
John Carmack Archive - .plan (2001)

http://www.team5150.com/~andrew/carmack

March 18, 2007

http://www.team5150.com/~andrew/carmack


Contents

1 February 2

1.1 GeForce 3 Overview (Feb 22, 2001) . . . . . . . . . . . . . . 2

2 November 7

2.1 Nov 16, 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 December 11

3.1 The Quake 2 source code is now available for download,
licensed under the GPL. (Dec 21, 2001) . . . . . . . . . . . . 11

1



Chapter 1

February

1.1 GeForce 3 Overview (Feb 22, 2001)

I just got back from Tokyo, where I demonstrated our new engine running
under MacOS-X with a GeForce 3 card. We had quite a bit of discussion
about whether we should be showing anything at all, considering how
far away we are from having a title on the shelves, so we probably aren’t
going to be showing it anywhere else for quite a while.

We do run a bit better on a high end wintel system, but the Apple per-
formance is still quite good, especially considering the short amount of
time that the drivers had before the event.

It is still our intention to have a simultaneous release of the next product
on Windows, MacOS-X, and Linux.

Here is a dump on the GeForce 3 that I have been seriously working with
for a few weeks now:

The short answer is that the GeForce 3 is fantastic. I haven’t had such an
impression of raising the performance bar since the Voodoo 2 came out,
and there are a ton of new features for programmers to play with.

Graphics programmers should run out and get one at the earliest possi-
ble time. For consumers, it will be a tougher call. There aren’t any appli-

2



John Carmack Archive 3 .plan 2001

cations our right now that take proper advantage of it, but you should still
be quite a bit faster at everything than GF2, especially with anti-aliasing.
Balance that against whatever the price turns out to be.

While the Radeon is a good effort in many ways, it has enough shortfalls
that I still generally call the GeForce 2 ultra the best card you can buy
right now, so Nvidia is basically dethroning their own product.

It is somewhat unfortunate that it is labeled GeForce 3, because GeForce
2 was just a speed bump of GeForce, while GF3 is a major architectural
change. I wish they had called the GF2 something else.

The things that are good about it:

Lots of values have additional internal precision, like texture coordinates
and rasterization coordinates. There are only a few places where this
matters, but it is nice to be cleaning up. Rasterization precision is about
the last thing that the multi-thousand dollar workstation boards still do
any better than the consumer cards.

Adding more texture units and more register combiners is an obvious
evolutionary step.

An interesting technical aside: when I first changed something I was do-
ing with five single or dual texture passes on a GF to something that
only took two quad texture passes on a GF3, I got a surprisingly mod-
est speedup. It turned out that the texture filtering and bandwidth was
the dominant factor, not the frame buffer traffic that was saved with more
texture units. When I turned off anisotropic filtering and used compressed
textures, the GF3 version became twice as fast.

The 8x anisotropic filtering looks really nice, but it has a 30%+ speed
cost. For existing games where you have speed to burn, it is probably
a nice thing to force on, but it is a bit much for me to enable on the cur-
rent project. Radeon supports 16x aniso at a smaller speed cost, but not
in conjunction with trilinear, and something is broken in the chip that
makes the filtering jump around with triangular rasterization dependen-
cies.

The depth buffer optimizations are similar to what the Radeon provides,
giving almost everything some measure of speedup, and larger ones avail-

1.1. GEFORCE 3 OVERVIEW (FEB 22, 2001)



John Carmack Archive 4 .plan 2001

able in some cases with some redesign.

3D textures are implemented with the full, complete generality. Radeon
offers 3D textures, but without mip mapping and in a non-orthogonal
manner (taking up two texture units).

Vertex programs are probably the most radical new feature, and, unlike
most ”radical new features”, actually turn out to be pretty damn good.
The instruction language is clear and obvious, with wonderful features
like free arbitrary swizzle and negate on each operand, and the obvious
things you want for graphics like dot product instructions.

The vertex program instructions are what SSE should have been.

A complex setup for a four-texture rendering pass is way easier to un-
derstand with a vertex program than with a ton of texgen/texture matrix
calls, and it lets you do things that you just couldn’t do hardware accel-
erated at all before. Changing the model from fixed function data like
normals, colors, and texcoords to generalized attributes is very impor-
tant for future progress.

Here, I think Microsoft and DX8 are providing a very good benefit by
forcing a single vertex program interface down all the hardware vendor’s
throats.

This one is truly stunning: the drivers just worked for all the new features
that I tried. I have tested a lot of pre-production 3D cards, and it has
never been this smooth.

The things that are indifferent:

I’m still not a big believer in hardware accelerated curve tessellation. I’m
not going to go over all the reasons again, but I would have rather seen
the features left off and ended up with a cheaper part.

The shadow map support is good to get in, but I am still unconvinced
that a fully general engine can be produced with acceptable quality us-
ing shadow maps for point lights. I spent a while working with shadow
buffers last year, and I couldn’t get satisfactory results. I will revisit that
work now that I have GeForce 3 cards, and directly compare it with my
current approach.

1.1. GEFORCE 3 OVERVIEW (FEB 22, 2001)



John Carmack Archive 5 .plan 2001

At high triangle rates, the index bandwidth can get to be a significant
thing. Other cards that allow static index buffers as well as static vertex
buffers will have situations where they provide higher application speed.
Still, we do get great throughput on the GF3 using vertex array range and
glDrawElements.

The things that are bad about it:

Vertex programs aren’t invariant with the fixed function geometry paths.
That means that you can’t mix vertex program passes with normal passes
in a multipass algorithm. This is annoying, and shouldn’t have happened.

Now we come to the pixel shaders, where I have the most serious is-
sues. I can just ignore this most of the time, but the way the pixel shader
functionality turned out is painfully limited, and not what it should have
been.

DX8 tries to pretend that pixel shaders live on hardware that is a lot more
general than the reality.

Nvidia’s OpenGL extensions expose things much more the way they ac-
tually are: the existing register combiners functionality extended to eight
stages with a couple tweaks, and the texture lookup engine is config-
urable to interact between textures in a list of specific ways.

I’m sure it started out as a better design, but it apparently got cut and cut
until it really looks like the old BumpEnvMap feature writ large: it does a
few specific special effects that were deemed important, at the expense
of a properly general solution.

Yes, it does full bumpy cubic environment mapping, but you still can’t
just do some math ops and look the result up in a texture. I was disap-
pointed on this count with the Radeon as well, which was just slightly
too hardwired to the DX BumpEnvMap capabilities to allow more gen-
eral dependent texture use.

Enshrining the capabilities of this mess in DX8 sucks. Other compa-
nies had potentially better approaches, but they are now forced to dumb
them down to the level of the GF3 for the sake of compatibility. Hopefully
we can still see some of the extra flexibility in OpenGL extensions.

1.1. GEFORCE 3 OVERVIEW (FEB 22, 2001)



John Carmack Archive 6 .plan 2001

The future:

I think things are going to really clean up in the next couple years. All of
my advocacy is focused on making sure that there will be a completely
clean and flexible interface for me to target in the engine after DOOM,
and I think it is going to happen.

The market may have shrunk to just ATI and Nvidia as significant players.
Matrox, 3D labs, or one of the dormant companies may surprise us all,
but the pace is pretty frantic.

I think I would be a little more comfortable if there was a third major
player competing, but I can’t fault Nvidia’s path to success.

1.1. GEFORCE 3 OVERVIEW (FEB 22, 2001)



Chapter 2

November

2.1 Nov 16, 2001

Driver optimizations have been discussed a lot lately because of the quake3
name checking in ATI’s recent drivers, so I am going to lay out my posi-
tion on the subject.

There are many driver optimizations that are pure improvements in all
cases, with no negative effects. The difficult decisions come up when it
comes to ”trades” of various kinds, where a change will give an increase
in performance, but at a cost.

Relative performance trades. Part of being a driver writer is being able
to say ”I don’t care if stippled, anti-aliased points with texturing go slow”,
and optimizing accordingly. Some hardware features, like caches and hi-
erarchical buffers, may be advantages on some apps, and disadvantages
on others. Command buffer sizes often tune differently for different ap-
plications.

Quality trades. There is a small amount of wiggle room in the specs for
pixel level variability, and some performance gains can be had by leaning
towards the minimums. Most quality trades would actually be confor-
mance trades, because the results are not exactly conformant, but they
still do ”roughly” the right thing from a visual standpoint. Compressing

7



John Carmack Archive 8 .plan 2001

textures automatically, avoiding blending of very faint transparent pix-
els, using a 16 bit depth buffer, etc. A good application will allow the user
to make most of these choices directly, but there is good call for having
driver preference panels to enable these types of changes on naive ap-
plications. Many drivers now allow you to quality trade in an opposite
manner - slowing application performance by turning on anti-aliasing
or anisotropic texture filtering.

Conformance trades. Most conformance trades that happen with drivers
are unintentional, where the slower, more general fallback case just didn’t
get called when it was supposed to, because the driver didn’t check for
a certain combination to exit some specially optimized path. However,
there are optimizations that can give performance improvements in ways
that make it impossible to remain conformant. For example, a driver
could choose to skip storing of a color value before it is passed on to the
hardware, which would save a few cycles, but make it impossible to cor-
rectly answer glGetFloatv( GL CURRENT COLOR, buffer ).

Normally, driver writers will just pick their priorities and make the trades,
but sometimes there will be a desire to make different trades in different
circumstances, so as to get the best of both worlds.

Explicit application hints are a nice way to offer different performance
characteristics, but that requires cooperation from the application, so
it doesn’t help in an ongoing benchmark battle. OpenGL’s glHint() call
is the right thought, but not really set up as flexibly as you would like.
Explicit extensions are probably the right way to expose performance
trades, but it isn’t clear to me that any conformant trade will be a big
enough difference to add code for.

End-user selectable optimizations. Put a selection option in the driver
properties window to allow the user to choose which application class
they would like to be favored in some way. This has been done many
times, and is a reasonable way to do things. Most users would never
touch the setting, so some applications may be slightly faster or slower
than in their ”optimal benchmark mode”.

Attempt to guess the application from app names, window strings, etc.
Drivers are sometimes forced to do this to work around bugs in estab-
lished software, and occasionally they will try to use this as a cue for cer-

2.1. NOV 16, 2001



John Carmack Archive 9 .plan 2001

tain optimizations.

My positions:

Making any automatic optimization based on a benchmark name is wrong.
It subverts the purpose of benchmarking, which is to gauge how a similar
class of applications will perform on a tested configuration, not just how
the single application chosen as representative performs.

It is never acceptable to have the driver automatically make a confor-
mance tradeoff, even if they are positive that it won’t make any difference.
The reason is that applications evolve, and there is no guarantee that a
future release won’t have different assumptions, causing the upgrade to
misbehave. We have seen this in practice with Quake3 and derivatives,
where vendors assumed something about what may or may not be en-
abled during a compiled vertex array call. Most of these are just mistakes,
or, occasionally, laziness.

Allowing a driver to present a non-conformant option for the user to se-
lect is an interesting question. I know that as a developer, I would get
hate mail from users when a point release breaks on their whiz-bang op-
timized driver, just like I do with overclocked CPUs, and I would get the
same ”but it works with everything else!” response when I tell them to
put it back to normal. On the other hand, being able to tweak around
with that sort of think is fun for technically inclined users. I lean towards
frowning on it, because it is a slippery slope from there down in to ”cheat-
ing drivers” of the see-through- walls variety.

Quality trades are here to stay, with anti-aliasing, anisotropic texture fil-
tering, and other options being positive trades that a user can make, and
allowing various texture memory optimizations can be a very nice thing
for a user trying to get some games to work well. However, it is still impor-
tant that it start from a completely conformant state by default. This is
one area where application naming can be used reasonably by the driver,
to maintain user selected per-application modifiers.

I’m not fanatical on any of this, because the overriding purpose of soft-
ware is to be useful, rather than correct, but the days of game-specific
mini- drivers that can just barely cut it are past, and we should demand
more from the remaining vendors.

2.1. NOV 16, 2001



John Carmack Archive 10 .plan 2001

Also, excessive optimization is the cause of quite a bit of ill user experi-
ence with computers. Byzantine code paths extract costs as long as they
exist, not just as they are written.

2.1. NOV 16, 2001



Chapter 3

December

3.1 The Quake 2 source code is now available
for download, licensed under the GPL. (Dec
21, 2001)

ftp://ftp.idsoftware.com/idstuff/source/quake2.zip

As with previous source code releases, the game data remains under the
original copyright and license, and cannot be freely distributed. If you
create a true total conversion, you can give (or sell) a complete pack-
age away, as long as you abide by the GPL source code license. If your
projects use the original Quake 2 media, the media must come from a
normal, purchased copy of the game.

I’m sure I will catch some flack about increased cheating after the source
release, but there are plenty of Q2 cheats already out there, so you are
already in the position of having to trust the other players to a degree.
The problem is really only solvable by relying on the community to police
itself, because it is a fundamentally unwinnable technical battle to make
a completely cheat proof game of this type. Play with your friends.

11

ftp://ftp.idsoftware.com/idstuff/source/quake2.zip

	February
	GeForce 3 Overview (Feb 22, 2001)

	November
	Nov 16, 2001

	December
	The Quake 2 source code is now available for download, licensed under the GPL. (Dec 21, 2001)


