
John Carmack Archive - .plan (2005)

http://www.team5150.com/~andrew/carmack

March 18, 2007

http://www.team5150.com/~andrew/carmack

Contents

1 May 2

1.1 Cell phone adventures (May 27, 2005) 2

1

Chapter 1

May

1.1 Cell phone adventures (May 27, 2005)

I’m not a cell phone guy. I resisted getting one at all for years, and even
now I rarely carry it. To a first approximation, I don’t really like talking
to most people, so I don’t go out of my way to enable people to call me.
However, a little while ago I misplaced the old phone I usually take to
Armadillo, and my wife picked up a more modern one for me. It had a
nice color screen and a bunch of bad java game demos on it. The bad
java games did it.

I am a big proponent of temporarily changing programming scope every
once in a while to reset some assumptions and habits. After Quake 3,
I spent some time writing driver code for the Utah-GLX project to give
myself more empathy for the various hardware vendors and get back to
some low-level register programming. This time, I decided I was going to
work on a cell phone game.

I wrote a couple java programs several years ago, and I was left with a
generally favorable impression of the language. I dug out my old ”java
in a nutshell” and started browsing around on the web for information
on programming for cell phones. After working my way through the al-
phabet soup of J2ME, CLDC, and MIDP, I’ve found that writing for the
platform is pretty easy.

2

John Carmack Archive 3 .plan 2005

In fact, I think it would be an interesting environment for beginning pro-
grammers to learn on. I started programming on an Apple II a long time
ago, when you could just do an ”hgr” and start drawing to the screen,
which was rewarding. For years, I’ve had misgivings about people learn-
ing programming on Win32 (unix / X would be even worse), where it
takes a lot of arcane crap just to get to the point of drawing something
on the screen and responding to input. I assume most beginners wind
up with a lot of block copied code that they don’t really understand.

All the documentation and tools needed are free off the web, and there
is an inherent neatness to being able to put the program on your phone
and walk away from the computer. I wound up using the latest release of
NetBeans with the mobility module, which works pretty well. It certainly
isn’t MSDev, but for a free IDE it seems very capable. On the downside,
MIDP debugging sessions are very flaky, and there is something deeply
wrong when text editing on a 3.6 ghz processor is anything but instanta-
neous.

I spent a while thinking about what would actually make a good game for
the platform, which is a very different design space than PCs or consoles.
The program and data sizes are tiny, under 200k for java jar files. A single
texture is larger than that in our mainstream games. The data sizes to
screen ratios are also far out of the range we are used to. A 128x128x16+
bit color screen can display some very nice graphics, but you could only
store a half dozen uncompressed screens in your entire size budget. Con-
trast with PCs, which may be up to a few megabytes of display data, but
the total game data may be five hundred times that.

You aren’t going to be able to make an immersive experience on a 2”
screen, no matter what the graphics look like. Moody and atmospheric
are pretty much out. Stylish and fun is about the best you can do.

The standard cell phone style discrete button direction pad with a center
action button is a good interface for one handed navigation and selec-
tion, but it sucks for games, where you really want a game boy style rock-
ing direction pad for one thumb, and a couple separate action buttons
for the other thumb. These styles of input are in conflict with each other,
so it may never get any better. The majority of traditional action games
just don’t work well with cell phone style input.

1.1. CELL PHONE ADVENTURES (MAY 27, 2005)

John Carmack Archive 4 .plan 2005

Network packet latency is bad, and not expected to be improving in the
foreseeable future, so multiplayer action games are pretty much out (but
see below).

I have a small list of games that I think would work out well, but what I
decided to work on is DoomRPG - sort of Bard’s Tale meets Doom. Step
based smooth sliding/turning tile movement and combat works out well
for the phone input buttons, and exploring a 3D world through the cell
phone window is pretty neat. We talked to Jamdat about the business
side of things, and hired Fountainhead Entertainment to turn my proof-
of-concept demo and game plans into a full-featured game.

So, for the past month or so I have been spending about a day a week
on cell phone development. Somewhat to my surprise, there is very lit-
tle internal conflict switching off from the high end work during the day
with gigs of data and multi-hundred instruction fragment shaders down
to texture mapping in java at night with one table lookup per pixel and
100k of graphics. It’s all just programming and design work.

It turns out that I’m a lot less fond of Java for resource-constrained work.
I remember all the little gripes I had with the Java language, like no un-
signed bytes, and the consequences of strong typing, like no memset,
and the inability to read resources into anything but a char array, but the
frustrating issues are details down close to the hardware.

The biggest problem is that Java is really slow. On a pure cpu / memory
/ display / communications level, most modern cell phones should be
considerably better gaming platforms than a Game Boy Advanced. With
Java, on most phones you are left with about the CPU power of an original
4.77 mhz IBM PC, and lousy control over everything.

I spent a fair amount of time looking at java byte code disassembly while
optimizing my little rendering engine. This is interesting fun like any
other optimization problem, but it alternates with a bleak knowledge
that even the most inspired java code is going to be a fraction the per-
formance of pedestrian native C code.

Even compiled to completely native code, Java semantic requirements
like range checking on every array access hobble it. One of the phones
(Motorola i730) has an option that does some load time compiling to im-

1.1. CELL PHONE ADVENTURES (MAY 27, 2005)

John Carmack Archive 5 .plan 2005

prove performance, which does help a lot, but you have no idea what it is
doing, and innocuous code changes can cause the compilable heuristic
to fail.

Write-once-run-anywhere. Ha. Hahahahaha. We are only testing on four
platforms right now, and not a single pair has the exact same quirks. All
the commercial games are tweaked and compiled individually for each
(often 100+) platform. Portability is not a justification for the awful per-
formance.

Security on a cell phone is justification for doing something, but an in-
terpreter isn’t a requirement - memory management units can do just as
well. I suspect this did have something to do with Java’s adoption early
on. A simple embedded processor with no MMU could run arbitrary pro-
grams securely with java, which might make it the only practical option.
However, once you start using blazingly fast processors to improve the
awful performance, a MMU with a classic OS model looks a whole lot
better.

Even saddled with very low computing performance, tighter implemen-
tation of the platform interface could help out a lot. I’m not seeing very
conscientious work on the platforms so far. For instance, there is just
no excuse for having 10+ millisecond granularity in timing. Given that
the java paradigm is sort of thread-happy anyway, having a real sched-
uler that Does The Right Thing with priorities and hardware interfacing
would be an obvious thing. Pressing a key should generate a hardware
interrupt, which should immediately activate the key listening thread,
which should be able to immediately kill an in-process rendering and
restart another one if desired. The attitude seems to be 15 msec here, 20
there, stick it on a queue, finish up a timeslice, who cares, right?

I suspect I will enjoy working with BREW, the competing standard for cell
phone games. It lets you use raw C/C++ code, or even, I suppose, assem-
bly language, which completely changes the design options. Unfortu-
nately, they only have a quarter the market share that the J2ME phones
have. Also, the relatively open java platform development strategy is
what got me into this in the first place - one night I just tried writing a
program for my cell phone, which isn’t possible for the more proprietary
BREW platform.

1.1. CELL PHONE ADVENTURES (MAY 27, 2005)

John Carmack Archive 6 .plan 2005

I have a serious suggestion for the handset designers to go with my idle
bitching. I have been told that fixing data packet latency is apparently not
in the cards, and it isn’t even expected to improve much with the change
to 3G infrastructure. Packet data communication seems more modern,
and has the luster of the web, but it is worth realizing that for network
games and many other flashy Internet technologies like streaming au-
dio and video, we use packets to rather inefficiently simulate a switched
circuit.

Cell phones already have a very low latency digital data path - the cir-
cuit switched channel used for voice. Some phones have included cel-
lular modems that use either the CSD standard (circuit switched data) at
9.8Kbits or 14.4Kbits or the HSCSD standard (high speed circuit switched
data) at 38.4Kbits or 57.6Kbits. Even the 9.8Kbit speed would be great
for networked games. A wide variety of two player peer-to-peer games
and multiplayer packet server based games could be implemented over
this with excellent performance. Gamers generally have poor memories
of playing over even the highest speed analog modems, but most of the
problems are due to having far too many buffers and abstractions be-
tween the data producers/consumers and the actual wire interface. If
you wrote eight bytes to the device and it went in the next damned frame
(instead of the OS buffer, which feeds into a serial FIFO, which goes into
another serial FIFO, which goes into a data compressor, which goes into
an error corrector, and probably a few other things before getting into a
wire frame), life would be quite good. If you had a real time scheduler, a
single frame buffer would be sufficient, but since that isn’t likely to hap-
pen, having an OS buffer with accurate queries of the FIFO positions is
probably best. The worst gaming experiences with modems weren’t due
to bandwidth or latency, but to buffer pileup.

1.1. CELL PHONE ADVENTURES (MAY 27, 2005)

	May
	Cell phone adventures (May 27, 2005)

