
1

Perspective-Correct Interpolation
Kok-Lim Low

Department of Computer Science
University of North Carolina at Chapel Hill

Email: lowk@cs.unc.edu

March 12, 2002

1 INTRODUCTION
We will derive (and prove) a method to achieve perspective-
correct interpolation by linear interpolation in the screen space.
During rasterization of linear graphics primitives, such as lines
and polygons, straightforward screen-space linear interpolation of
vertex attributes generally does not produce perspective correct
results.

In traditional raster graphics, attributes, such as colors, texture
coordinates and normal vectors, are usually associated with the
vertices of the graphics primitives [1, 2]. In 3D space, the value of
each attribute varies linearly across each graphics primitive.
However, this linear variation of attribute values in 3D space does
not translate into similar linear variation in the screen space after
the 3D vertices have been projected onto a 2D image plane (or the
screen) † by a perspective projection. Therefore, if we apply
straightforward linear interpolation to these attribute values in the
screen space, generally, we get incorrect results in the image.
Figure 1 shows such an example.

For easier illustration, Figure 1 only shows a line in 2D space
being projected onto a 1D image plane, but the same argument
can be applied to a 3D linear geometric primitive projected onto a
2D image plane. In the diagram, vertices A and B of a line AB in
2D space are projected onto points a and b, respectively, in a 1D
image plane. The attribute values at the vertices are intensity
values. At A, intensity value is 0.0, and at B, intensity value is 1.0.
It follows that the intensity values at a and b are 0.0 and 1.0,
respectively. Suppose c is the midpoint between a and b in the

† Technically, an image plane is not the same as the screen space. A 2D
translation and a 2D scale are usually required to map a rectangular region
of the image plane to a region in the screen space. Since linear
interpolation in the image plane works similarly in the screen space, we
will not try to distinguish the two in the arguments.

image plane. If we linearly interpolate in the image plane (or in
the screen space) the intensity values at a and b, then the intensity
value at c is 0.5. However, if we “unproject” the point c onto a
point C on the line AB, we can see that C is not necessary the
midpoint between A and B. Since the intensity value varies
linearly from A to B (in 3D space), the intensity value at C should
not be 0.5 if it is not the midpoint between A and B.

In spite of this, it is still possible to obtain perspective correct
results by linearly interpolating in the screen space. This can be
done by interpolating the values of some functions of the
attributes, instead of interpolating the attributes directly. Each
interpolated result is then transformed by another function (the
inverse function) to get the final attribute value at the desired
point in the screen space. You will see that these functions make
use of the z-values of the vertices.

2 INTERPOLATING z-VALUES
Before a perspective projection is done to project the 3D vertices
of a primitive onto a 2D image plane, many graphics rendering
systems assume that the virtual camera is already located at the
origin of the 3D space, looking in the −z or +z direction. This
defines a coordinate system called the camera coordinate system.
The fixed viewing direction of the camera also allows us to
always have an image plane perpendicular to the z-axis, which
significantly simplifies the perspective projection computation.
Without loss of generality, we will assume that the camera is
looking in the +z direction, and the image plane is at a distance of
d in front of the camera (see Figure 2).

Many raster graphics rendering systems use z-buffer [1, 2] to
perform hidden-surface removal. This requires that at every pixel
on the screen that a primitive is projected onto, the z-coordinate
(z-value) of the corresponding 3D point on the primitive must be
known. However, because only the primitive’s vertices are
actually projected, their corresponding 2D image points in the
screen space are the only places in the screen space where z-
values are known. For faster rasterization, we would want to
derive the z-values at other pixels using the known z-values at the
vertices’ image points.

The z-values can be treated as an attribute whose values vary
linearly across a 3D linear primitive. Like the example we have
seen in Figure 1, straightforward linear interpolation of z-values
in the screen space does not always produce perspective-correct
results. However, we will see in the followings that we can
actually linearly interpolate the reciprocals of the z-values to
achieve the correct results.

Similar to Figure 1, Figure 2 shows a line in a 2D camera
coordinate system being projected onto a 1D image plane. The
caption explains the symbols that we will use in the formula
derivation. In the figure, s is the interpolation parameter in the
image plane, and t is the interpolation parameter on the primitive.

Figure 1: Straightforward linear interpolation of attribute values
in the screen space (or in the image plane) does not always
produce perspective-correct results.

image plane
(screen)

A, intensity = 0.0

c, intensity = 0.5

C, intensity ≠ 0.5

B, intensity = 1.0

b, intensity = 1.0

a, intensity = 0.0

virtual
camera line AB

2

Our objective is to derive formula to correctly interpolate, in the
screen space, the z-values. The same derivation can be directly
applied to the case of a 3D linear primitive projected onto a 2D
image plane.

Referring to Figure 2, by similar triangles, we have

d
Zu

X
d
u

Z
X 11

1
1

1

1 =⇒= , (1)

d
Zu

X
d
u

Z
X 22

2
2

2

2 =⇒= , (2)

s

t
t

s

t

t

u
dX

Z
d
u

Z
X =⇒= . (3)

By linearly interpolating in the image plane (or screen space), we
have

)(121 uusuus −+= . (4)

By linearly interpolating across the primitive in the camera
coordinate system, we have

)(121 XXtXX t −+= , (5)

)(121 ZZtZZ t −+= , (6)

Substituting (4) and (5) into (3),

()()
)(

121

121

uusu
XXtXd

Z t −+
−+= . (7)

Substituting (1) and (2) into (7),

⋅
−+
−+=

−+












 −+

=

)(
)(
)(

121

112211

121

112211

uusu
ZuZutZu

uusu
d
Zu

d
Zu

t
d
Zu

d
Zt

(8)

Substituting (6) into (8),

)(
)(

)(
121

112211
121 uusu

ZuZutZu
ZZtZ

−+
−+=−+ , (9)

which can be simplified into

21

1

)1(ZssZ
sZ

t
−+

= . (10)

Substituting (10) into (6), we have

)(
)1(12

21

1
1 ZZ

ZssZ
sZ

ZZ t −
−+

+= , (11)

which can be simplified to

⋅





−+

=

121

11

1
1

ZZ
s

Z

Zt

(12)

Equation (12) tells us that the z-value at point c in the image plane
can be correctly derived by just linearly interpolating between
1/Z1 and 1/Z2, and then compute the reciprocal of the interpolated
result. For z-buffer purpose, the final reciprocal need not even be
computed, because all we need is to reverse the comparison
operation during z-value comparison.

3 INTERPOLATING ATTRIBUTE VALUES
Here, we want to derive formula to correctly interpolate, in the
screen space, the other attribute values.

Refer to Figure 2 again. By linearly interpolating the attribute
values across the primitive in the camera coordinate system, we
get

)(121 IItII t −+= . (13)

Substituting (10) into (13), we have

)(
)1(12

21

1
1 II

ZssZ
sZ

II t −
−+

+= , (14)

which can be rearranged into













−+











−+=

1211

1

2

2

1

1 11

1

ZZ
s

ZZ
I

Z
I

s
Z
I

I t
. (15)

From (12), we can see that the denominator in (15) is just 1/Zt.
Therefore,

t
t ZZ

I
Z
I

s
Z
I

I
1

1

1

2

2

1

1












−+= . (16)

What (16) means is that the attribute value at point c in the image
plane can be correctly derived by just linearly interpolating
between I1/Z1 and I2/Z2, and then divide the interpolated result by
1/Zt, which itself can be derived by linear interpolation in the
screen space as shown in (12).

REFERENCES
[1] James D. Foley, Andries van Dam, Steven K. Feiner and

John F. Hughes. Computer Graphics: Principles and
Practice, Second Edition. Addison-Wesley, 1990.

[2] Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner
(OpenGL Architecture Review Board). OpenGL
Programming Guide, Third Edition: The Official Guide to
Learning OpenGL, Version 1.2. Addison-Wesley, 1999.

Figure 2: The virtual camera is looking in the +z direction in the
camera coordinate system. The image plane is at a distance of d
in front of the camera. A, B and C are points on the primitive with
attribute values I1, I2 and It respectively, and their images on the
image plane are a, b and c, respectively. s and t are parameters
used for linear interpolation.

image
plane

A (X1, Z1), attribute = I1

c (us, d)

b (u2, d)

a (u1, d)

virtual
camera
(0, 0)

line AB

C (Xt, Zt), attribute = It

B (X2, Z2), attribute = I2

t

1–t
1–s

s
x

–z

d

0 ≤ s ≤ 1, 0 ≤ t ≤ 1

