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1 INTRODUCTION 
We will derive (and prove) a method to achieve perspective-
correct interpolation by linear interpolation in the screen space. 
During rasterization of linear graphics primitives, such as lines 
and polygons, straightforward screen-space linear interpolation of 
vertex attributes generally does not produce perspective correct 
results. 

In traditional raster graphics, attributes, such as colors, texture 
coordinates and normal vectors, are usually associated with the 
vertices of the graphics primitives [1, 2]. In 3D space, the value of 
each attribute varies linearly across each graphics primitive. 
However, this linear variation of attribute values in 3D space does 
not translate into similar linear variation in the screen space after 
the 3D vertices have been projected onto a 2D image plane (or the 
screen) †  by a perspective projection. Therefore, if we apply 
straightforward linear interpolation to these attribute values in the 
screen space, generally, we get incorrect results in the image. 
Figure 1 shows such an example. 

For easier illustration, Figure 1 only shows a line in 2D space 
being projected onto a 1D image plane, but the same argument 
can be applied to a 3D linear geometric primitive projected onto a 
2D image plane. In the diagram, vertices A and B of a line AB in 
2D space are projected onto points a and b, respectively, in a 1D 
image plane. The attribute values at the vertices are intensity 
values. At A, intensity value is 0.0, and at B, intensity value is 1.0. 
It follows that the intensity values at a and b are 0.0 and 1.0, 
respectively. Suppose c is the midpoint between a and b in the 

                                                             
† Technically, an image plane is not the same as the screen space. A 2D 
translation and a 2D scale are usually required to map a rectangular region 
of the image plane to a region in the screen space. Since linear 
interpolation in the image plane works similarly in the screen space, we 
will not try to distinguish the two in the arguments. 

image plane. If we linearly interpolate in the image plane (or in 
the screen space) the intensity values at a and b, then the intensity 
value at c is 0.5. However, if we “unproject” the point c onto a 
point C on the line AB, we can see that C is not necessary the 
midpoint between A and B. Since the intensity value varies 
linearly from A to B (in 3D space), the intensity value at C should 
not be 0.5 if it is not the midpoint between A and B. 

In spite of this, it is still possible to obtain perspective correct 
results by linearly interpolating in the screen space. This can be 
done by interpolating the values of some functions of the 
attributes, instead of interpolating the attributes directly. Each 
interpolated result is then transformed by another function (the 
inverse function) to get the final attribute value at the desired 
point in the screen space. You will see that these functions make 
use of the z-values of the vertices. 

2 INTERPOLATING z-VALUES 
Before a perspective projection is done to project the 3D vertices 
of a primitive onto a 2D image plane, many graphics rendering 
systems assume that the virtual camera is already located at the 
origin of the 3D space, looking in the −z or +z direction. This 
defines a coordinate system called the camera coordinate system. 
The fixed viewing direction of the camera also allows us to 
always have an image plane perpendicular to the z-axis, which 
significantly simplifies the perspective projection computation. 
Without loss of generality, we will assume that the camera is 
looking in the +z direction, and the image plane is at a distance of 
d in front of the camera (see Figure 2). 

Many raster graphics rendering systems use z-buffer [1, 2] to 
perform hidden-surface removal. This requires that at every pixel 
on the screen that a primitive is projected onto, the z-coordinate 
(z-value) of the corresponding 3D point on the primitive must be 
known. However, because only the primitive’s vertices are 
actually projected, their corresponding 2D image points in the 
screen space are the only places in the screen space where z-
values are known. For faster rasterization, we would want to 
derive the z-values at other pixels using the known z-values at the 
vertices’ image points. 

The z-values can be treated as an attribute whose values vary 
linearly across a 3D linear primitive. Like the example we have 
seen in Figure 1, straightforward linear interpolation of z-values 
in the screen space does not always produce perspective-correct 
results. However, we will see in the followings that we can 
actually linearly interpolate the reciprocals of the z-values to 
achieve the correct results. 

Similar to Figure 1, Figure 2 shows a line in a 2D camera 
coordinate system being projected onto a 1D image plane. The 
caption explains the symbols that we will use in the formula 
derivation. In the figure, s is the interpolation parameter in the 
image plane, and t is the interpolation parameter on the primitive. 

Figure 1: Straightforward linear interpolation of attribute values 
in the screen space (or in the image plane) does not always 
produce perspective-correct results. 
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Our objective is to derive formula to correctly interpolate, in the 
screen space, the z-values. The same derivation can be directly 
applied to the case of a 3D linear primitive projected onto a 2D 
image plane.  

Referring to Figure 2, by similar triangles, we have 
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By linearly interpolating in the image plane (or screen space), we 
have 

)( 121 uusuus −+= . (4) 

By linearly interpolating across the primitive in the camera 
coordinate system, we have 

)( 121 XXtXX t −+= , (5) 

)( 121 ZZtZZ t −+= , (6) 

Substituting (4) and (5) into (3),  
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Substituting (1) and (2) into (7),  
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Substituting (6) into (8), 
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which can be simplified into 
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Substituting (10) into (6), we have 
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Equation (12) tells us that the z-value at point c in the image plane 
can be correctly derived by just linearly interpolating between 
1/Z1 and 1/Z2, and then compute the reciprocal of the interpolated 
result. For z-buffer purpose, the final reciprocal need not even be 
computed, because all we need is to reverse the comparison 
operation during z-value comparison. 

3 INTERPOLATING ATTRIBUTE VALUES 
Here, we want to derive formula to correctly interpolate, in the 
screen space, the other attribute values. 

Refer to Figure 2 again. By linearly interpolating the attribute 
values across the primitive in the camera coordinate system, we 
get 

)( 121 IItII t −+= . (13) 

Substituting (10) into (13), we have 
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which can be rearranged into 
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From (12), we can see that the denominator in (15) is just 1/Zt. 
Therefore, 
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What (16) means is that the attribute value at point c in the image 
plane can be correctly derived by just linearly interpolating 
between I1/Z1 and I2/Z2, and then divide the interpolated result by 
1/Zt, which itself can be derived by linear interpolation in the 
screen space as shown in (12). 
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Figure 2: The virtual camera is looking in the +z direction in the 
camera coordinate system. The image plane is at a distance of d 
in front of the camera. A, B and C are points on the primitive with 
attribute values I1, I2 and It respectively, and their images on the 
image plane are a, b and c, respectively. s and t are parameters 
used for linear interpolation. 
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