
John Carmack Archive - .plan (2004)

http://www.team5150.com/~andrew/carmack

March 18, 2007

http://www.team5150.com/~andrew/carmack

Contents

1 December 2

1.1 Welcome (Dec 31, 2004) . 2

1

Chapter 1

December

1.1 Welcome (Dec 31, 2004)

I get a pretty steady trickle of emails from people hoping for .plan file
updates. There were two main factors involved in my not doing updates
for a long time - a good chunk of my time and interest was sucked into
Armadillo Aerospace, and the fact that the work I had been doing at Id for
the last half of Doom 3 development was basically pretty damn boring.

The Armadillo work has been very rewarding from a learning-lots-of-
new-stuff perspective, and I’m still committed to the vehicle develop-
ment, even post X-Prize, but the work at Id is back to a high level of inter-
est now that we are working on a new game with new technology. I keep
running across topics that are interesting to talk about, and the Armadillo
updates have been a pretty good way for me to organize my thoughts, so
I’m going to give it a more general try here. .plan files were appropriate
ten years ago, and sort of retro-cute several years ago, but I’ll be sensible
and use the web.

I’m not quite sure what the tone is going to be - there will probably be
some general interest stuff, but a bunch of things will only be of interest
to hardcore graphics geeks.

I have had some hesitation about doing this because there are a hundred

2

John Carmack Archive 3 .plan 2004

times as many people interested in listening to me talk about games /
graphics / computers as there are people interested in rocket fabrication,
and my mailbox is already rather time consuming to get through.

If you really, really want to email me, add a ”[JC]” in the subject header
so the mail gets filtered to a mailbox that isn’t clogged with spam. I can’t
respond to most of the email I get, but I do read everything that doesn’t
immediately scan as spam. Unfortunately, the probability of getting an
answer from me doesn’t have a lot of correlation with the quality of the
question, because what I am doing at the instant I read it is more domi-
nant, and there is even a negative correlation for ”deep” questions that I
don’t want to make an off-the-cuff response to.

Quake 3 Source

I intended to release the Q3 source under the GPL by the end of 2004, but
we had another large technology licensing deal go through, and it would
be poor form to make the source public a few months after a company
paid hundreds of thousands of dollars for full rights to it. True, being
public under the GPL isn’t the same as having a royalty free license with-
out the need to disclose the source, but I’m pretty sure there would be
some hard feelings.

Previous source code releases were held up until the last commercial li-
cense of the technology shipped, but with the evolving nature of game
engines today, it is a lot less clear. There are still bits of early Quake code
in Half Life 2, and the remaining licensees of Q3 technology intend to
continue their internal developments along similar lines, so there prob-
ably won’t be nearly as sharp a cutoff as before. I am still committed to
making as much source public as I can, and I won’t wait until the titles
from the latest deal have actually shipped, but it is still going to be a little
while before I feel comfortable doing the release.

Random Graphics Thoughts

Years ago, when I first heard about the inclusion of derivative instructions
in fragment programs, I couldn’t think of anything off hand that I wanted
them for. As I start working on a new generation of rendering code, uses
for them come up a lot more often than I expected.

1.1. WELCOME (DEC 31, 2004)

John Carmack Archive 4 .plan 2004

I can’t actually use them in our production code because it is an Nvidia-
only feature at the moment, but it is convenient to do experimental code
with the nv fragment program extension before figuring out various ways
to build funny texture mip maps so that the built in texture filtering hard-
ware calculates a value somewhat like the derivative I wanted.

If you are basically just looking for plane information, as you would for
modifying things with texture magnification or stretching shadow buffer
filter kernels, the derivatives work out pretty well. However, if you are
looking at a derived value, like a normal read from a texture, the results
are almost useless because of the way they are calculated. In an ideal
world, all of the samples to be differenced would be calculated at once,
then the derivatives calculated from there, but the hardware only calcu-
lates 2x2 blocks at a time. Each of the four pixels in the block is given the
same derivative, and there is no influence from neighboring pixels. This
gives derivative information that is basically half the resolution of the
screen and sort of point sampled. You can often see this effect with bump
mapped environment mapping into a mip-mapped cube map, where the
texture LOD changes discretely along the 2x2 blocks. Explicitly coloring
based on the derivatives of a normal map really shows how nasty the cal-
culated value is.

Speaking of bump mapped environment sampling.. I spent a little while
tracking down a highlight that I thought was misplaced. In retrospect it is
obvious, but I never considered the artifact before: With a bump mapped
surface, some of the on-screen normals will actually be facing away from
the viewer. This causes minor problems with lighting, but when you are
making a reflection vector from it, the vector starts reflecting into the
opposite hemisphere, resulting in some sky-looking pixels near bottom
edges on the model. Clamping the surface normal to not face away isn’t a
good solution, because you get areas that ”see right through” to the envi-
ronment map, because a reflection past a clamped perpendicular vector
doesn’t change the viewing vector. I could probably ramp things based
on the geometric normal somewhat, and possibly pre-calculate some
data into the normal maps, but I decided it wasn’t a significant enough
issue to be worth any more development effort or speed hit.

Speaking of cube maps.. The edge filtering on cube maps is showing up
as an issue for some algorithms. The hardware basically picks a face, then

1.1. WELCOME (DEC 31, 2004)

John Carmack Archive 5 .plan 2004

treats it just like a 2D texture. This is fine in the middle of the texture, but
at the edges (which are a larger and larger fraction as size decreases) the
filter kernel just clamps instead of being able to sample the neighbors in
an adjacent cube face. This is generally a non-issue for classic environ-
ment mapping, but when you start using cube map lookups with explicit
LOD bias inputs (say, to simulate variable specular powers into an envi-
ronment map) you can wind up with a surface covered with six constant
color patches instead of the smoothly filtered coloration you want. The
classic solution would be to implement border texels, but that is pretty
nasty for the hardware and API, and would require either the applica-
tion or the driver to actually copy the border texels from all the other
faces. Last I heard, upcoming hardware was going to start actually fetch-
ing from the other side textures directly. A second-tier chip company
claimed to do this correctly a while ago, but I never actually tested it.

Topics continue to chain together, I’ll probably write some more next
week.

1.1. WELCOME (DEC 31, 2004)

	December
	Welcome (Dec 31, 2004)

