13 	 (5 + 7 x14) x15 + 5
- 1564 states

1564 states are needed to write the MAX of the pixel values in the source array
with those in the destination array for 810 pixels (at four bits per pixel).
Transparency and plane masking are at their default values.

13-24

Instruction Timings - PIXBLT Instructions

Example 13-6. W=0, T=1, PP=5, Plane Masking

The pixel processing XNOR operation has been selected, and transparency
and plane masking are enabled. According to Table 13-10, G=5. Alignment
type C incurs a read-modify-write at the leading edge of each row. The extra
read included in the RMW can be used by the plane masking or transparency
hardware, so an alignment/graphics adjustment is necessary. The adjustment
negates the effect of the extra read cycles in each row that are attributed to the
graphics operations. For this example, the amount subtracted is 2 (the num-
ber of machine states for a read cycle) times L (the number of rows). The
timing is now calculated as:

PIXBLT time = PIXBLT setup time+ PIXBLT transfer time - adjustment
= 9 + 4 	 + [5+(2+G)N]L + 5 - 2 L
= 13 	 + (5 + 8 x 14) x15 + 5 - (2 x 15)
= 1743 states

1743 states are needed to write the XNOR of the pixel values in the source
array with those in the destination array for 810 pixels (at four bits per pixel)
with both PMASK and T set.

13.4.4 The Effect of Interrupts on PIXBLT Instructions

The PIXBLT instruction may be interrupted on a destination word boundary
during the transfer portion of the algorithm. It may also be interrupted at the
end of any row in the array. The context of the PIXBLT is saved in reserved
registers. The PBX bit is set in the copy of the ST register that is pushed to
the stack. The worst case latency caused by an interrupt is 20 machine states
for the interrupt to be recognized. The time for the context switch must be
added to this; see Section 8.4.1, Interrupt Latency (page 8-5) for context
switch timing.

13-25

Instruction Timings - PIXBLT Expand Instructions

13.5 PIXBLT Expand Instructions

PIXBLT expand instructions include:

• PIXBLT B,L
• PIXBLT B,XY

The total PIXBLT instruction timing is obtained by adding a setup time to a
transfer time:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time

• The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations. 	(This includes
XY-to-linear conversion and window preclipping.) The result of the
setup includes the dimensions of the source array.

• The transfer sequence performs the actual data transfer from the
source array to the destination array.

PIXBLT setup and transfer timings are in the following tables:

Table 	 Page
13-11 PIXBLT Expand Setup Time 	 13-26
13-12 PIXBLT Expand Transfer Timingt 	 13 - 27

13.5.1 PIXBLT Setup Time

PIXBLT setup time is the overhead incurred by the PIXBLT instructions from
performing initialization, XY conversions, and window operations.

Window operations are performed before the PIXBLT transfer begins. Win-
dow options that affect PIXBLT setup timing include:

• No window checking (W=0)

• A window clip that requires no change (array fits)

• A window clip that affects the starting pointer (adjust start)

• A window clip that affects the array transfer dimensions (dimension
adjust)

• A window clip that affects both the starting and ending pointers (adjust
both)

• A window miss that requests an interrupt
• A window hit

Table 13-11 shows the effect of these options on the PIXBLT setup time.
Corner adjust operations have no effect on PIXBLT setup timing.

Table 13-11. PIXBLT Expand Setup Time

Window Operation Corner Adjust

Instruction W=0
Array

Fits
Start

Adjust
Dimens
Adjust

Adjust
Both Miss Hit

PBH=1
PBV=O

PBH=0
PBV=1

PBH=1
PBV=1

PIXBLT B,L 4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

PIXBLT B,XY 6 9 17 12 21 N/A N/A N/A N/A N/A

1 3 - 26

Instruction Timings - PIXBLT Expand Instructions

For example, a PIXBLT B,XY with the preclipping option requiring an adjust-
ment to the end corner of the array requires 12 states of setup time.

13.5.2 PIXBLT Transfer Timing

Table 13-12 shows transfer timing for PIXBLT expand instructions. Transfer
timing is the time required (in addition to the setup time) to execute the actual
data transfer to memory. Transfer timing is affected by several factors, in-
cluding the number of rows in the adjusted array (L), the number of words
affected per row (N), graphics operations (G), the four possible destination
array alignments (A, B, C, and D), and the arrangement of words in source
rows. These factors are described in the list that follows the table.

Table 13-12. PIXBLT Expand Transfer Timingt

Destination Alignment Transfer Timing

Short case (3+2 R+G)L + 3

Medium case
Alignment A or C
Alignment B or D

(3+2R+NG)L + 3
(5+2R+NG)L + 3

Long case
Alignment A
Alignment D

[(3+2 R+2GP)S + 2 V+ NG]L+ 3
[(7+2 R+2GP)S + 2+ 2 V+ NG]L+ 3

t 	Subtract any alignment/graphics adjustment from these values
Key:
L 	Number of rows in the array (below)
N Number of destination words per row (see page 13-27)
R Number of source words involved in set (see page 13-27)
S Number of 32-bit sets in long source rows (DX/32; see page 13-29)
✓ Number of source words involved in reading source pixels at end of

row after all the complete 32-bit sets have been transferred (see page
13-29)

P Current pixel size
G Value dependent on selected graphics operations (see Table 13-13)

• Number of Rows in the Array (L)

The working dimensions (L rows x N words) for the block transfer are de-
termined by the original destination pointer (DADDR) and dimensions
(DYDX) in conjunction with window preclipping. The symbol L is used to
represent the number of rows in the clipped destination array.

• Alignment of Leading and Trailing words in Rows

After clipping, the data transfer portion of the PIXBLT treats the array as a
series of L rows of M. pixels. These R pixels are spread across N words in
each row of the destination array. N and L affect the transfer timing. This
alignment does not vary from row to row because DPTCH is constrained to
be a multiple of 16 for binary PIXBLTs.

13-27

Instruction Timings - PIXBLT Expand Instructions

Figure 13-10 illustrates a single row of a destination array in memory. The
PIXBLT algorithm resolves rows into three portions:

1) The leading edge at the beginning of the row
2) The center N-2 words of the row
3) The trailing edge at the end of the row

Word Boundaries

N Words bo 	 	•

Leading
Pixels

4 	

Trailing
Pixels

	■

4- Center N-2 Words P

M Pixels

Figure 13-10. Pixel Block Alignment in X

As Figure 13-10 shows, a row of N words includes one word each for the
leading and trailing parts of the transfer and N-2 words for the center portion.
PIXBLT expand instructions always transfer the center portion of the row as
a series of 16 bit words, and are not affected by the alignment of the leading
word. Thus, the alignment of the trailing words in the row characterize the
alignment type for the row. Figure 13-11 illustrates the four possible align-
ments (A, B, C, and D) of a row in the destination array.

N Words 	 P

4----Word Boundaries-+

Alignment A

Leading :4- Center N-2 Words 	Trailing

I

;

Alignment a

Alignment C

Alignment D

	I ,
Leading 1!4-Center N-2 Words -, 	Trailing

I
Leading ■-Center N-2 Words--;', 	Trailing

I 	 I

Leading V- Center N-2 Words --+; 	Trailing

Pi 1. 	 N Words

Figure 13-11. Pixel Block Row Alignments

13-28

Instruction Timings - PIXBLT Expand Instructions

• Row Length (N Words per Row)

Row length is determined by a combination of the computed array pointer
value in DADDR, the clipped DX dimension, and the pixel size stored in the
PSIZE register. The data transfer algorithm breaks down into one of three
cases, short, medium, or long, according to the number of words N in a row.
These three cases include:

Short case. A row of source array pixels is contained in 16 bits or less
and the expanded data involves only one word of the destination array
per row (N=1). Alignment does not affect the short case.

Medium case. A row of source array pixels is contained in 32 bits or
less but the expanded data involves more than one word of the destina-
tion array per row (N>1). In this case, the - array alignment is determined
by the alignments of the last word in the row. Thus, alignments A,C and
B,D have equal transfer timings.

Long case. A row of source array pixels is contained in more than 32
bits. The expanded data involves multiple words in the destination array
row. In this case, the array alignment is determined by the alignments
of the last word in the row. Thus, alignments A and B and alignments
C and D have equal transfer timings.

Note that the timings for the short and medium row lengths are not affected
by the alignment of the first word on each row of the destination array. That
is, the destination array row transfer can start with either a write or a read-
modify-write. The long case is treated as a series of 32-pixel medium cases
followed by a short case (if necessary) at the end of each row. Each 32-pixel
set is expanded and written to the destination in a serial fashion, without op-
timizing for beginning and ending alignments. Thus, the timing for the long
case becomes a product of the number of 32-pixel sets (S) and the timing for
each set, plus the timing for expanding any remaining segment of the source
array (less than or equal to 32 bits) that is left in the row. Note that the re-
maining segment of the source array may have an alignment type (B or C)
that is different from the preceding 32-bit sets.

• Arrangement of Source Rows

As discussed in the Row Length section, the number of bits in a row of the
source array affects the time required to perform the PIXBLT transfer algo-
rithm. The short and medium cases have explicit timings based on the number
of words read from the source row, R. Note that the timings for the short and
medium row lengths are not affected by the alignment of the last word on
each row of the destination array. That is, the destination array row transfer
can either end with a write or a read-modify-write.

The long case is treated as a series of 32-pixel segments followed by a partial
segment if necessary at the end of each row. Each 32-pixel set is expanded
and written to the destination in a serial fashion without optimizing for be-
ginning and ending alignments. Thus, the timing for the long case becomes
a product of the number of 32-pixel sets (S) and the timing for each set plus
the timing for expanding any remaining segment of the source array (less than
32 bits) that is left in the row. Note that the remaining segment of the source

13-29

Instruction Timings - PIXBLT Expand Instructions

array has an alignment type that is related to the alignment of the preceding
32-bit sets.

The PIXBLT does not attempt to optimize read operations from the source ar-
ray; therefore, depending on the alignment of the source array, either two or
three words may need to be read in order to obtain a 32-bit set of source
pixels for expansion. This value, R, is the number of source words involved
in a 32-bit set of source pixels and may be either two or three. The timings
is affected by R as wells as the number of such complete 32-bit sets S in a
source row.

The bits remaining after all of the complete 32-bit sets have been transferred
using an abbreviated portion of the long case. Depending on the number of
remaining bits and the alignment of the source array, either one, two, or three
words may need to be read in order to obtain the remaining set of source
pixels for expansion. This value, V, for the remaining bits is the number of
source words involved while N is the number of destination words involved
for this fragment.

• Transfer Direction in X (PBH Bit)

These PIXBLT instructions proceed a single word of pixels at a time in the
direction of increasing X and increasing Y. This corresponds to left-to-right
and top-to-bottom for the default screen orientation. Setting the PBH and
PBV bits has no effect.

• Selected Graphics Operations (G)

Graphics operations such as plane masking, transparency, and pixel process-
ing influence PIXBLT transfer timing because the destination pixels must be
read before they are replaced. However, the effects of these operations are
performed by different parts of the TMS34010 hardware. For instance, plane
masking, transparency, and field insertion are all performed by the GSP mem-
ory controller hardware; any combination of these operations uses 2 machine
states for each word written. Pixel processing, on the other hand, is performed
by the TMS34010 CPU, and requires 2, 4, 5, or 6 states per word independent
of other operations. The minimum time for any graphics operation, then, is 2
machine states (one memory cycle) using the replace operation with plane
masking and transparency disabled. These values are shown in Table 13-13.

Table 13-13. Timing Values per Word for Graphics Operations (G)

Pixel Processing Operation

Graphics Operation Replace
Other

Booleans
or ADD

ADDS,SUB
MAX or

MIN
SUBS

No plane masking or
transparency

2 4 5 6

Read-modify-write, plane
masking, or transparency

4 6 7 8

13-30

Instruction Timings - PIXBLT Expand Instructions

• Alignment/Graphics Adjustment

An additional adjustment may be necessary when plane masking or transpar-
ency are enabled and the alignment type is B, C, or D. As the second line of
Table 13-13 shows, if a particular word in a destination row has already been
read as part of a read-modify-write operation, no additional states are re-
quired to perform plane masking or transparency for that word. Since the
alignment types with misaligned edges (B, C, and D) already assume a RMW
(read-modify-write) on their respective edges, the effect of plane masking or
transparency can be ignored for these edges. That is, after you have calculated
the timing using the proper value for the graphics operation, you can sub-
tract 2 states (cases B and C) or 4 states (case D) per row from the row
timings for the respective alignment cases. Case A requires no adjustment.

13.5.3 PIXBLT Timing Examples

PIXBLT timing is calculated by adding the PIXBLT setup value to the PIXBLT
transfer value:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
- alignment adjustment

PIXBLT setup timings, transfer timings, and the effects of graphics operations
are listed in the following tables:

Table 	 Page
13-11 PIXBLT Expand Setup Time 	 13-26
13-12 PIXBLT Expand Transfer Timingt 	 13-27
13-13 Timing Values per Word for Graphics Operations (G) 	 13-30

The following three examples illustrate timing for a PIXBLT B,XY with these
initial implied operand values:

SADDR = >0003E2E8 	(linear address)
SPTCH = 	>OOADO (X extent = 2768 pixels)
DADDR = >0032010B (X=267, Y= 50)
DPTCH = 	>800 	(X extent = 512 pixels)
OFFSET = >00040000
WSTART = >00000000 (ignored)
WEND = >01000100 (ignored)
DYDX = >000A000A (DX=10, DY=10)
PSIZE 	= 	 >8
CONVSP = 	>xxx 	(ignored)
CONVDP = 	 >14
PMASK = 	>0000
W=0,T=0,PP=0
PBH=1,PBV=1 	 (ignored)

This PIXBLT B,XY examples expand a 10-by-10 font (L=10) into eight bits
per pixel with color. The setup and transfer timings for these examples are the
same, except each uses a different graphics operation. Figure 13-12 illustrates
the destination array and window used in these examples. The shaded portion
is the destination array.

13-31

Instruction Timings - PIXBLT Expand Instructions

• Setup Time: Windowing is not enabled for this example. PBH and
PBV are ignored. As Table 13-11 shows, the setup time for a PIXBLT
XY,L with these options is 6 machine states.

• Transfer Time: The source is part of a packed font. The source array
starts in the middle of a word and extends into the next word, so two
words are read for each row of the font (R=2). The Y dimension is 10
(L=10). Neither the leading nor the trailing edges are word aligned, so
the alignment type is D. The X dimension is 10 pixels wide, but with
alignment type D, an extra word is involved for both the leading and
trailing pixels; the pixel size is eight, so 12 divided by 2 (two pixels per
word) produces N=6. Since the width is less than 32 pixels (10), but
more than one word of the destination is affected, this example is a me-
dium case. 	As Table 13-12 shows, the transfer timing is
(5+2R+2GN)L + 3.

4--- 2,768 pixels per row -0.

4— 10
SADDR

10
• • 	• • • 	•

DADDR

L=10

4 	12

(261'.'' N= 	12 	=6
* pixels per word

Figure 13-12. PIXBLT B,XY Timing Example

Example 13-7. W=O, T=O, PP=0, No Plane Masking

The pixel processing replace operation has been selected, and transparency
and plane masking are not enabled. According to Table 13-13, G=2. The
total machine states required for this instruction are:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time

	

6 	 + (5+2R+NG)L + 3

	

=6 	 + (5 + 2 x2 + 6x2)x10 + 3
— 219 states

219 states are needed to read, expand, and write 100 pixels (at eight bits per
pixel) with transparency, plane masking, and pixel processing are at their de-
fault values.

13-32

Instruction Timings - PIXBLT Expand Instructions

Example 13-8. W=0, T=0, PP=20, No Plane Masking

The pixel processing MAX operation has been selected, and transparency and
plane masking are not enabled. According to Table 13-13, G=5. Thus, the
timing equation becomes:

PIXBLT time = PIXBLT setup time + PIXBLT transfer time
= 6 	 (5+2R+NG)L + 3
= 6 	 (5 + 2 x 2 -I-- 6 x 5) x 10 + 3
= 399 states

399 states are needed to read, expand, and write 100 pixels (at eight bits per
pixel) using the MAX operator with transparency and plane masking at their
default values.

Example 13-9. W=0, T=1, PP=S, Plane Masking Enabled

The pixel processing XNOR operation has been selected, and transparency
and plane masking are enabled. According to Table 13-13, G=6. Alignment
type D incurs a read-modify-write at the leading and trailing edges of each
row. The extra read included in the RMW can be used by the plane masking
or transparency hardware, so an alignment/graphics adjustment is necessary.
The adjustment negates the effect of the extra read cycles in each row that are
attributed to the graphics operations. For this example, the amount subtracted
is 4 (the number of machine states for a read cycle times 2) times L (the
number of rows). The timing is now calculated as:

PIXBLT time = PIXBLT setup time+ PIXBLT transfer time 	- adjustment
= 6 	 + (5+2R+NG)L + 3 	- 4 L
= 6 	 + (6 + 2x2 + 6x6)x10+3 -(4x10)
= 419 states

419 states are needed to read, expand, and write 100 pixels (at eight bits per
pixel) using the XNOR operator with transparency and plane masking active.

13.5.4 The Effect of Interrupts

The PIXBLT instruction may be interrupted on a destination word boundary
during the transfer portion of the algorithm. It may also be interrupted at the
end of any row in the array. The context of the PIXBLT is saved in reserved
registers. The PBX bit is set in the copy of the ST register that is pushed to
the stack. The worst case latency caused by an interrupt is 20 machine states
for the interrupt to be recognized. The time for the context switch must be
added to this; see Section 8.4.1, Interrupt Latency (page 8-5) for context
switch timings.

13-33

Instruction Timings - The LINE Instruction

13.6 The LINE Instruction

The total LINE instruction timing is obtained by adding a setup time to a
transfer time:

LINE time = LINE setup time + LINE transfer time

• The setup sequence executes an initialization sequence, performing
any necessary setup operations and translations.

• The transfer sequence performs the actual data transfer from the
source array to the destination array.

13.6.1 LINE Setup Time

LINE setup time is the overhead incurred from initiating the LINE instruction.
It is always 4 machine states.

13.6.2 LINE Transfer Timing

Table 13-14 shows LINE transfer timing. LINE transfer timing may be influ-
enced by window and pixel processing operations; their affects are discussed
in the list that follows Table 13-14.

Table 13 - 14. LINE Transfer Timing

Window Option

Instruction W=0 (Off)
W=1

Window Hit
W=2, Interrupt

On Clip
W=3

Clipping

LINE 0 (3 +P)E (3+ P)E + 5Q (3+ P)Et 50 + 5

LINE 1 (3+ P)E (3+ P)E + 5Q (3+ P)Et 50 + 5

t Add 5 for a window violation
Key:
E Number of pixels written
O Number of pixels calculated, but not written
P Selected pixel processing operation

• Window Checking

Although window operations affect the setup time of most instructions, they
are performed during transfer execution of the LINE instruction, affecting it
on a per-pixel basis. Window operations that affect the LINE instruction in-
clude:

- No window checking
- Window clip: V flag set, LINE aborted on first write outside window
- Window hit: WVP flag set, V flag cleared, abort LINE on first write

inside window

13 - 34

Instruction Timings - The LINE Instruction

• Pixel Processing Operations

Pixel processing operations influence the LINE transfer timing. (The effects
of other graphics operations, such as plane masking and transparency, are al-
ready included.) Pixel processing consumes 2, 3, 4, or 5 machine states per
pixel, depending on the operation selected. Table 13-15 shows the effects of
pixel processing on LINE timing.

Table 13-15. Per-Word Timing Values for Pixel Processing (P)

Replace
Other

Booleans
or ADD

ADDS,SUBS

MAX or MIN
SUBS

2 4 5 6

13.6.3 	LINE Timing Example

This example illustrates timing for a LINE 0, drawing a
(19,55). Assume the following registers have been loaded

BO 	>FFFF FFF1 	Decision variable d = 2b - a = - 15
B2 	= >0052 0003 DADDR

B3 >0000 0800 DPTCH (CONVDP=13)
B4 >0000 0100 OFFSET
B5 >0030 0003 WSTART
B6 >0055 0025 WEND
B7 >0003 0016 Lisa; b=3 and a=22
B9 >4444 4444 COLOR1 (color of the line)
B10 >0000 0017 COUNT (a+1)
B11 >0001 0001 Diagonal increment (+1,+1)
B12 = >0000 0001 Nondiagonal increment (0,+1)
B13 >FFFF FFFF PATTRN (all 1s)
W=3, T=0, PP=0, No plane masking

0.
51
5?..
53
5 	
55 	
56 	

2 3

Figure 13-13. LINE Timing Example

• Setup Time: The setup time for a LINE instruction is always 4 machine
states.

• Transfer Time: Windowing is on for this LINE 0 instruction; as Table
1 3-1 4 shows, the transfer timing is (3+P)E + 5Q. The pixel processing
replace operation has been selected; according to Table 13-15, P=2.
Register B10 indicates the number of pixels that will be drawn (E=23).
Since the line fits within the window, all pixels calculated are drawn;
thus, Q=0.

line from (3,52) to
with these values:

13-35

Instruction Timings - The LINE Instruction

The total machine states required for this instruction are:

LINE time 	= LINE setup time 	+ LINE transfer time
= 4 	 + (3+P)E + 50
= 4 	 + (3+2) x 23 + 0
= 119 states

119 states are needed to draw these 23 pixels.

13.6.4 Effects of Interrupts on LINE Timing

The LINE instruction may be interrupted on any pixel boundary during the
transfer portion of the algorithm. The context of the LINE is saved in reserved
registers; the PC is decremented before it is pushed on the stack, so that exe-
cution returns to the LINE opcode. This operation takes 20 machine states for
the interrupt to be recognized. The time for the context switch must be added;
see the TRAP instruction for context switch timing.

13-36

A. TMS34010 Data Sheet

The TMS34010 Data Sheet (literature number SPPS011A) will be available
in February, 1987. If you would like to obtain a TMS34010 Data Sheet,
contact your local Texas Instruments Field Sales representative.

A-1

This page intentionally left blank.

B. Emulation Guidelines for Prototyping

The TMS34010 XDS 1 (Extended Development Support) emulator is a self-
contained system that provides full-speed, in-circuit emulation of the
TMS34010. The TMS34010 XDS/22 Emulator User's Guide provides detailed
information about XDS operation and use. This appendix provides guidelines
for using the TMS34010 in a prototyping environment.

Section 	 Page
B.1 Synchronizing a Host Processor with the TMS34010 	 B-2
B.2 Proper Grounding of XDS Target Cable Assembly 	 B-3

1 XDS is a registered trademark of Texas Instruments Incorporated. All rights reserved.

B-1

Appendix B - Emulation Guidelines for Prototyping

B.1 Synchronizing a Host Processor with the TMS34010

The following guidelines will help you integrate a TMS34010 XDS emulator
into a system that contains a host processor and a GSP. The prototype target
system may or may not contain an emulator for the host processor:

• In a prototype system that contains an actual host processor instead of
an emulator for the host processor, the host may have to avoid initiating
accesses of the GSP's host interface registers while the GSP emulator is
halted on a breakpoint condition.

• If emulators are present for both the host processor and GSP, the two
emulators may need to be synchronized to each other to permit a break-
point in one emulator to halt both emulators. Without this capability,
debugging software that performs communication between the host and
GSP may be difficult.

If the TMS34010 emulator halts on a breakpoint and the host attempts to ac-
cess the GSP's host interface, the XDS will prevent the access by intercepting
the chip-select signal to the emulator (so that HCS remains inactive high) and
by transmitting a not-ready signal (HRDY low) to the host. This forces the
host to wait (by extending the access cycle) until the TMS34010 emulator
begins running again. Host processors that cannot tolerate lengthy waits
caused by not-ready signals should not attempt to access the GSP's host in-
terface registers while the emulator is halted. For instance, if the host bus
must be available to perform DRAM-refresh cycles at regular intervals, a long
access (extended by a not-ready signal from the GSP) could delay refreshing
for so long that data in memory becomes corrupted.

While the TMS34010 emulator is halted, host accesses of GSP registers must
be prevented in order for the GSP to maintain a valid internal state while
halted. When the TMS34010 emulator encounters a breakpoint, it stops exe-
cution and dumps an image of its internal registers to a buffer memory in the
XDS. This image can be inspected and altered. When the emulator enters run
mode again, the internal register image is loaded back into the GSP internal
registers, and execution continues. During the time the TMS34010 emulator
is halted, the host is not allowed to modify the state of the internal registers
because this would invalidate the register image.

Consider a prototype system that contains an actual host processor and a
TMS34010 emulator. The host system can monitor the HLDA/EMUA signal
from the XDS to determine when the TMS34010 emulator halts on a break-
point. To allow this, the HLDA/EMUA signal should be connected to one of
the host processor's interrupt request inputs. An active low HLDA/EMUA sig-
nal will interrupt the host. Once interrupted, the host must not attempt to
access the GSP's host interface registers until HLDA/EMUA goes inactive high
again. One method of ensuring this is for the host's interrupt routine to re-
peatedly poll the HLDA/EMUA signal until it goes high.

If a host access of a GSP register is in progress when a GSP breakpoint oc-
curs, the XDS will allow the access to complete before driving HLDA/EMUA
active low. The XDS will allow the access in progress to complete normally;
the HRDY signal to the host from the TMS34010 emulator will not be forced
low by the XDS.

B - 2

Appendix B - Emulation Guidelines for Prototyping

In a prototype system that contains a host processor emulator and TMS34010
emulator, the two emulators may need to be synchronized to permit simul-
taneous breakpointing. This may be necessary, for example, when software
running on the host signals to software on the GSP to begin a graphics oper-
ation. When the host emulator reaches a breakpoint immediately following the
point at which it signals the GSP, the GSP should also breakpoint. Otherwise,
you may have difficulty observing the operation performed by the GSP in re-
sponse to the signal from the host.

Similarly, a breakpoint condition that causes the TMS34010 emulator to halt
should also halt the host emulator. Assume, for example, that a portion of
GSP software is being debugged that signals the host-resident software to
perform an operation. If the TMS34010 emulator halts on a breakpoint just
following its signal to the host, the host emulator should also halt. Otherwise,
you may have difficulty observing the operation performed by the host in re-
sponse to the signal from the GSP.

Two pins on the XDS/22 target system connector facilitate synchronization
of the host and TMS34010 emulators:

• The RUN/EMU input is pulled low to halt the TMS34010 emulator.
RUN/EMU can be controlled by the host emulator so that when it halts
on a breakpoint, the TMS34010 emulator is also halted.

• The HLDA/EMUA output goes low when the GSP emulator halts on a
breakpoint condition. This signal can be connected to the host emulator,
causing it to halt as well.

B.2 Proper Grounding of XDS Target Cable Assembly

To ensure that a low impedance path exists between the ground of the
TMS34010 emulator and the ground of the target system prototype, the XDS
target cable assembly should be connected to the target ground as shown in
Figure B-1. In the figure, the two female berg connectors emanating from the
cable assembly are connected to male berg connectors on the target PWB that
are well grounded. The wires from the cable assembly to the female berg
connectors are short (approximately 1 inch) in order to reduce the inductances
separating the ground of the TMS34010 emulator from the target ground.

6-3

Appendix B - Emulation Guidelines for Prototyping

Pl. A.: E ;TMALE •':(.11h1•: 	FR:iM
AR' E .AA$EMH: e OVFP MAI E i OHNE': TOP ,,TAr

ON PM, VII1•1..- 1• ARE14NFC:TM TO TI-IF GROLitsr•
OF THE AS :1_T SYSTEM

b. Top View

Figure B-1. Grounding the XDS Target Cable Assembly

B-4

C. Software Compatibility with Future GSPs

Software written for the TMS34010 should run without modification on future
versions of the GSP as long as a few simple guidelines are followed.

• The next version of the GSP will have a 32-bit data bus to external me-
mory, which is twice the size of the TMS34010's data bus. To accom-
modate the change in bus width, certain internal register values will be
expanded from 16 to 32 bits:

— 	The COLORO and COLOR1 values in registers B8 and B9 will be
valid throughout all 32 bits of each register, rather than just the 16
LSBs.

The PMASK register will be expanded from 16 to 32 bits, and will
occupy memory addresses >C000 0160 to >C000 017F.

• Upward compatibility with these modifications will be ensured by treat-
ing the COLORO, COLOR1, and PMASK values as 32 bits, although the
TMS34010 will ignore the 16 MSBs of these values. Specifically, the
value in the 16 LSBs of COLORO or COLOR1 that is required for the
TMS34010 should be copied into the 16 MSBs as well.

• The 16-bit PMASK value that is required for the TMS34010 should be
copied not only in addresses >C000 0160 to >C000 016F, but also in
addresses >C000 0170 to >C000 017F. Note that writing to addresses
>C000 0170 to >C000 017F in the TMS34010 will have no effect, and
that reading these locations will return all Os.

• Certain reserved bits in the TMS34010's I/O registers and status register
may be assigned functions in future GSPs. To maintain upward com-
patibility, software written for the TMS34010 should maintain Os in re-
served register bits.

• If the CONVSP register is used for an instruction, the value in the SPTCH
(B1) register should also be valid. That is, SPTCH and CONVSP should
be set up to support the same source pitch value. Similarly, if the
CONVDP register is used for an instruction, the value in the DPTCH
(B3) register should also be valid. These steps will ensure software
compatibility with future GSPs that may ignore the contents of CONVSP
and CONVDP locations, and instead obtain all source and destination
pitch information from the SPTCH and DPTCH registers alone.

• When the LINE instruction is used, register B13 should contain all 1s.
This ensures that software using the LINE instruction is compatible with
future versions of the GSP in which B13 will contain a line pattern
consisting of 1s and Os that are expanded to COLOR1 and COLORO,
respectively, as the line is drawn.

• All horizontal and vertical timing initialization should be performed by
one routine; the HESYNC, HEBLNK, HSBLNK, HTOTAL, VESYNC,
VEBLNK, VSBLNK, and VTOTAL may be assigned new addresses in fu-
ture GSPs.

C-1

This page intentionally left blank.

D. Glossary

aliasing: A stairstep effect on a raster display of a line or arc segment.

antialiasing: A method for reducing the severity of aliasing effects seen in
lines and edges drawn on a bit-mapped display device. This method adjusts
the intensity of a pixel used to represent a portion of a line or edge according
to the pixel's distance from the line or edge. Antialiasing reauires that the
display device be capable of producing one or more intermediate intensity
levels between bright and off.

asynchronous communications: A method of transmitting data in which
the timing of character placement of connecting transmitting lines is not crit-
ical. The transmitted characters are preceded by a start and followed by a stop
bit, thus permitting the interval between characters to vary.

aspect ratio: The ratio of width to height. For the rectangular picture
transmitted by a television station, the aspect ratio is 4:3.

back porch: The portion of a horizontal blanking pulse that follows the
trailing edge of the horizontal synchronizing pulse.

background illumination: The average brightness of a screen.

bandwidth: The number of bits per second that can be transferred by a
device.

binary array: Alternate name for a two-dimensional bit map in which each
pixel is represented as single bit.

BitBlt: Bit aligned block transfer. Transfer of a rectangular array of pixel
information from one location in a bitmap to another with potential of applying
1 of 16 boolean operators during the transfer.

bit map: 1. The digital representation of an image in which bits are mapped
to pixels. 2. A block of memory used to hold raster images in a device-specific
format.

bit plane: Hardware used as a storage medium for a bit map.

black level: The amplitude of the composite signal at which the beam of the
picture tube is extinguished (becomes black) to blank retrace of the beam.
This level is established at 75% of the signal amplitude.

blanking signal: Pulses used to extinguish the scanning beam during hor-
izontal and vertical retrace periods.

breakpoint: A place in a routine specified by an instruction, instruction di-
git, or other condition, where the routine may be interrupted by external in-
tervention or by a monitor routine.

clipping: Removing parts of display elements that lie outside a given boun-
dary, usually a window or a viewport.

composite video: The color-picture signal plus all blanking and synchro-
nizing signals. The signal includes luminance and chrominance signals, verti-

D-1

Appendix D - Glossary

cal- and horizontal-sync pulses, vertical- and horizontal-sync pulses,
vertical-and horizontal-blanking pulses, and the color-burst signal.

DAC: Digital-to-analog converter. A device that converts a digital input
code to an analog output voltage or current. The analog output level repres-
ents the value of the digital input code.

direct access: Pertaining to the process of obtaining data from, or placing
data into, storage where the time required for such access is independent of
the location of the data most recently obtained or placed in storage.

display area: The rectangular part of the physical display screen in which
information coded in conformance with a video encoding standard is visibly
displayed. The display area does not include the border area.

display element: A basic graphic element that can be used to construct a
display image.

display memory: The area of memory which is used to hold the graphics
image output to the video monitor.

display pitch: The difference in memory addresses between two pixels that
appear in vertically adjacent positions (one directly above the other) on the
screen.

display unit: A device which provides a visual representation of data.

dot clock: The dot clock cycles the rate at which video data is output to a
CRT monitor.

DRAM refresh: The operation of maintaing data stored in dynamic RAMs.
Data are stored in dynamic RAms as electrical charges across a grid of capa-
citive cells. The charge stored in a cell will leak off over time.

execution unit: The portion of a central processing unit that actually exe-
cutes the data operations specified by program instructions.

field: 1. A group of contiguous bits in a register or memory dedicated to a
particular function or representing a single entity. 2. A software-configurable
data type in the TMS34010 whose length can be programmed to be any value
in the range 1 to 32 bits.

fill: Solid coloring or shading of a display surface, often achieved as a pat-
tern of horizontal segments.

frame: 1. The time required to refresh an entire screen. 2. The screen image
output during a single vertical sweep.

frame buffer: A portion of memory used to buffer rasterized data to be
output to a CRT display monitor. The contents of the frame buffer are often
referred to as the bit map of the display and contain the logical pixels corre-
sponding to the points on the monitor screen.

front porch: The portion of a horizontal blanking pulse that precedes the
leading edge of the horizontal sync pulse.

GKS: Graphical Kernel System. An application programmer's standard in-
terface to a graphics display.

D-2

Appendix D - Glossary

glue logic: The small- and medium-scale-integrated devices necessary to
complete the interface between two or more large or very-large-scale inte-
grated devices.

gray scale: A scale of light intensities from black to white.

GSP: Graphics System Processor. A single-chip device embodying all the
processing power and control capabilities necessary to manage a high-per-
formance bit-mapped graphics system. The TMS34010 is the first such de-
vice.

high-impedance: The third state of a three-state output driver, in which the
output is driven neither high or low but behaves as an open connection.

hold signal: A signal from a device capable of controlling a processor bus
(for example, a processor or a DMA controller) which the device sends to a
bus arbiter to request control of the bus. Typically, the arbiter signals the
granting of the request by sending a hold-acknowledgement signal to the re-
questing device.

hold time: The minimum amount of time that valid data must be present at
an input after the device is clocked to ensure proper data acceptance.

horizontal blanking interval: The time during which the display is
blanked to cover the horizontal retracing of the electron beam.

horizontal sync: The synchronization signal that enables horizontal retrace
of the electron beam of a CRT display.

icon: A graphic symbol representing a menu item.

interlaced scanning: A system of TV-picture scanning. Odd-numbered
scanning lines, which make up an odd field, are interlaced with the even-
numbered lines of an even field. The two interlaced fields constitute one
frame. In effect, the number of transmitted pictures is doubled, thus reducing
flicker.

interlaced scanning: A system of TV-picture scanning. Odd-numbered
scanning lines, which make up an odd field, are interlaced with the even-
numbered lines of an even field. The two interlaced fields constitute one
frame. In effect, the number of transmitted pictures is doubled, thus reducing
flicker.

lookup table: A table used during scan conversion of the digital image that
converts color-map addresses into the actual color values displayed.

LRU: Least-recently-used cache-replacement algorithm. When a cache miss
occurs, a cache-replacement algorithm selects which cache segment will be
overwritten, based on the likelihood that the data in the discarded segment
will not be needed again for some time. The LRU algorithm selects the seg-
ment which was used least recently.

mask: A pattern of characters that is used to control the retention or elimi-
nation of portions of another pattern of characters.

memory map: A map of memory space partitioned into functional blocks.

D-3

Appendix D - Glossary

monotonicity: The quality of proceeding in a uniform manner. For exam-
ple, the analog level output from a DAC should increase with each increase in
the value of the digital input code.

multiplexing: Refers to a process of transmitting more than one set of sig-
nals at a time over a single wire or communications link.

NABTS: North American Broadcast Teletext Specification

NAPLPS: Abbreviation for the North American Presentation Level Protocol
Syntax, which is a proposed standard for Videotex services.

nonmaskable interrupt: An interrupt request that cannot be disabled.

NMI: Nonmaskable interrupt. The NMI is an interrupt that is permanently
enabled; it cannot be disabled.

NTSC: Abbreviation for the National Television System Committee, a group
representing a wide range of interests in the television broadcast and video
industry. The NTSC is instrumental in developing standards.

operand: That which is operated upon. An operand is usually identified by
an address part of an instruction.

origin: The zero intersection of X and Y axes from which all points are cal-
culated.

overlay: The plane of a graphics display that can be superimposed on an-
other plane.

pack: To compress data in a storage medium by eliminating redundant in-
formation in such a way that the original data can later be recovered.

palette: A digital lookup table used in a computer graphics display for
translating data from the bit map into the pixel values to be shown on the
display.

pan: Apparent horizontal or vertical movement of a computer graphics screen
(or window) over an image contained in a frame buffer that is too large to be
completely displayed in a single static picture.

phase: The time interval for each clock period in a system is divided into two
phases. One phase corresponds to the time the clock signal is high, and the
other phase corresponds to the time the clock signal is low.

PHIGS: The programmer's Hierarchical Interactive Graphics Standard

pipelining: A design technique for reducing the effective propagation delay
per operation by partitioning the operation into a series of stages, each of
which performs a portion of the operation. A series of data is typically clocked
through the pipeline in sequential fashion, advancing one stage per clock pe-
riod.

pitch: The difference in starting addresses of two adjacent rows of pixels in
a two-dimensional pixel array.

pixel: Picture element. 1. The smallest controllable point of light on a CRT
display screen. 2. In a bit-mapped display, the logical data structure that

D-4

Appendix D - Glossary

contains the attributes to be shown at the corresponding physical pixel posi-
tion on the CRT display screen.

pixel processing operation: A specified Boolean or arithemetic operation
used to combine two pixel values (source and destination).

PixBIt: (Abbreviation of Pixel Block transfer) Operations on arrays of pixels
in which each pixel is represented by one or more bits. PixBIt operations are
a superset of BitBlt operations, and include not only the commonly-used
boolean functions, but also integer arithmetic and other multi-bit operations.

plane: (Also bit plane or color plane.) A plane is a bit-map layer in a display
device with multiple bits per pixel. If the pixel size is n bits, and the bits in
each pixel are numbered 0 to n-1, plane 0 is made up of bits numbered 0 from
all the pixels, and the plane n-1 is made up of bits numbered n-1 from all the
pixels. A layered graphics display allows planes or groups of planes to be
manipulated independently of the other planes.

primary colors: A set of three colors from which all other colors may be
regarded as derived; hence, any of a set of visual stimuli from which all colors
may be produced by mixture. Each primary color must be different from the
others, and a combination of two primaries must be capable of producing a
third. In color television, the three primary colors are red, green and blue.

propagation delay: The time required for a change in logic level at an input
to a circuit to be translated into a resulting change at an output.

protocol: A set of rules, formats, and procedures governing the exchange
of information between peer processes at the same level.

pulse width: Pulse width, Tw. The time interval between specified refer-
ence points on the leading and trailing edges of the pulse waveform.

Random Access Memory (RAM): A memory from which all information
can be obtained at the output with approximately the same time delay by
choosing an address randomly and without first searching through a vast
amount of irrelevant data.

raster: A rectangular grid of picture elements whose intensity levels are
manipulated to represent images. In a bit-mapped display, the bits within a
portion of the memory referred to as the frame buffer are mapped to the raster
pattern of a CRT monitor.

raster display: A CRT display generated by an electron beam that illumi-
nates the CRT by sweeping the beam horizontally across the phosphor surface
in a predetermined pattern, providing substantially uniform coverage of the
display area.

raster graphics: Computer graphics in which a display image is composed
of an array of pixels arranged in rows and columns.

Raster-Op: The arithmetic or logical combination operation that takes place
during the transfer of pixel arrays from one location to another.

raster scan: The grid pattern traced by the electron beam on the face of the
CRT in a television or similar raster-scan display device.

D-5

Appendix D - Glossary

ready signal: A signal from a memory or a memory-mapped peripheral that
informs the processor when it is ready to complete a memory cycle. Slower
memories or memory-mapped peripherals must extend the length of the me-
mory cycle by negating the ready signal (in other words, by sending the pro-
cessor a "not ready" signal until such time as the cycle can be completed.

resolution: The number of visible distinguishable units in the device coor-
dinate space.

refresh: Method which restores charge on capacitance which deteriorates
because of leakage.

reset: To restore to normal action.

resolution: The number of visible distinguishable units in the device coor-
dinate space.

retrace: The line traced by the scanning beam or beams of a picture tube
as it travels from the end of one horizontal line or field to the beginning of the
next line or field.

RGB monitor: Red-Green-Blue Monitor. An RGB monitor is a CRT moni-
tor capable of displaying colors and having separate inputs for the three sig-
nals used to drive the red, green and blue guns of the CRT.

relative coordinates: Location of a point relative to another data point.

rotate: To transform a display or display item by revolving it around a spe-
cified axis or center point.

scale: A size change made by multiplying or dividing the coordinate dimen-
sions by a constant value.

scale factor: The value by which you divide or multiply the display dimen-
sions in a scaling operation.

scaling: Enlarging or reducing all or part of a display image by multiplying
the coordinates of display elements by a constant value.

scan line: A horizontal line traced across a CRT by the electron beam in a
television or similar raster-scan device.

screen refresh: The operation of dumping the contents of the frame buffer
to a CRT monitor in synchronization with the movemnt of the electron beam.

scrolling: Moving text strings or graphics vertically or horizontally.

segment: A collection of display elements that can be manipulated as a unit.

sequencing: Control method used to cause a set of steps to occur in a
particular order.

setup time: The minimum amount of time that valid data must be present
at an input before the device is clocked to ensure proper data acceptance.

shift register transfer: A transfer between the RAM storage and internal
shift register in a video RAM.

0-6

Appendix D - Glossary

sprite: A graphic object of a specified pattern appearing on its plane in a
position determined by a single coordinate pair, specifying the sprite's location
on the screen in the horizontal and vertical axis.

stairstepping: A visual effect seen in bit-mapped display devices which
produce images by brightening or dimming individual picture elements (or
pixels) contained in a two-dimensional grid of such elements. Stairstepping
(also called aliasing) is the rough or jagged appearance of lines and edges
which are not perfectly horizontal or vertical, resulting from transitions of the
line or edge from one row or column of elements to another.

superimposed: Refers to the process that moves data from one location to
another, superimposing bits or characters on the contents of specified lo-
cations.

tap point: The column address provided to a VRAM during a memory-to-
shift-register cycle. The column address specifies the point at which the shift
reigster is to be "tapped;" in other words, which cell of the shift register is to
be connected to the serial output of the VRAM.

trace: A line of the graphics display.

transformation: Geometric alteration of a graphics display, such as scaling,
translation, or rotation.

transparency: When a pixel with the attribute of transparency is written to
the screen, it is effectively invisible, and does not alter that portion of the
screen it is written to. For example, in a pixel array containing the pattern for
the letter A, all pixels surrounding the A pattern could be given a special value
indicating that they are transparent. When the array is written to the screen,
the A pattern, but not the pixels in the rectangle containing it, would be in-
visible.

VDI: Virtual Device Interface. The standard interface between the device-
independent and the device-dependent levels of a graphics system.

VDM: Virtual Device Metafile. A standard mechanism for retaining and and
transporting graphics data and control information at the level of the Virtual
Device Interface.

vertical blanking interval: The time during which the display is blanked
to cover the vertical retracing of the electron beam.

vertical blanking pulse: A positive or negative pulse developed during
vertical retrace and appearing at the end of each field. It is used to blank out
scanning lines during the vertical retrace interval.

vertical sync: The synchronization signal that enables vertical retrace of the
electron beam of a CRT display.

video display processor: A microprocessor device dedicated to the tasks
of display memory management (storage, retrieval, and refresh) and gener-
ation of all required video, control, and synchronization signals required by a
TV display or CRT monitor.

video overlay: The mixing of one video signal with another such that parts
of the image carried by the first signal replace the corresponding parts of the
image carried by the second signal.

D-7

Appendix D - Glossary

video RAM, VRAM: Video Random-Access Memory. A dual-ported me-
mory device for computer graphics applications, containing two interfaces;
one interface to allow a processor to read or write data from an internal mem-
ory array; a second interface to provide a serial stream of screen refresh data
to a CRT display device.

viewport: The specified window on the display surface that marks the limits
of a display

virtual coordinate system: A coordinate system created by mapping a
portion of the world coordinate system to the space available on your device.

virtual space: Space referenced with the coordinates defined by the appli-
cation.

wait state: A clock period inserted into a memory cycle in order to permit
accesses of slower memories and slower memory-mapped peripherals.

window: A specified rectangular area of a virtual space shown on the dis-
play.

window clipping: Allowing text and graphics drawing to occur only within
a specified rectangular window on the screen.

wire frame: A three-dimensional image displayed as a series of line seg-
ments outlining its surface.

zoom: To scale a display or display item so it is mangified or reduced on the
screen.

D-8

Index

A
	

B

ABS
Store Absolute Value 12-23

absolute branch 5-22
ADD

Add Registers 12-24
add with saturation 7-16
ADDC

Add Register with Carry 12-25
ADDI

Add Immediate
16 bits 12-26
32 bits 12-27

ADDK
Add Constant (5 Bits) 12-28

addressing 3-2-3-3
ADDXY

Add Registers in XY Mode 12-29
A-file registers 5-2
airbrush effect 7-24
ALU 1-7
AND

AND Registers 12-30
ANDI

AND Immediate (32 Bits) 12-31
ANDN

AND Register with
Complement 12-32

ANDNI
AND Not Immediate (32 Bits) 12-33

antialiasing 7-23
applications 	1-4
array pitch 4-15

background color register 5-17
bank selection 11-25
barrel shifter 	1-7
B-file registers 5-3, 5-5-5-19
BLANK 2-9, 9-2
blanking 2-9, 6-26, 6-28, 6-48, 6-50
block diagram 1-6
Boolean operations 7-17
Boolean pixel processing 6-11
Bresenham line algorithm 7-2, 7-10
BTST

Test Register Bit
constant 12-34
register 12-35

bulk initialization of VRAMs 9-19, 9-27
bus request priorities 11-4
bus request signal 2-10
byte addressing 10-21
byte alignment 12-9
byte moves 12-9
bytes 4-1
BO (SADDR) 5-7
B1 (SPTCH) 5-8
B10 (COUNT) 5-19
B11 (INC1) 	5-19
B12 (INC2) 5-19
B13 (PATTRN) 5-19
B13 (TEMP) 5-19
B2 (DADDR) 5-9
B3 (DPTCH) 5-11
B4 (OFFSET) 5-12
B5 (WSTART) 5-13
B6 (WEND) 5-14
B7 (DYDX) 5-15
B8 (COLORO) 5-17
B9 (COLOR1) 5-18

Index-1

Index

C

C bit 5-21
cache disable 6-12
cache hit 5-25
cache miss 5-25
cache replacement algorithm 5-24
CALL

Call Subroutine Indirect 12-36
CALLA

Call Subroutine Absolute 12-37
CALLR

Call Subroutine Relative 12-38
Cartesian coordinates 4-15

2-7, 11-2
CD bit 5-26, 6-9, 6-12
CF bit 5-26, 6-31, 6-32
chip select pin 2-5
clock timing logic 1-7
CLR

Clear Register 12-39
CLRC

Clear Carry 12-40
CMP

Compare Registers 12-41
CMPI

Compare Immediate
16 bits 12-42
32 bits 12-43

CMPXY
Compare X and Y Halves of

Registers 12-44
Cohen-Sutherland algorithm 7-30
color planes 7-12
color-expand operation 7-5
COLORO register 5-17
COLOR1 register 5-18
column address strobe 2-7
compare point to window 7-3
constant-to-register moves 12-8
CONTROL 6-9
CONTROL register 6-9
CONVDP 7-4
CONVDP register 4-12, 6-13
conversion factor 6-13, 6-14
CONVSP 7-4
CONVSP register 4-12, 6-14
COUNT register 5-19
CPW

Compare Point to Window 12-45
CVXYL

Convert XY Address to Linear
Address 12-47

D

DADDR register 5-9
data enable pin 2-7
data paths 1-7, 5-28
data select pins 2-5
data structures

bytes 4-1
fields 4-1, 4-2-4-5
pixel arrays 4-1
pixels 4-1, 4-6-4-10

DDOUT 2-7, 11-2
DEC

Decrement Register 12-49
DEN 2-7, 11-2
destination address register 5-9
destination conversion factor 6-13
destination pitch register 5-11
development tools list 1-3
DIE bit 6-39
DINT

Disable Interrupts 12-50
DIP bit 6-40
display interrupt 8-4, 9-14
display memory 9-19
display pitch 4-10, 5-8, 5-11, 6-13,

6-14, 9-19
DIVS

Divide Registers Signed 12-51
DIVU

Divide Registers Unsigned 12-53
dot rate 9-15
DPTCH register 5-11, 6-13
DPYADR register 6-15
DPYCTL register 6-17
DPYINT register 6-22
DPYSTRT register 6-23
DPYTAP register 6-24
DRAM 6-9, 11-5

refresh cycles 6-9
refresh interval 6-45
refresh rate 6-9

DRAM refresh 11-11, 11-12, 11-25
DRAV

Draw and Advance 12-55
draw and advance 7-10
DSJ

Decrement Register and Skip
Jump 12-58

DUDATE bits 6-17, 6-18
DXV bit 6-17, 6-20
DYDX register 5-15

Index-2

Index

E G

EINT
Enable Interrupts 12-64

EMU
Initiate Emulation 	12-65

emulation 2-10
ENV bit 6-17
EXAMPLE

Example Instruction 12-21
EXGF

Exchange Field Size 12-66
EXGPC

Exchange Program Counter with Reg-
ister 	12-67

external interlaced video 9-18
external interrupts 8-3
external synchronization 9-16
external video 6-17

F

FE bit 4-2
FEO bit 5-20
FE1 bit 5-20
field moves 12-10
field size 5-20, 5-21
fields 4-1, 4-2-4-5

addressing 4-2
alignment 4-3
extraction 4-2
insertion 4-2, 4-5
size 4-2

fill 	7-5
Fill Array with Processed Pixels

linear 12-68
XY 12-72

foreground color register 5-18
FSO 4-2
FSO bits 5-20
FS1 4-2
FS1 bits 5-20
function select pins 2-5

general-purpose register files 1-6, 5-2-
5-19

GETPC
Get Program Counter into

Register 12-77
GETST

Get Status Register into
Register 12-78

graphics standards 1-2

H

halt program execution 6-34
HCOUNT register 6-25
HCS 2-5, 10-2
HDO-HD15 2-6, 10-2
HEBLNK register 6-26
HESYNC register 6-27
HFSO, HFS1 2-5, 10-2
fill_ bit 6-39
ilMT 2-6, 10-2
HIP bit 6-40
HLDA/EMUA 2-10
HLDS 2-5, 10-2
HLT bit 5-26, 6-2, 6-31, 6-34
HOLD 2-10
hold and emulation signals 2-4, 2-10

HLDA/EMUA 2-10
HOLD 2-10
RUN/EMU 2-10

hold interface 11-18
hold request 11-4
horizontal front porch 9-5
horizontal sync 2-9
horizontal timing 9-12
horizontal timing registers

HCOUNT 6-25, 9-4
HEBLNK 6-26, 9-4
HESYNC 6-27, 9-4
HSBLNK 6-28, 9-4
HTOTAL 6-38, 9-4

horizontal video timing 9-6, 9-7
host interface 10-1, 10-24

bandwidth 10-22
data transfer 10-9
indirect accesses of local
memory 10-11

reads and writes 10-4
ready signal to host 10-8

Index-3

Index

registers 6-6
HSTADRH 10-3
HSTADRH register 6-29
HSTADRL 6-30, 10-3
HSTCTL 10-3
HSTCTLH 6-31, 10-3
HSTCTLL 6-35, 10-3
HSTDATA 6-37, 10-3
selection 10-3

signals 10-2
timing examples 10-5

host interface bus pins 2-4, 2-5
HCS 2-5
HDO-HD15 2-6
HFSO,HFS1 2-5
HINT 2-6
HLDS 2-5
HRDY 2-5
HREAD 2-5
HI 'DS 2-5
HWRITE 2-5

host interrupt 8-4
host read/write strobes 2-5
host-present mode 8-9, 8-12
HRDY 2-5, 10-2, 10-8
HREAD 2-5, 10-2
HSBLNK register 6-28
HSD bit 6-17
HSTADRH register 6-29
HSTADRL register 6-30
HSTCTLH register 6-31
HSTCTLL register 6-35
HSTDATA register 6-37
HSYNC 2-9, 6-20, 6-25, 9-2
HTOTAL register 6-38
HUDS 2-5, 10-2
HWRITE 2-5, 10-2

I/O registers 1-7, 6-1-6-51
addressing 6-2
at reset 6-2
host interface registers 6-6
interrupt interface registers 6-7
latency of writes 6-3
local memory interface registers 6-7
memory map 6-2
summary 6-4
video timing and screen refresh regis-
ters 6-8

IE bit 5-20
illegal opcode interrupts 8-8

illegal operand 8-4
implied graphics operands 5-5
INC

Increment Register 12-79
INCLK 2-7, 11-2
INCR bit 6-31, 6-33, 10-11
incremental algorithms 7-10
INCW bit 6-31, 6-34, 10-11
INC1 register 5-19
INC2 register 5-19
indirect accesses of local memory 10-11
indirect branch 5-22
input clock 2-7
instruction cache 1-7, 5-23-5-27

cache disable 6-12
cache flush 6-32
cache hit 5-25
cache miss 5-25
cache replacement algorithm 5-24
disabling 	5-26
downloading new code 5-26
flushing 5-26
LRU stack 5-24
operation 	5-25
P flag 5-25
segment miss 5-25
segments 5-24
SSA register 5-24
subsegment miss 5-25

instruction words 5-23
INTENB register 6-39
interlaced display 9-25
interlaced video 	9-11, 9-18
internal interrupts 	8-4
interrupt interface

registers 	6-7
INTENB 6-39, 8-3
INTPEND 6-40, 8-3

interruptible instructions 	7-9
interrupts 	2-6, 8-1-8-7

display interrupt 6-22, 8-4, 9-14
enable bit 5-20
external interrupts 8-3
host interrupt 8-4
host interrupt request signal 	2-6
IE bit 	5-20
illegal opcode interrupts 	8-8
illegal operand 	8-4
INTENB 6-39
internal interrupts 	8-4
interrupt request pins 8-3
interrupt requests 6-36
INTIN bit 6-36
INTOUT bit 6-36
INTPEND 6-40

Index - 4

Index

local interrupt request signals 2-8
nonmaskable interrupt 6-31, 6-32,

8-4
priorities 	8-1, 8-2, 8-4
processing 8-5
registers 8-3
RESET 2-11

addressing mechanisms 11-23
hold interface timing 	11-18
I/O register access cycles 11-14
internal cycles 	11-13
memory bus request priorities 11-4
read cycle 11-8
read-modify-write operations 11-15

stack operations 3-9 registers 	6-7
vector addresses 8-2 CONTROL 6-9, 11-3
window interrupt 8-4 CONVDP 6-13, 11-3

intersecting rectangles 7-3 CONVSP 6-14, 11-3
INTIN bit 	6-35, 6-36 PMASK 6-42, 11-3
INTOUT bit 	6-35, 6-36 PSIZE 	6-44, 11-3
INTPEND register 	6-10, 6-40 REFCNT 6-45, 11-3

J

J Acc
Jump Absolute Conditional 12-80

JRcc
Jump Relative Conditional

long 12-84
short 12-82

JUMP
Jump Indirect 12-86

K

key features of the GSP 1-3

L

LADO-LAD15 2-8, 11-2
LAL 2-7, 11-2
LBL bit 6-31, 6-33
LCLK1,LCLK2 2-8, 11-2
LCSTRT bits 6-23
LINE

Line Draw with XY
Addressing 12-87

line clipping 7-29
linear addressing 4-10
LINT1,LINT2 2-8, 8-3, 11-2
LMO

Leftmost One 12-94
LNCNT bits 6-15, 6-23
local address/data bus 2-8
local memory interface 11-1, 11-29

shift-register-transfer cycles 	11-9
signals 	11-2
timing 	11-5-11-22
wait states 11-16
write cycle 11-7

local memory interface pins 2-4, 2-7
CAS 2-7
DDOUT 2-7
DEN 2-7
INCLK 2-7
LADO-LAD15 2-8
LAL 2-7
LCLK1,' ri.K2 2-8
LINT1,Dr.1 .2 2-8
LRDY 2-8
RAS 2-7
TR/QE 2-7
W 2-7

local read/write strobes 2-7
logical pixels 4-6
LRDY 2-8, 11-2

M

MAX operation 7-16
memory bus request priorities 11-4
memory map 3-4
message buffers 6-35, 6-36
microcontrol ROM 1-7
midpoint subdivision 7-30
MIN operation 7-16
MMFM 12-9

Move Multiple Registers from
Memory 12-95

MMTM 12-9
Move Multiple Registers to
Memory 12-97

MODS
Modulus Signed 12-99

Index-5

Index

MODU
Modulus Unsigned 12-100

MOVB 12-9
Move Byte Instruction

absolute to absolute 12-110
absolute to register 12-109
indirect to indirect 12-105
indirect to register 12-104
indirect with displacement to indi-

rect with displacement 12-107
indirect with displacement to reg-
ister 12-106

register to absolute 12-103

	

register to indirect 	12-101
register to indirect with displace-
ment 12-102

MOVE 12-8, 12-10
Move Field

absolute to absolute 12-139
absolute to indirect (postincre-
ment) 12-137

absolute to register 12-135
indirect (postincrement) to indirect

(postincrement) 12-123
indirect (postincrement) to

register 	12-121
indirect (predecrement) to indirect

(predecrement) 12-127
indirect (predecrement) to

register 12-125

	

indirect to indirect 	12-120

	

indirect to register 	12-119
indirect with displacement to indi-

rect (postincrement) 12-131
indirect with displacement to indi-

rect with displacement 12-133
indirect with displacement to reg-
ister 12-129

	

register to absolute 	12-118

	

register to indirect 	12-113
register to indirect

	

(postincrement) 	12-114
register to indirect

(predecrement) 12-115
register to indirect with displace-
ment 12-116

Move Register to Register 12-112
summary 12-8

MOVI 12-8
Move Immediate

16 bits 	12-141
32 bits 12-142

MOVK 12-8
Move Constant (5 Bits) 12-143

MOVX 12-8
Move X Half of Register 12-144

MOVY 12-8
Move Y Half of Register 12-145

MPYS
Multiply Registers Signed 12-146

MPYU
Multiply Registers Unsigned 12-148

MSGIN bits 6-35
MSGOUT bits 6-35, 6-36
multiple register moves 12-9
multiple-GSP systems 9-16

N

N bit 5-21
NEG

Negate Register 12-150
NEGB

Negate Register with Borrow 12-151
NIL bit 6-17, 6-20
NMI bit 6-31
non-branch 5-22
noninterlaced video 9-9
nonmaskable interrupt 6-7, 6-31, 8-4
nonmaskable interrupt mode 6-32
NOP

No Operation 12-152
NOT

Complement Register 12-153

OFFSET register 4-12, 5-12
on-screen memory 9-19
OR

OR Registers 12-154
ORG bit 6-17, 6-19
ORI

OR Immediate (32 Bits) 12-155
outcode 7-30
output clocks 2-8

Index - 6

Index

P

P flag 5-25
panning 9-26
PATTRN register 5-19
PBH bit 6-9, 6-10
PBV bit 6-9, 6-11
PBX bit 5-21
PC 5-22
pick window 7-26
picture elements 4-6
pin descriptions 2-2
pinout 2-2
pitch 7-4
pitch conversion factors 4-12
PIXBLT

Pixel Block Transfer
Pixel Block Transfer Instruction

binary to linear 12-156
binary to XY 12-161
linear to linear 12-168
linear to XY 12-174
XY to linear 12-180
XY to XY 12-185

PixBlt direction 	6-11
PixBlts 4-14, 7-4
pixel array 4-14
pixel block transfers 4-14, 7-4
pixel processing 6-11, 7-15
pixels 4-1, 4-6-4-10

addressing 4-6
on the screen 4-7
pixel size 6-44
PSIZE register 6-44
representation in a register 4-6
size 4-6
storage in memory 4-7
XY addressing 4-7

PIXT
Pixel Transfer Instruction

indirect to indirect 12-198
indirect to register 12-196
indirect XY to indirect XY 12-

202
indirect XY to register 12-200
register to indirect 12-191
register to indirect XY 12-193

summary 12-14
plane mask 7-12
plane masking 6-42

PMASK register 6-42
POPST

Pop Status Register from Stack 12-
205

postclipping 7-29
PP bit 6-9
PPOP bits 6-11
preclipping 7-29
program counter 1-6, 5-22
PSIZE register 4-12, 6-44
PUSHST

Push Status Register onto
Stack 12-206

PUTST
Copy Register into Status 12-207

R

RAS 2-7, 11-2
REFCNT register 6-45
references 1-10
register file A 5-2
register file B 	5-3, 5-5-5-19
register-to-register moves 12-8
relative branch 5-22
replace operation 7-18
RESET 2-11, 8-9-8-12

effect on cache 5-24
effect on GSP registers 8-10
effect on instruction cache 8-10
effects on I/O registers 6-2
HLT bit 6-34

RETI
Return from Interrupt 12-208

RETS
Return from Subroutine 12-209

REV
Store Revision Number 12-210

RINTVL bits 6-45
RL

Rotate Left
constant 12-211
register 12-212

row address strobe 2-7
row and column addressing 11-6
ROWADR bits 6-45
RR bit 6-9
RUN/EMU 2-10

Index-7

Index

S

SADDR register 5-7
scan line counter 6-15
screen origin 4-8, 6-17, 6-19
screen refresh 6-20, 6-23, 9-1-9-27
screen refresh enable 6-17
screen size limits 9-3
screen-refresh address 6-15
screen-refresh cycles 9-19
segment miss 5-25
self-bootstrap mode 8-9, 8-11
self-modifying code 5-26
SETC

Set Carry 12-213
SETF

Set Field Parameters 12-214
SEXT

Sign Extend to Long 12-215
shift register transfer enable pin 2-7
shift register transfers 6-17
sign (N) bit 5-21
SLA

Shift Left Arithmetic
constant 12-216
register 12-217

SLL
Shift Left Logical

constant 12-218
register 12-219

software traps 8-8
source address register 5-7
source conversion factor 6-14
source pitch register 5-8
SP 3-6, 5-2, 5-4
SPTCH register 5-8, 6-14
SRA

Shift Right Arithmetic
constant 12-220
register 12-221

SRE bit 6-17, 6-20
SRFADR bits 6-15, 6-23
SRL

Shift Right Logical
constant 12-222
register 12-223

SRSTRT bits 6-23
SRT bit 6-17, 6-19
SSA register 5-24
ST 5-20
stack 3-6-3-11

multiple-register operations 3-9
operation during a subroutine 3-9
operation during interrupts 3-9

structure 3-7
32-bit register operations 3-8

stack pointer 5-2, 5-4
starting address of array 4-14, 7-7
starting corner selection 7-7
status register 1-6, 5-20-5-21
strobes 10-4
SUB

Subtract Registers 12-224
SUBB

Subtract Registers with Borrow 12-
225

SUBI
Subtract Immediate

16 bits 12-226
32 bits 12-227

SUBK
Subtract Constant 12-228

subsegment miss 5-25
subtract with saturation 7-16
SUBXY

Subtract Registers in XY Mode 12-
229

T

T bit 6-9
tap point register 6-24
TEMP register 5-19
TR/QE 2-7, 11-2
transparency 7-11

enabling (T bit) 	6-10
TRAP 8-8

Software Interrupt 12-230
traps 8-8
two-dimensional arrays 4-14, 7-4

V

V bit 5-21
and window checking 7-25

VCLK 2-9, 9-2
VCOUNT register 6-22, 6-47
VEBLNK register 6-48
vector addresses 8-2
vertical front porch 9-5
vertical sync 2-9
vertical timing registers

VCOUNT 6-47, 9-4
VEBLNK 6-48, 9-4

Index-8

Index

VESYNC 6-49, 9-4
VSBLNK 6-50, 9-4
VTOTAL 6-51, 9-4

vertical video timing 9-8-9-13
VESYNC register 6-49
video clock 2-9
video enable 6-17
video timing 9-1-9-27
video timing and screen refresh

display address 6-15, 6-17
display interrupt 6-22
registers 6-8

DPYADR 6-15
DPYCTL 6-17
DPYINT 6-22
DPYSTRT 6-23
DPYTAP 6-24
HCOUNT 6-25, 9-4
HEBLNK 6-26, 9-4
HESYNC 6-27, 9-4
HSBLNK 6-28, 9-4
HTOTAL 6-38, 9-4
VCOUNT 6-47, 9-4
VEBLNK 6-48, 9-4
VESYNC 6-49, 9-4
VSBLNK 6-50, 9-4
VTOTAL 6-51, 9-4

video timing signals 9-2
video 	signals 2-4, 2-9

BLA.:•.k 	2-9
HSYNC 2-9
VCLK 2-9
VSYNC 2-9

VRAM 11-5
VRAMs 6-8, 9-19

bulk initialization 	9-27
tap point address 6-24

' -: !_NK register 6-50
:NC 2-9, 6-20, 9-2

VTOTAL register 6-51

w
W 2-7, 11-2
W bit 6-9, 6-10
WEND register 5-14
window checking 4-15, 6-10, 7-25
window clipping 7-27
window end address register 5-14

window hit detection 7-26
window interrupt 8-4
window miss detection 7-27
window start address register 5-13
windows 5-13, 5-14

WEND register 5-14
WSTART register 5-13

WSTART register 5-13
WVE bit 6-39
WVP bit 6-40

x
XOR

Exclusive OR Registers 12-232
XORI

Exclusive OR Immediate Value 12-
233

XY addressing 4-8, 4-10, 4-11, 4-13,
5-15

benefits 4-11
DYDX register 5-15
format 4-11
OFFSET register 5-12
XY-to-linear conversion 4-11, 6-13,

6-14
XY register moves 12-8
X1E bit 6-39
X1 P bit 6-40
X2E bit 6-39
X2P bit 6-40
X3E bit 6-39
X3P bit 6-40

z
Z bit 5-21
ZEXT

Zero Extend to Long 12-234

Index-9

	Contents
	Illustrations
	Tables

	1. Introduction
	1.1 TMS34010 Overview
	1.2 Key Features
	1.3 Typical Applications
	1.4 Architectural Overview
	1.4.1 Other Special Processing Hardware
	1.4.2 TMS34010 Block Diagram

	1.5 Manual Organization
	1.6 References and Suggested Reading

	2. Pin Functions
	2.1 Pinout and Pin Descriptions
	2.2 Host Interface Bus Signals
	2.3 Local Memory Interface Signals
	2.4 Video Timing Signals
	2.5 Hold and Emulator Interface Signals
	2.6 Power, Ground, and Reset Signals

	3. Memory Organization
	3.1 Memory Addressing
	3.2 Memory Map
	3.3 Stacks
	3.3.1 System Stack
	3.3.2 Auxiliary Stacks

	4. Hardware-Supported Data Structures
	4.1 Fields
	4.2 Pixels
	4.2.1 Pixels in Memory
	4.2.2 Pixels on the Screen
	4.2.3 Display Pitch

	4.3 XY Addressing
	4.3.1 XY-to-Linear Conversion

	4.4 Pixel Arrays

	5. CPU Registers and Instruction Cache
	5.1 General-Purpose Registers
	5.1.1 Register File A
	5.1.2 Register File B
	5.1.3 Stack Pointer
	5.1.4 Implied Graphics Operands
	SADDR - Source Address Register
	SPTCH - Source Pitch Register
	DADDR - Destination Address Register
	DPTCH - Destination Pitch Register
	OFFSET - XY Addressing Offset Register
	WSTART - Window Start Address Register
	WEND - Window End Address Register
	DYDX - Delta Y/Delta X Register
	COLOR0 - Background Color Register
	COLOR1 - Foreground Color Register
	Reserved Registers

	5.2 Status Register
	5.3 Program Counter
	5.4 Instruction Cache
	5.4.1 Cache Hardware
	5.4.2 Cache Replacement Algorithm
	5.4.3 Cache Operation
	5.4.4 Self-Modifying Code
	5.4.5 Flushing the Cache
	5.4.6 Cache Disable
	5.4.7 Performance with Cache Enabled versus Cache Disabled

	5.5 Internal Parallelism

	6. I/O Registers
	6.1 I/O Register Addressing
	6.2 Latency of Writes to I/O Registers
	6.3 I/O Registers Summary
	6.3.1 Host Interface Registers
	6.3.2 Local Memory Interface Registers
	6.3.3 Interrupt Interface Registers
	6.3.4 Video Timing and Screen Refresh Registers

	6.4 Alphabetical Listing of I/O Registers
	CONTROL Memory Control Register
	CONVDP Destination Pitch Conversion Factor
	CONVSP Source Pitch Conversion Factor
	DPYADR Display Address Register
	DPYCTL Display Control Register
	DPYINT Display Interrupt Register
	DPYSTRT Display Start Address Register
	DPYTAP Display Tap Point Address Register
	HCOUNT Horizontal Count Register
	HEBLNK Horizontal End Blank Register
	HESYNC Horizontal End Sync Register
	HSBLNK Horizontal Start Blank Register
	HSTADRH Host Interface Register, High Word
	HSTADRL Host Interface Register, Low Word
	HSTCTLH Host Interface Control Register, High Byte
	HSTCTLL Host Interface Control Register, Low Byte
	HSTDATA Host Interface Data Register
	HTOTAL Horizontal Total Register
	INTENB Interrupt Enable Register
	INTPEND Interrupt Pending Register
	PMASK Plane Mask Register
	PSIZE Pixel Size Register
	REFCNT Refresh Count Register
	VCOUNT Vertical Count Register
	VEBLNK Vertical End Blank Register
	VESYNC Vertical End Sync Register
	VSBLNK Vertical Start Blank Register
	VTOTAL Vertical Total Register

	7. Graphics Operations
	7.1 Graphics Operations Overview
	7.2 Pixel Block Transfers
	7.2.1 Color- Expand Operation
	7.2.2 Starting Corner Selection
	7.2.3 Interrupting PixBlts and Fills

	7.3 Pixel Transfers
	7.4 Incremental Algorithm Support
	7.5 Transparency
	7.6 Plane Masking
	7.7 Pixel Processing
	7.8 Boolean Processing Examples
	7.8.1 Replace Destination with Source
	7.8.2 Logical OR of Source with Destination
	7.8.3 Logical AND of NOT Source with Destination
	7.8.4 Exclusive OR of Source with Destination

	7.9 Multiple-Bit Pixel Operations
	7.9.1 Examples of Boolean Operations
	7.9.1.1 Figure 7 - 8 i and j - Simple Addition and Subtraction
	7.9.1.2 Figure 7-8 k and I - Add and Subtract with Saturate
	7.9.1.3 Figure 7 -8 m - Maximum
	7.9.1.4 Figure 7-8 n - Minimum

	7.9.2 Operations On Pixel Intensity
	7.9.2.1 Figure 7 - 9 b - Replace with Transparency
	7.9.2.2 Figure 7 - 9 c - Add with Overflow and Subtract with Underflow
	7.9.2.3 Figure 7 - 9 d - Add and Subtract with Saturation
	7.9.2.4 Figure 7 - 9 e - MAX and MIN Operations

	7.10 Window Checking
	7.10.1 W=1 Mode - Window Hit Detection
	7.10.2 W=2 Mode - Window Miss Detection
	7.10.3 W=3 Mode - Window Clipping
	7.10.4 Specifying Window Limits
	7.10.5 Window Violation Interrupt
	7.10.6 Line Clipping

	8. Interrupts, Traps, and Reset
	8.1 Interrupt Interface Registers
	8.2 External Interrupts
	8.3 Internal Interrupts
	8.4 Interrupt Processing
	8.4.1 Interrupt Latency

	8.5 Traps
	8.6 Illegal Opcode Interrupts
	8.7 Reset
	8.7.1 Asserting Reset
	8.7.2 Suspension of DRAM-Refresh Cycles During Reset
	8.7.3 Initial State Following Reset
	8.7.4 Activity Following Reset
	8.7.4.1 Self-Bootstrap Mode
	8.7.4.2 Host-Present Mode

	9. Screen Refresh and Video Timing
	9.1 Video Timing Signals
	9.2 Screen Sizes
	9.3 Video Timing Registers
	9.4 Horizontal Video Timing
	9.5 Vertical Video Timing
	9.5.1 Noninterlaced Video Timing
	9.5.1.1 Interlaced Video Timing

	9.6 Display Interrupt
	9.7 Dot Rate
	9.8 External Sync Mode
	9.8.1 A Two-GSP System
	9.8.2 External Interlaced Video

	9.9 Video RAM Control
	9.9.1 Screen Refresh
	9.9.1.1 Display Memory
	9.9.1.2 Generation of Screen - Refresh Addresses
	9.9.1.3 Screen Refresh for Interlaced Displays
	9.9.1.4 Panning the Display
	9.9.1.5 Scheduling of Screen - Refresh Cycles

	9.9.2 Video Memory Bulk Initialization

	10. Host Interface Bus
	10.1 Host Interface Bus Pins
	10.2 Host Interface Registers
	10.3 Host Register Reads and Writes
	10.3.1 Functional Timing Examples
	10.3.2 Ready Signal to Host
	10.3.3 Indirect Accesses of Local Memory
	10.3.3.1 Indirectly Reading from a Buffer
	10.3.3.2 Indirectly Writing to a Buffer
	10.3.3.3 Combining Indirect Reads and Writes
	10.3.3.4 Accessing Host Data and Address Registers
	10.3.3.5 Downloading New Code

	10.3.4 Halt Latency
	10.3.5 Accommodating Host Byte-Addressing Conventions

	10.4 Bandwidth
	10.5 Worst-Case Delay

	11. Local Memory Interface
	11.1 Local Memory Interface Pins
	11.2 Local Memory Interface Registers
	11.3 Memory Bus Request Priorities
	11.4 Local Memory Interface Timing
	11.4.1 Local Memory Write Cycle Timing
	11.4.2 Local Memory Read Cycle Timing
	11.4.3 Local Shift-Register-to-Memory Cycle Timing
	11.4.4 Local Memory-to-Shift-Register Cycle Timing
	11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing
	11.4.6 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing
	11.4.7 Local Memory Internal Cycles
	11.4.8 I/O Register Access Cycles
	11.4.9 Read-Modify-Write Operations
	11.4.10 Local Memory Wait States
	11.4.11 Hold Interface Timing
	11.4.12 Local Bus Timing Following Reset

	11.5 Addressing Mechanisms
	11.5.1 Display Memory Hardware Requirements
	11.5.2 Memory Organization and Bank Selecting
	11.5.3 Dynamic RAM Refresh Addresses
	11.5.4 An Example - Memory Organization and Decoding

	12. The TMS34010 Instruction Set
	12.1 Symbols and Abbreviations
	12.2 Addressing Modes
	12.2.1 Immediate Addressing
	12.2.2 Indirect XY
	12.2.3 Absolute Addressing
	12.2.4 Register Direct
	12.2.5 Register Indirect
	12.2.6 Register Indirect with Displacement
	12.2.7 Register Indirect with Predecrement
	12.2.8 Register Indirect with Postincrement

	12.3 Move Instructions Summary
	12.3.1 Register-to-Register Moves
	12.3.2 Constant-to-Register Moves
	12.3.3 X and Y Register Moves
	12.3.4 Multiple Register Moves
	12.3.5 Byte Moves
	12.3.6 Field Moves
	12.3.6.1 Register - to - Memory Field Moves
	12.3.6.2 Memory-to-Register Field Moves
	12.3.6.3 Memory-to-Memory Field Moves

	12.4 PIXBLT Instructions Summary
	12.5 PIXT Instructions Summary
	TMS34010 Instruction Set Summary
	TMS34010 Instruction Set
	Example Instruction
	ABS Store Absolute Value
	ADD Add Registers
	ADDC Add Register with Carry
	ADDI Add Immediate - 16 Bits
	ADDI Add Immediate - 32 Bits
	ADDK Add Constant (5 Bits)
	ADDXY Add Registers in XY Mode
	AND AND Registers
	ANDI AND Immediate (32 Bits)
	ANDN AND Register with Complement
	ANDNI AND Not Immediate (32 Bits)
	BTST Test Register Bit - Constant
	BTST Test Register Bit - Register
	CALL Call Subroutine - Indirect
	CALLA Call Subroutine - Absolute
	CALLR Call Subroutine - Relative
	CLR Clear Register
	CLRC Clear Carry
	CMP Compare Registers
	CMPI Compare Immediate - 16 Bits
	CMPI Compare Immediate - 32 Bits
	CMPXY Compare X and Y Halves of Registers
	CPW Compare Point to Window
	CVXYL Convert XY Address to Linear Address
	DEC Decrement Register
	DINT Disable Interrupts
	DIVS Divide Registers - Signed
	DIVU Divide Registers - Unsigned
	DRAV Draw and Advance
	DSJ Decrement Register and Skip Jump
	DSJEQ Conditionally Decrement Register and Skip Jump
	DSJNE Conditionally Decrement Register and Skip Jump
	DSJS Decrement Register and Skip Jump - Short
	EINT Enable Interrupts
	EMU Initiate Emulation
	EXGF Exchange Field Size
	EXGPC Exchange Program Counter with Register
	FILL Fill Array with Processed Pixels - Linear
	FILL Fill Array with Processed Pixels - XY
	GETPC Get Program Counter into Register
	GETST Get Status Register into Register
	INC Increment Register
	JAcc Jump Absolute Conditional
	JRcc Jump Relative Conditional - ±127 Words
	JRcc Jump Relative Conditional - ±32K Words
	JUMP Jump Indirect
	LINE Line Draw with XY Addressing
	LMO Leftmost One
	MMFM Move Multiple Registers from Memory
	MMTM Move Multiple Registers to Memory
	MODS Modulus - Signed
	MODU Modulus - Unsigned
	MOVB Move Byte - Register to Indirect
	MOVB Move Byte - Register to Indirect with Displacement
	MOVB Move Byte - Register to Absolute
	MOVB Move Byte - Indirect to Register
	MOVB Move Byte - Indirect to Indirect
	MOVB Move Byte - Indirect with Displacement to Register
	MOVB Move Byte - Indirect with Displacement to Indirect with Displacement
	MOVB Move Byte - Absolute to Register
	MOVB Move Byte - Absolute to Absolute
	MOVE Move - Register to Register
	MOVE Move Field - Register to Indirect
	MOVE Move Field - Register to Indirect (Postincrement)
	MOVE Move Field - Register to Indirect (Predecrement)
	MOVE Move Field - Register to Indirectwith Displacement
	MOVE Move Field - Register to Absolute
	MOVE Move Field - Indirect to Register
	MOVE Move Field - Indirect to Indirect
	MOVE Move Field - Indirect (Postincrement) to Register
	MOVE Move Field - Indirect (Postincrement) to Indirect (Postincrement)
	MOVE Move Field - Indirect (Predecrement) to Register
	MOVE Move Field - Indirect (Predecrement) to Indirect (Predecrement)
	MOVE Move Field - Indirect with Displacement to Register
	MOVE Move Field - Indirect with Displacement to Indirect (Postincrement)
	MOVE Move Field - Indirect with Displacement to Indirect with Displacement
	MOVE Move Field - Absolute to Register
	MOVE Move Field - Absolute to Indirect (Postincrement)
	MOVE Move Field - Absolute to Absolute
	MOVI Move Immediate - 16 Bits
	MOVI Move Immediate - 32 Bits
	MOVK Move Constant (5 Bits)
	MOVX Move X Half of Register
	MOVY Move Y Half of Register
	MPYS Multiply Registers - Signed
	MPYU Multiply Registers - Unsigned
	NEG Negate Register
	NEGB Negate Register with Borrow
	NOP No Operation
	NOT Complement Register
	OR OR Registers
	ORI OR Immediate (32 Bits)
	PIXBLT Pixel Block Transfer - Binary to Linear
	PIXBLT Pixel Block Transfer - Binary to XY
	PIXBLT Pixel Block Transfer - Linear to Linear
	PIXBLT Pixel Block Transfer - Linear to XV
	PIXBLT Pixel Block Transfer - XY to Linear
	PIXBLT Pixel Block Transfer - XY to XY
	PIXT Pixel Transfer - Register to Indirect
	PIXT Pixel Transfer - Register to Indirect XY
	PIXT Pixel Transfer - Indirect to Register
	PIXT Pixel Transfer - Indirect to Indirect
	PIXT Pixel Transfer - Indirect XY to Register
	PIXT Pixel Transfer - Indirect XY to Indirect XY
	POPST Pop Status Register from Stack
	PUSHST Push Status Register onto Stack
	PUTST Copy Register into Status
	RETI Return from Interrupt
	RETS Return from Subroutine
	REV Store Revision Number
	RL Rotate Left - Constant
	RL Rotate Left - Register
	SETC Set Carry
	SETF Set Field Parameters
	SEXT Sign Extend to Long
	SLA Shift Left Arithmetic - Constant
	SLA Shift Left Arithmetic - Register
	SLLShift Left Logical - Constant
	SLL Shift Left Logical - Register
	SRA Shift Right Arithmetic - Constant
	SRA Shift Right Arithmetic - Register
	SRL Shift Right Logical - Constant
	SRL Shift Right Logical - Register
	SUB Subtract Registers
	SUBB Subtract Registers with Borrow
	SUBI Subtract Immediate - 16 Bits
	SUBI Subtract Immediate - 32 Bits
	SUBK Subtract Constant
	SUBXY Subtract Registers in XY Mode
	TRAPSoftware Interrupt
	XOR Exclusive OR Registers
	XORI Exclusive OR Immediate Value
	ZEXT Zero Extend to Long

	13. Instruction Timings
	13.1 General Instructions
	13.1.1 Best Case Timing — Considering Hidden States
	13.1.2 Other Effects on Instruction Timing

	13.2 MOVE and MOVB Instructions
	13.2.1 Moves Between Registers and Memory
	13.2.2 Memory-to-Memory Moves
	13.2.3 MOVE Timing Example

	13.3 FILL Instructions
	13.3.1 FILL Setup Time
	13.3.2 FILL Transfer Timing
	13.3.3 FILL Timing Examples
	13.3.4 Interrupt Effects on FILL Timing

	13.4 PIXBLT Instructions
	13.4.1 PIXBLT Setup Time
	13.4.2 PIXBLT Transfer Timing
	13.4.3 PIXBLT Timing Examples
	13.4.4 The Effect of Interrupts on PIXBLT Instructions

	13.5 PIXBLT Expand Instructions
	13.5.1 PIXBLT Setup Time
	13.5.2 PIXBLT Transfer Timing
	13.5.3 PIXBLT Timing Examples
	13.5.4 The Effect of Interrupts

	13.6 The LINE Instruction
	13.6.1 LINE Setup Time
	13.6.2 LINE Transfer Timing
	13.6.3 LINE Timing Example
	13.6.4 Effects of Interrupts on LINE Timing

	A. TMS34010 Data Sheet
	B. Emulation Guidelines for Prototyping
	B.1 Synchronizing a Host Processor with the TMS34010
	B.2 Proper Grounding of XDS Target Cable Assembly

	C. Software Compatibility with Future GSPs
	D. Glossary
	Index

