
.

.

.

.

.

.

.

.

.
 

.

.

.

.

.

.

.

.

.

.
 

..........

RENDITION
1675 North Shoreline Blvd.
Mountain View, CA 94043
650-335-5900
http://www.rendition.com

Rendition

RRedline™

Programming Guide

Guide to the RRedline HAL for
Vérité™ Graphics Rendering
RRedline Programming Guide

GETTING STARTED 4

WHAT IS THE VÉRITÉ? 4
WHAT IS RREDLINE? 4
SUPPORTED PLATFORMS 4
SUPPORTED COMPILERS 5
VERITE VS. REDLINE 5
THE BUILD ENVIRONMENT 6
BUG REPORTING 6
TRADEMARKS 6

HELLO TRIANGLE 7

SOME BOOKKEEPING 7
WRITING ERROR HANDLERS 8
INITIALIZING RREDLINE 10

Creating the Command Buffers 11
Surfaces 13
Other Data Structures 16
Specifying the Source Function 16

UTILITIES 16
Issuing the Command Buffer 17



Issuing the Command Buffer 17
Page Flipping 18
Clearing the Back Buffer 19

RENDERING THE TRIANGLE 20
Choosing a Vertex Type 20
Drawing Triangles 23

SHUTTING DOWN THE VÉRITÉ 24

MODIFICATIONS TO HELLO TRIANGLE 26

MODIFICATION ONE:  SWITCHING BETWEEN FULL SCREEN MODE AND
WINDOWED MODE 27

PAGE FLIPPING IN A WINDOW 27
INITIALIZING BUFFERS FOR A WINDOWED APPLICATION 28
DISPLAY SWITCHING ROUTINE 30
DE-ACTIVATING AND RE-ACTIVATING THE APPLICATION 31

MODIFICATION TWO:  DRAWING A TEXTURE MAPPED
TRIANGLE 34

CREATING  AND LOADING THE TEXTURES 34
FILTERING THE TEXTURES 36
SETTING THE SOURCE FUNCTION 37
RENDERING THE TRIANGLE 38
FREEING THE TEXTURES 40
RESTORING THE TEXTURES AND PIXEL ENGINE STATE 41

MODIFICATION THREE:  Z BUFFERING AND PERSPECTIVE
CORRECTION 42

CREATING AND USING A Z-BUFFER 42
CLEARING THE Z-BUFFER 43
RENDERING THE TRIANGLE 43

MODIFICATION FOUR:  ALPHA BLENDING 46

ALPHA BLENDING BASICS 46
TEXTURES WITH ALPHA 48
RENDERING THE TRIANGLE 48

MODIFICATION FIVE: SPECULAR EXTENSIONS 50

SPECULAR EXTENSIONS FOR THE V2000 SERIES 50
SPECULAR ALPHA SETTINGS FOR THE V1000 51
RENDERING WITH SPECULAR 53

ATTRIBUTES NOT COVERED IN EXAMPLES 57

OPTIMIZATIONS 58

ADD DRAWING PRIMITIVE DATA TO THE COMMAND LIST DIRECTLY 58
CHANGE THE 3D ENGINE'S INTERNAL DATA FORMATS TO RREDLINE'S FORMATS 60
USE FAST FLOAT TO INTEGER 60
MAINTAIN APPLICATION STATE RECORDS 61
IMPLEMENT YOUR OWN TEXTURE CACHING ALGORITHM 62
USE VL_LOOKUP() ON SLOWER CPUS 65
USE TRIANGLE FANS AND STRIPS WHEN POSSIBLE 65
AVOID SURFACE LOCKS 65
CHANGE TEXTURES IN SYSTEM MEMORY AND REDOWNLOAD RATHER THAN MODIFYING VIDEO

MEMORY DIRECTLY 65
CHOOSE THE BEST VERTEX TYPE (ESPECIALLY FOR THE V1000 SERIES) 65
CHECK ATTRIBUTE VALUE CONSISTENCY AND REMOVE THEM FROM VERTEX TYPE 66
AVOID BLENDING AND Z BUFFERING UNLESS ABSOLUTELY NECESSARY 66
Z BUFFER TRICKS 67



Z BUFFER TRICKS 67
DON'T LOCK LOTS OF SYSTEM MEMORY 67
USE 2D BLITS RATHER THAN POLYGONS IF THAT'S WHAT'S NECESSARY 68
REFRESH RATE 68
USE TIME BETWEEN SWAP AND WAIT 70
FOR ARBITRARY HOST-TO-VERITE BLITS 4-BYTE-ALIGNED DESTINATION ADDRESSES GO WAY

FASTER 70
KEEP THE VÉRITÉ BUSY 70
AVOID VL_INSTALLTEXTUREMAP() (CALLS ~12 OTHER FUNCTIONS!) 71
USE VL_TRIANGLEFILL() FOR FLAT SHADED TRIANGLES 72
USE VL_PARTICLES() FOR DOTS/STARS 72
DIFFERENT V1K/V2K TECHNIQUES 72
TRY AN INFINITELY FAST RENDERER TO MEASURE THE APPLICATION’S “SPEED OF LIGHT” 73
USE VL_RECTANGLE() FOR SPRITES 73
USE VL_LOOKUP() FOR 2D STUFF (QUAKE CONSOLE/MENUS) 73
USE MIPMAPPING 73
COLLECT THINGS INTO LOCKED MEMORY AND USE V_ADDTODMALIST() 74

Getting Started

The RRedline HAL provides an interface for applications to directly access Rendition
Vérité hardware for optimized 2D and 3D graphics rendering. This guide introduces
RRedline and explains important concepts needed to use it.

What is the Vérité?
Rendition's Vérité V1000 is a single chip 2D/3D graphics engine, GUI accelerator,
digital video accelerator, and VGA engine. The Vérité V2000 series of chips increase
the functionality of the V1000 by adding per vertex specular, video in/out operations,
and dramatically improved 2D and 3D performance. In this document, we’ll refer to
both architectures as just ‘Vérité’.

The Vérité employs a unique architecture, combining a fully programmable RISC
core with a hard-wired pixel pipeline (known as the “Pixel Engine”). This design
provides very high performance while maintaining a great deal of flexibility through
the use of custom microcode.

For 2D, 3D, and video operations, work is divided between the RISC and Pixel
Engine. The RISC engine performs setup operations and passes drawing commands
to the Pixel Engine. The Pixel Engine supports texture mapping with correct
perspective, bilinear filtering, Z buffering, alpha blending, fog, and other advanced
rendering features, such as color space conversion for digital video.

Utilizing the Vérité RISC core for setup operations reduces the load on the CPU for
3D drawing operations such as gradient calculations. The CPU is therefore freed to
perform application tasks such as simulation and other non-graphics processes.

Additionally, the Vérité is a DMA busmaster, which allows it to transfer commands
and data asynchronously from host memory to the Vérité command FIFO. This
asynchronous operation allows both the CPU and Vérité to run at close to peak rates
simultaneously.

What is RRedline?
RRedline was developed with the input of many game and application developers to
provide a powerful, flexible interface. Only one version of a RRedline application is
required to run on any of the Vérité chipsets.

It is an immediate-mode, device coordinate, rasterization interface to the Vérité. The
application must perform all transformation, lighting, clipping, and screen projection
of vertices before sending the vertices to RRedline. RRedline is currently a fixed-
point data interface to the Vérité.

RRedline includes functions for memory management, command and data (texture-



map) transfer, setting drawing state, and drawing primitives.

Supported Platforms
RRedline is a Windows 95 interface for Pentium-class PCs. Those familiar with
programming the Vérité in DOS will see that RRedline bears a striking resemblance
to the original Rendition Speedy3D interface. Rendition is investigating NT support
for RRedline.

RRedline currently supports the following graphics cards. Note that RRedline
requires at least the 2.0 series of display drivers. The latest drivers have been
included in the SDK for development purposes only. For final testing of products,
you will want to get, at least, each vendor’s 2.0 display drivers. V2000 series cards
will initially support RRedline.

• Stealth II from Diamond (V2100)

• Thriller 3D from Hercules (V2200)

• Bonnie & Clyde by Jazz (V2200)

• Outlaw 3D by Jazz (V2200)

• GLadiator by DSystems (V2200)

• Vision 1 from QDI (V2200)

• V-Raptor 3D from Genoa Systems (V2200)

• Magic Video 3D from I/O Magic (V1000)

• Tornado 3D from Max 2 Tech (V1000)

• Total 3D from Canopus (V1000)

• 3D Blaster PCI from Creative Labs (V1000)

• Intense 3D 100 from Intergraph (V1000)

• miro CRYSTAL VRX from Miro (V1000)

• Screamin’ 3D from Sierra On-Line (V1000)

• Rendition development boards (V2200/V1000)

Supported Compilers
RRedline currently supports Microsoft Visual C++ (version 4.0 and later), Watcom
C/C++ (version 10.5 and later), and Borland C++ (version 5.0 and later).

Verite vs. Redline
RRedline is comprised of two layers. The lowest layer, verite.lib, is the
platform dependent Hardware Abstraction Layer (HAL). Specifically, the function
categories which fall into verite.lib deal with host and video memory
allocation, command transfer, and display modes. All function calls beginning with
V_ are part of verite.lib.

Above verite.lib sits redline.lib. This higher level library provides helper
functions to ease the development process. It includes wrappers around functions
dealing with the Vérité handle, memory allocation, etc. It also describes and creates
the commands for the Vérité to execute. All function calls beginning with VL_ are
part of redline.lib.

In general, the most successful approach will be to use redline.lib extensively
to develop the application, then optimize the most time-critical sections of the



to develop the application, then optimize the most time-critical sections of the
application by talking directly to verite.lib.

The Build Environment
Setting up your compiler
Refer to the documentation for your compiler if you need instruction regarding this
process.

Includes
All the necessary header files are in the include directory in the SDK. Add this
directory to your include search path. If you are using any of the source code from
the utils directory, the associated headers are found there;  add it, too.

Though your application need only include verite.h and redline.h, these files
reference other files in the include directory.

Libraries
The RRedline import libraries for the Microsoft and Watcom compilers are in the
lib directory. Libraries for the Borland compiler are located in the lib/Borland
sub-directory. You can either add this directory to your library search path or specify
the libraries by their full paths.

Bug Reporting
If you are not a member of our developer’s program, you can report bugs via
Rendition’s web site. You will find a bug reporting form on the Developer page on
the Rendition Web Site. If you cannot use the web-based form, fill out the form
provided in doc\bugrpt.txt and email it to rredline_bugs@rendition.com. Use
the words “RRedline Bug” in the subject line.

Trademarks
Windows 95 and Windows NT are trademarks of Microsoft. All other product names
are trademarks of their respective owners.

 

Hello Triangle

This section contains a quick introduction to RRedline basics. By explaining each
line of a simple example application along with the data structures used you’ll
become acquainted with the minimum requirements necessary to get your application
to run with RRedline. The code here is also quite reusable requiring little or no
modification to get it to work in your own applications.

The code we’re going to describe here and in later examples is complete and runs
well on the Vérité. However, for real applications you’ll want to modify your
routines according to the methods discussed in the chapter titled Optimizations. This
will result in the best performance on our hardware.

The example we are going to use draws a flat shaded red triangle in the middle of the
entire screen. After working with this example, you should know how to do the
following tasks:

• Write error handlers

• Initialize the Vérité chip

• Create the command buffers needed for Vérité commands

• Create the surfaces required for the front and back buffer

• Draw a simple triangle into the back buffer

• Flip the front and back buffers to display the triangle



• Shut down the Vérité chip

This first example will be quite thorough, explaining in detail each of the RRedline
functions used. Later in this document, other examples will be provided showing how
you can modify the starting Hello Triangle and provide additional features. All the
code for the Hello Triangle examples can be found in the htri sub-directory of the
RRedline SDK’s example code section. The initial version of this example can be
found in htri1 while modified versions are found in successive htri directories.

 

Some bookkeeping
Before we start using RRedline functions, we must prepare all the information
required by RRedline. Since RRedline is a Windows interface, it requires that a
window be created and passed to the initialization routine. Even if the application is
drawing to the entire screen and not drawing to an individual window, RRedline still
requires one. The window for this application will be created within the main routine.
The code for this part of the example is not included here but can be found in the
main.c file. However, in order that we can discuss the general structure of this
function, the pseudo-code follows:

• Create a  640x480 window

• Initialize Vérité with call to redline_Init()

• Run main application loop:

• Render scene with render_scene()

• Exit loop when ‘Q’ character is hit

• Close Vérité with redline_Close()

All the application is doing is creating a window of size 640 by 480, passing a handle
of the window to the application’s initialization routine redline_Init() and then
starting up the process loop. Within the process loop the program renders the flat
shaded triangle with render_scene(). Once the key ‘Q’ has been hit, the application
exits out of the main loop and calls redline_Close() to close down the Vérité. We’ll
be focusing on explaining each of these functions in turn along with all the necessary
RRedline calls. However, before we start calling RRedline we need to know how
errors are returned from each function and how to handle them.

Writing Error Handlers
Many RRedline functions have the possibility of returning an error code during their
execution such as when the board runs out of memory or when improper arguments
are passed to a function. When this occurs the program has the possibility of handling
it in two ways. They can either handle the return code from each function, displaying
error messages and exiting cleanly when an error is detected, or they could install
error handlers that will handle all possible error conditions.

When you install error handlers, every time RRedline runs into an error condition, a
handler will be called. If an error occurs within verite.lib the handler installed
with V_RegisterErrorHandler() will be called. If an error occurs within
redline.lib the handler installed with VL_RegisterErrorHandler() will be
called. Note that some redline.lib function calls implement their functions with
 verite.lib calls. In other words, it is possible that the error handler installed for
verite.lib will be called when a redline.lib function is called by your
application. It is also possible that functions in redline.lib are implemented by
other functions in redline.lib. Functions in verite.lib never call functions
in redline.lib.

In each of these error routines you can display an appropriate error message, clean up



In each of these error routines you can display an appropriate error message, clean up
the Vérité states, return back to the calling routine, or exit from the application. In the
case of Hello Triangle, we won’t return back to the calling routine. Instead we’ll just
display the error message, clean up the Vérité state, and exit from the program.

To do this, we’ll need three functions. The first simply displays an appropriate error
message to a Windows message box. This routine will be called whenever we need to
display an error.

void redline_ErrorBox

( LPCTSTR lpText )
{

// display error message
MessageBox(NULL, lpText, "RRedline Error",
MB_ICONERROR | MB_OK);

}

 
The next two routines required are the error handlers themselves. The routine
verite_ErrorHandler() will be installed as the error handler for verite.lib calls
and the routine redline_ErrorHandler() will be installed as the error handler for
redline.lib calls. They are extremely similar to each other. Similar enough that
we’ll just discuss verite_ErrorHandler() and tell you what function calls and constant
values differ for redline_ErrorHandler().

The first thing to notice is the declaration of the handler. Any error handler you write
must have an identical declaration. The V_CDECL is especially important since it
asserts that the arguments are passed with a very specific calling convention
irrespective of the compiler you’re using.

void V_CDECL verite_ErrorHandler

( v_handle verite,
  v_routine routine,
  v_error error,
  int ext )

 
The first piece of code in the routine is meant to insure that while you’re in the error
handler that calls made to other RRedline routines, like during the cleanup process,
don’t result in another error and another call to the error handler. If they do, the
program will detect that recursive errors were found and will exit with a generic error
message.

{

static unsigned int entry = 0;
char func_name[64];
char err_text[128];
char err_message[1024];

 
if (entry++)
{

// called recursively (during closing)
redline_ErrorBox("Recursive Verite errors.");
ExitProcess(1);

}
 
The next piece of code from our error handler makes some RRedline calls to try and
extract the name of the function that caused the error and extract the error text
describing it. For redline_ErrorHandler(), the functions VL_GetFunctionName() and
VL_GetErrorText() are used instead of V_GetFunctionName() and V_GetErrorText().
 Also the returned VL_SUCCESS is used for redline_ErrorHandler() and not
V_SUCCESS. In order to prevent recursive errors from occurring, RRedline insures
that none of those error extracting functions will ever cause the error handlers to be
called. Instead they return errors only through returned error codes.



called. Instead they return errors only through returned error codes.

// get name of function that caused the error
if (V_GetFunctionName(routine, func_name, 64) != V_SUCCESS)

sprintf(err_message, "Error retrieving error function
name.");

 
// get text of error
else if (V_GetErrorText(error, err_text, 128) != V_SUCCESS)

sprintf(err_message, "Error retreiving error text");
 

// store error message
else

sprintf(err_message, "Error in routine:\n%s\n%s\n0x%x",
func_name, err_text, ext);

 
The last section of code displays the resulting error message using the previously
described routine redline_ErrorBox(), frees resources and shuts down the Vérité with
a call to redline_Close(), and exits the program. Don’t worry too much about the
V_SetDisplayType() call. All we’re doing here is just making sure the Vérité is in
windows mode so the message box is displayed correctly. We’ll talk more about
windows mode in Modification One: Switching Between Full Screen Mode and
Windowed Mode. The function redline_Close() will be discussed at the end of this
example.

// change to windowed application if verite active
if (verite)

V_SetDisplayType(verite, V_WINDOWED_APP);
 

// display error message
redline_ErrorBox(err_message);

 
// close down verite and exit
redline_Close();
ExitProcess(1);

}

 
 

Initializing RRedline
Now that we’ve got our framework and error handler written it’s time to do some
actual RRedline calls. We’ll start with the routine redline_Init() called just before the
main process loop. Versions of this routine should exist in every RRedline
application. The purpose for this routine is to initialize the Vérité and all of the global
variables used to process drawing commands. Definitions of globals used can be
found in the file htri.h.

The first thing to do before making any other RRedline calls is to register our error
handlers. Note that if either of these calls fail, they will not cause error handlers to be
run. Because of this, we need to explicitly check the returned error code.

void redline_Init

( HWND hWindow )
{

int i;
 

// register error handlers
if ((V_RegisterErrorHandler(verite_ErrorHandler) != V_SUCCESS)

||

    (VL_RegisterErrorHandler(redline_ErrorHandler) !=
VL_SUCCESS))

{



{
// display error message
redline_ErrorBox("Unable to register error handlers");
ExitProcess(1);

}
 
The first global to initialize is the handle to the Vérité device. This next call opens the
Vérité device and stores a handle to it in the global verite. In turn this handle will
allow us to make other RRedline function calls. This is the only RRedline call that
requires a window handle.

// use first board found
VL_OpenVerite(hWindow, &verite);
 

The next piece of code shows us how the global verite can be used.

// set display type
V_SetDisplayType(verite, V_FULLSCREEN_APP);
V_SetDisplayMode(verite, 640, 480, 16, 60);

 
In the call to V_SetDisplayType()  we are telling the chip that the application will run
in full-screen mode using the entire screen for the application and not restrict drawing
to a window. The following call to V_SetDisplayMode() tells the chip that the full-
screen window will be 640 by 480 pixels, have 16 bits of color, and run at a refresh
rate of 60 Hz.

Later in this example you’ll see other calls that use the verite global. In fact, most
RRedline calls will use the verite global as one of its arguments or a pointer  to a
command buffer created in the next section.

 

Creating the Command Buffers
The next topic covered is probably one of the most unique features of the Vérité
architecture and so requires a little more explanation.

When drawing with the Vérité you may have just expected to call functions like
“draw_triangle” and have it immediately result in a drawn triangle. However, passing
commands and getting results synchronously with the CPU does not result in the best
Vérité performance. The best way is to work with the chip asynchronously through
command buffers. That instead of passing information directly to the chip, the
commands are stored in a command buffer created by the application. Later, when the
program explicitly chooses to, the command buffer is issued. Issuing simply means
that the chip is notified that commands are ready on a specific buffer. Then, when the
Vérité next becomes available, it will pull these new commands over from system
memory via DMA and start executing them. The CPU is not involved during the
transfer of these commands and could be processing code in other parts of your
application.

This then brings us to our next problem. When the command buffer is being issued
the Vérité gains control over that buffer. It would then be a bad idea to try and add
commands to that same buffer or you might be overwriting data that the Vérité was
actively reading. The way to prevent this is to have a ring of buffers. The idea being
that while you are adding commands to one buffer the Vérité is executing another
previous buffer.

The next section of code from redline_Init() shows how this ring of command buffers
is created.

// create command buffers
for (i=0; i<REDLINE_NUMCMDBUFS; i++)
{

// create a command buffer with the specified sizes



// create a command buffer with the specified sizes
cmdbufs[i] = V_CreateCmdBuffer(verite,

REDLINE_NUMDMAENTRIES,

REDLINE_CMDSIZE);

// install callback to run when a buffer runs out of

space

V_SetCmdBufferCallBack(cmdbufs[i],
redline_IssueCommands);

}
 
This bit of code required depends on some constants we’ve defined in our include file
htri.h.

// command buffer sizes

#define REDLINE_NUMCMDBUFS 8
#define REDLINE_NUMDMAENTRIES 1024
#define REDLINE_CMDSIZE 4096
 
All were doing is creating eight command buffers, each with a specific DMA entry
list size and command list size. For now, think of DMA entries as being the part of
the command buffer that stores information about memory addresses being passed to
the Vérité and the command list entries as being the part that actually contains
commands and some actual data passed to the Vérité. For this simple application, we
could have easily gotten away with two much smaller command buffers. For your
own application you’ll end up playing around to determine the best constant values.
Making the buffers large enough to process the commands you require but making
them small enough to prevent too much lag from occurring.

After creating the command buffer you’ll notice that we’re making a call to
V_SetCmdBufferCallBack(). The purpose of this set up an overflow function. What
this does is prevent the program from placing too many commands on any given
command buffer. That when a buffer doesn’t have enough room to contain a
command the callback routine is automatically called so that the command can be
placed on another buffer returned by the callback.

This callback function will need to do several things. First, it will need to issue the
current command buffer that caused the overflow. Next, it will need to move to the
next available entry in the ring of command buffers. Lastly, it will need to return a
pointer to the current command buffer. Later on we’ll see that our function meant to
simply issue command buffers, redline_IssueCommands(), does just that.

The next section of code in redline_Init() sets up the globals required to traverse the
command buffer ring and add keep track of the active buffer.

// set initial command buffer state
cmdbuf_index = 0;
cmdbuffer = cmdbufs[0];

 
The global cmdbuf_index is simply used to tell us which command buffer in the ring
is currently being used and the global cmdbuffer is a pointer to the currently active
buffer in the ring. The global cmdbuffer will be used throughout the application to
add commands to the buffer while cmdbuf_index will simply be used to move from
one ring buffer to the next.

 

Surfaces
The next structure we’ll discuss from the RRedline API is the surface structure
v_surface. This structure is very important since display buffers and textures are all
implemented as surfaces.



Within a surface structure are a number of buffers along with  their description. A
buffer is simply a section of memory on the board that can be used as a front buffer, a
back buffer, an additional display buffer, a Z-buffer, or even a texture. How many
they are and how they are used is entirely up to you as long as you have enough
memory left on the board.

Within the surface structure are the common attributes of the contained buffers. This
includes width and height in pixels, pixel format used, chromakey value, color
padding flag, whether or not the values are ordered BGR or RGB, the clamping mode
of the texture, and the 4-bit palette (if any).

typedef struct _v_surface {
   v_u32 width;
   v_u32 height;
   v_u32 pixel_fmt;
   v_u32 chroma_color;
   v_u32 chroma_mask;
   v_u32 chromakey;
   v_u32 color_pad;
   v_u32 bgr;
   v_u32 clamp;
   v_u32 *palette;
   v_u32 start_index;
   v_u32 num_entries;
   v_u32 memsize;
   v_u32 num_buffers;
   v_u32 buffer_mask;
   v_buffer_group buffer_group;
} v_surface;

 
Most of the attributes of this structure you won’t need to worry about. However, for
this example and for the examples to follow you will need to know about the
following elements of the structure:

width Width of each contained buffer in pixels. No surface may have a
width greater than the width of the primary surface. No
width may exceed 5,120 for the V1000 series or 5,248
for the V2000 series.

height Height of each contained buffer in pixels.

pixel_fmt Format of pixels contained in buffers. Pixel size tells how
many bits/pixel. Description tells how many bits are
used for each of the color components. First bits
specified in description are the high-order bits in the
pixel.

Pixel Pixel size
(bits)

Description                                                              
(R for red, G for green, B for blue, A for alpha)

V_PIXFMT_332 8 3 R bits, 3 G bits, 2 B bits, A = 255

V_PIXFMT_8I 8 R = G = B = 8 intensity bits, A = 255

V_PIXFMT_8A 8 R = G = B = 255, 8 A bits

V_PIXFMT_565 16 5 R bits, 6 G bits, 5 B bits, A = 255

V_PIXFMT_4444 16 4 A bits, 4 R bits, 4 G bits, 4 B bits

V_PIXFMT_1555 16 1 A bit, 5 R bits, 5 G bits, 5 B bits

V_PIXFMT_4I_5652 4 Palette contains 5 R bits, 6 G bits, 5 B bits



V_PIXFMT_4I_44442 4 Palette contains 4 A bits, 4 R bits, 4 G bits, 4 B bits

V_PIXFMT_4I_1555 4 Palette contains 1 A bit, 5 R bits, 5 G bits, 5 B bits

V_PIXFMT_8888 32 8 A bits, 8 R bits, 8 G bits, 8 B bits

V_PIXFMT_Y0CRY1CB 32/2
pixels

Standard 4:2:2 format: (Y0, Cr, Y1, Cb)

 

clamp Contains flag bits V_SURFACE_UCLAMP and
V_SURFACE_VCLAMP. See Modification Two:
 Drawing a Texture Mapped Triangle for more details on
clamping.

buffer_mask Contains flag bits telling what kind of buffers are included in
the surface structure. Bits used are
V_SURFACE_PRIMARY, V_SURFACE_Z_BUFFER,
and V_SURFACE_INTERLEAVED.

The only buffer that isn’t affected by these common attributes is the Z-buffer. This
kind of buffer is created if the buffer mask contains V_SURFACE_Z_BUFFER. It is
only bounded by the width and height values contained in the structure. It always
contains 16 bit values and there can only be one of them in each surface. If a surface
contains a Z-buffer it is always the last buffer in the structure.

Another special kind of buffer is the primary buffer. This kind of buffer is created if
the buffer mask contains V_SURFACE_PRIMARY. Only one of these buffers can
exist per application. This buffer is made to point to the memory that exists on the
screen. In other words, this is your front buffer. One more constraint having to do
with the primary surface is that no other surface can have a width greater than the
primary buffer. Other than that, any width and height can be used – a multiple of two
is not required. In addition, the primary surface can only have a pixel format of
V_PIXFMT_565.

You may have noticed that four texture formats have additional restrictions. The pixel
format V_PIXFMT_332 requires that the extension PixFmt_332 exists and the
formats V_PIXFMT_4I_565, V_PIXFMT_4I_4444,  V_PIXFMT_4I_1555 require
that the extension PixFmt_4I exists. Extensions are simply a way to determine if a
specific functionality exists on a given card. While these pixel formats are available
on both the V1000 and V2000 series of chips they may not be available on future
generations of our architecture. Therefore, you need to check for an extension before
using them. For more information on extensions, refer to the function
VL_GetExtensions in the reference guide or look at Modification Five: Specular
Extensions for an example that uses extensions.

In our first example we don’t have  Z-buffers, textures, or additional display buffers
to worry about. All we need to do is create a front buffer as a primary surface and a
back buffer to draw to. The next piece of code from redline_Init() is used to create
these two buffers within the board memory.

// create front and back buffers

VL_CreateSurface(verite, &redline_Display,
V_SURFACE_PRIMARY, 2, V_PIXFMT_565, 640, 480);

 


Both buffers are created with one call to VL_CreateSurface() with the result being
stored in the global surface structure redline_Display. Here we are creating a surface
that contains the primary buffer of the application, creating two buffers total, using a
V_PIXFMT_565 pixel format, and using a size of 640 by 480. Note that the width
and height given is the same passed to the V_SetDisplayMode() call and the number



and height given is the same passed to the V_SetDisplayMode() call and the number
of pixels specified is also the same (V_PIXFMT_565 uses 16 pixels). This matching
is a requirement for full-screen applications. In addition, since this surface contains
the primary buffer, the front buffer of this surface will contain the pixels displayed to
the screen.

Once we have created these buffers we need to tell RRedline that all drawing
commands should go to the back buffer of this surface. This is done with one call.

// install destination of drawing commands
VL_InstallDstBuffer(&cmdbuffer, redline_Display);

 
This call tells the Vérité to send drawing commands to the back buffer of that surface.
If a back buffer doesn’t exist, they’ll go to the front buffer instead. The interesting
thing about this call is that the used buffer doesn’t have to be a special type but can
be any kind of allocated buffer. For example, you could draw to a buffer that was
later used as a texture.

Note that creating the surfaces requires the global verite as an argument and that the
call to install this surface as the destination requires the cmdbuffer global. This is a
good way to know how a command is being implemented. If it requires verite then
the operation may cause the Vérité to run synchronously with the CPU and should
not be done within the speed critical portions of the game. This is the case with
VL_CreateSurface(). On the other hand, the call to VL_InstallDstBuffer() goes on the
current command buffer. Any command placed in these buffers can occur
asynchronously with the CPU and can occur during the speed critical portions of the
application.

 

Other Data Structures
In addition to the v_surface structure you may notice other structures located in
RRedline such as v_memory, v_handle, v_cmdbuffer, and v_buffer_group. You may
also notice that the description of those structure’s elements does not exist in any of
the supplied header files. In order to keep control over our internal data structures,
values of the above types are implemented as opaque pointers. In other words, you
cannot directly reference an element of those structures. Instead, you must call one of
the supplied functions to extract any required information (search the reference guide
for functions starting with “VL_Get” and “V_Get”). This allows us to change the
contents of those structures without requiring any modifications to your application’s
code.

 

Specifying the Source Function
Now that we have a buffer to render to, it now necessary to tell how. This is done
with the source function. The purpose of this function is to tell the Vérité whether or
not to use a texture map as the source and, if using a texture, how it should be used.
This function could tell us to use colors from a texture map only, combine colors
from a texture map with vertex information, or to use just the color data stored for the
vertices. In this case, we’ll specify that we don’t need a texture and that information
stored within vertices only should be used.

// when drawing, use vertex colors or global colors

VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_NOTEXTURE);
 
Later in Modification Four:Alpha Blending we’ll go into further detail about the
other source function modes since they affect alpha blending as well as rendering
modes.

The last two calls in redline_Init() simply clear the back buffer and flip the buffers so
that the start up screen is clear. These functions will be talked about in more detail in
the next section on utilities.



the next section on utilities.

// clear front and back buffers

redline_ClearDisplay();
redline_PageFlip();

// no errors
return TRUE;

}

 

Utilities
This section deals with utility functions that should appear in some form in all
RRedline applications. These functions are extremely important since they are
executed many times within the main loop of the application.

To issue the command buffer asynchronously we have the utility function
redline_IssueCommands(). To flip the back buffer and the front buffer we have the
function redline_PageFlip(). Lastly we have redline_ClearDisplay() to clear the back
buffer. The code for all of these functions can be found in the file utils.c in the htri1
sub-directory.

 

Issuing the Command Buffer
We’ll start with a function to issue the command buffer. This piece of code is pretty
important since commands placed in the buffer won’t be executed by the Vérité until
the command buffer is issued. However, issuing should only take place at specific
times or the Vérité may behave more synchronously than asynchronously.

One appropriate time to issue commands would be when the current command buffer
is full. If you can’t add any more commands to it you might as well hand it to the
Vérité. In this case, calling the issue function is automatic since we’ve already set
redline_IssueCommands() to be our buffer overflow callback when we created the
command buffers. Since it is used as a callback it must have a very specific argument
list as well as returning a v_cmdbuffer type and be declared as V_CDECL. Some
compilers pass arguments differently from others and we need to make sure with the
V_CDECL that they are passed only in one manner.

v_cmdbuffer V_CDECL redline_IssueCommands

( v_handle v,
  v_cmdbuffer c )

 
Another appropriate time to issue commands is when a scene is complete. In other
words during the page flip. Later when we give the details on page flipping you’ll see
that our page flip routine calls redline_IssueCommands() as its last step.

The last and least used reason to issue the command buffer is during specific points in
your program. If you’ve just added a call that draws a large triangle that takes up the
entire screen you may want to issue the command buffer to insure that that command
is processed as soon as possible. You may also want to issue the command buffer
right before doing some large portion of CPU processing. In that way you can insure
that the Vérité is processing while the CPU is doing transformations or adding
commands to another buffer. Placing these sort of issue commands in your code
should be done very carefully and rarely. In fact, most applications won’t require
them at all. The example we are working on is one of them that won’t.

With these three things in mind, lets take a look at the body of
redline_IssueCommands() to see what this function needs to do to work for all the
above reasons. We first issue the current command asynchronously with a call to
V_IssueCmdBufferAsync(). This marks the buffer as being in use by the Vérité and
allows it to take control of that structure and run it asynchronously with the CPU.



{

// issue the current command buffer asyncronously
V_IssueCmdBufferAsync(v, c);

 
The next two lines simply advance the command buffer ring index and the current
command buffer pointer to point to the next entry in the ring. This is important since
you don’t want to add commands to a command buffer that you’ve just issued.

// advance command index to the next command buffer

cmdbuf_index = (cmdbuf_index + 1) % REDLINE_NUMCMDBUFS;
 

// store new command buffer
cmdbuffer = cmdbufs[cmdbuf_index];

 
A while loop is then used to prevent another problem from occurring. It is very
possible that an application can quickly load up all the allocated command buffers in
the ring and run into a buffer that was issued a while ago but is not yet finished. In
this case you must stall the CPU and wait for the buffer to be complete. As long as
the Vérité is kept busy, this stall should be avoided as much as possible to get the best
performance out of your application.

To prevent stalling, you could simply increase the size of the command buffers or
increase the number of command buffers. If this doesn’t add to program lag, this is a
good method to follow and means that the Vérité didn’t have enough commands to
keep it busy. You could go a more difficult path by moving code around so that the
CPU is busier before the issue command is evoked. That by the time the CPU is
ready to add commands the next buffer may be finished and ready to receive them.
Note that it is very possible that there is simply a lot of commands for the Vérité to
process and that the CPU may need to be stalled.

// insure new buffer is not currently in-use (don't want

// to add commands to an active command buffer)
while (V_QueryCmdBuffer(v, cmdbuffer) == V_CMDBUFFER_INUSE)
{
// currently in-use (may want to consider creating more
// buffers)
;

}
 
The last bit of code for this function returns a pointer to the newly available
command buffer. While this information may not be needed by the page flip routine,
it is needed by the overflow callback function to tell it where the overflowed
command needs to be placed (the next buffer in the ring).

// return current (in case it was a callback)
return cmdbuffer;

}

 

Page Flipping
The next utility we’ll discuss is the page flip function redline_PageFlip(). This
function will be called once the scene has been completely rendered to the back
buffer and needs to be displayed to the screen.

All this function does is add page flipping commands to the command buffer and
then issue them along with other commands on the buffer. The first set of these
commands is added with VL_SwapDisplaySurface(). This function tells the Vérité to
switch the pointers of the front and back buffers making the back buffer visible and
the front buffer our new drawing destination. Note that this command has a nice built
in feature preventing the old back buffer from becoming the new front buffer until the
next vertical refresh of the screen occurs so that tearing is prevented. The old front
buffer becomes the new back buffer immediately after the commands are executed



buffer becomes the new back buffer immediately after the commands are executed
without the wait.

void redline_PageFlip

( void )
{

// flip front and back buffers
VL_SwapDisplaySurface(&cmdbuffer, redline_Display);

 
The next command needs some thorough explanation. The situation is that even
though we’ve told the Vérité to swap the back and front buffers and even though the
Vérité will wait to set the new front buffer it will still continue to process commands
while waiting. Since the old front buffer becomes the new back buffer without
waiting it is possible that drawing commands that follow immediately could go to the
new back buffer while it is still the displayed front buffer. To prevent this from
happening we’ve added a call to VL_WaitForDisplaySwitch(). This command tells
the Vérité to stall processing commands until the new front buffer has been set. This
insures that any command that follows the wait will display to the new back buffer
when it is not the displayed front buffer.

// add wait for vertical re-trace to command buffer
VL_WaitForDisplaySwitch(&cmdbuffer);

 
One interesting technique to use is to remove the call to VL_WaitForDisplaySwitch()
while running some sort of frame counter. This will show you the true frame rate of
the application without waiting for the vertical refresh. You can then see places where
frame rate fluctuates and make decisions on what refresh rate to use for your
application and see where the application slows down.

The last command uses the utility function redline_ClearDisplay() to clear the new
back buffer so that we have a clean slate to work from. After this call is made the
commands are issued with redline_IssueCommands().

// clear screen after pageflip
redline_ClearDisplay();

 
// issue new commands immediately
redline_IssueCommands(verite, cmdbuffer);

}

 

Clearing the Back Buffer
The last and simplest function in utils.c is the function to clear the back buffer. This
function requires only one RRedline function to work.

void redline_ClearDisplay

( void )
{

// clear the back buffer of the display (fill with zeros)
  VL_FillBuffer(c, redline_Display, 1,

0, 0, redline_Display->width, redline_Display->height, 0);
}

 
The function VL_FillBuffer() fills any surface’s buffer with a given pixel value. In
this case, we’re filling the back buffer (buffer index one) with black pixels (zeros).

 

Rendering the Triangle
Before we get into the commands to draw triangles we’ll need to talk a bit about the
data these commands require. How these vertex structures store information and how,
if any, default values are set.

Choosing a Vertex Type



Choosing a Vertex Type
In RRedline every vertex is assigned a value for each one of these attributes:

• X, Y 2-D screen coordinate

• RGB Unpacked RGB

• K Packed RGB

• I Intensity RGB

• A Alpha value

• S Specular color (specular extensions with V2000 series only)

• F Fog value

• Z Z-Value for Z-buffering

• U,V Texture coordinate

• Q Scaled reciprocal of homogenous W (1/Z is commonly used)

How a value is assigned is determined by its vertex type. In RRedline there isn’t just
one vertex type – there are over twenty each with their own data structure and list of
contained attributes. If a vertex type does contain a specific attribute, then it’s value
will be taken from the passed data structure. If a vertex type does not contain a
specific attribute, a setable global default value is used.

The reason for having many types of vertices is to cut down the amount of work that
the chip needs to do. For example, if you don’t have alpha to store for your vertex
there is no need to choose a vertex type that contains alpha. That will prevent the
alpha value from being passed to the chip, saving setup time and preventing the chip
from interpolating the alpha value.

After determining which of the attributes are required for your vertex, you must then
choose an appropriate vertex type. Some of the time you may not be able to find a
perfect fit for your needs. However, each one of the supplied vertex types has been
implemented to be as fast as possible. Having a few extra attributes won’t slow things
down that much. Just remember to store default values in the structure for the
attributes that weren’t used and also remember that most of the attributes have default
values when not specified in the vertex.

The list of all possible vertex types along with the set of supported attributes follow.
Note that X,Y was not contained in this table since those two attributes are included
in every vertex type.

Vertex Type Vertex Structure Contained Attributes

  K I RGB A S F Z UV Q

V_FIFO_XY v_xy          

V_FIFO_XYUV v_xyuv        X  

V_FIFO_XYUVQ v_xyuvq        X X

V_FIFO_IXYUVQ v_ixyuvq  X      X X

V_FIFO_FXYUVQ v_fxyuvq      X  X X



V_FIFO_XYZUVQ v_xyzuvq       X X X

V_FIFO_RGBFXY v_rgbfxy   X   X    

V_FIFO_RGBXYZ v_rgbxyz   X    X   

V_FIFO_IFXYUVQ v_ifxyuvq  X    X  X X

V_FIFO_IXYZUVQ v_ixyzuvq  X     X X X

V_FIFO_RGBAFXYUVQ v_rgbafxyuvq   X X  X  X X

V_FIFO_RGBAXYZUVQ v_rgbaxyzuvq   X X   X X X

V_FIFO_KFXY v_kfxy X     X    

V_FIFO_KXYZ v_kxyz X      X   

V_FIFO_KAFXYUVQ v_kafxyuvq X   X  X  X X

V_FIFO_KAXYZUVQ v_kaxyzuvq X   X   X X X

V_FIFO_IXYZUV v_ixyzuv  X     X X  

V_FIFO_RGBAFXYZUVQ v_rgbafxyzuvq   X X  X X X X

V_FIFO_KAFXYZUVQ v_kafxyzuvq X   X  X X X X

V_FIFO_KXYUVQ v_kxyuvq X       X X

V_FIFO_AXY v_axy    X      

V_FIFO_KXY v_kxy X         

V_FIFO_KSXYUVQ v_ksxyuvq X    X   X X

V_FIFO_KSXYZUVQ1 v_ksxyzuvq X    X  X X X

V_FIFO_KaSFXYZUVQ1, v_kasfxyzuvq X   X X X X X X

 

For our example we’re only concerned with a few of these attributes. Specifically the
2-D coordinate pair and the color attributes. Other attributes will be discussed later in
other examples.

X,Y

The X,Y coordinate pair can be found in all RRedline vertex types. The values
are not stored as floating point values. Instead they are stored as 16.16 signed
values. The values are in screen coordinates ranging from [0, width) for X and [0,
height) for Y. If drawing in full-screen mode the origin of the coordinate system
is in the upper left hand corner of the screen  and the height and width are the
pixel height and width of the screen. If drawing in windowed mode the origin of
the coordinate system is the upper left hand corner of the window and the width
and height is the width and height of the window. X always increases from left to



and height is the width and height of the window. X always increases from left to
right and Y always increases top to bottom.

X,Y coordinates

msb
31

lsb
0

16.16 fixed point X coordinate
16.16 fixed point Y coordinate

 

RGB, K, I

These three mutually exclusive attributes are used to specify the vertex color in
three different ways:

Unpacked RGB, referred to simply as RGB, contains three 16.16 fixed point
values each representing either the red, green, and blue color value. Each
individual RGB value must range from 0 to 255.

Unpacked R, G, B

msb
31

lsb
0

16.16 fixed point R color channel
16.16 fixed point G color channel
16.16 fixed point B color channel
 

K is a packed version of RGB where you only have 8 bits to store the each of the
individual RGB values. Packed values must range from 0 to 255 and are stored as
8.0 fixed point values.

Packed RGB (K)

msb
31

lsb
0

- R G B
 

Intensity or just I is a special case of RGB where the red, green, and blue
channels are equal to each other. The value ranges from 0 to 255 and is stored as
a 16.16 fixed point value.

Monochrome Intensity (I)

msb
31

lsb
0

16.16 fixed point I monochrome
intensity

 
 

If a vertex does not contain any of the color attributes the vertex will use the
default color. Each individual value of the default color can be set with
VL_SetR(), VL_SetG(), or VL_SetB() or all of them can be set along with alpha
 with VL_SetFGColorARGB() or VL_SetFGColorABGR().

In the case of our hello triangle example, we are simply drawing a flat shaded
triangle. For that case, we’ll pick the vertex type V_FIFO_XY and set the color to be
used with VL_SetFGColorARGB(). We could have picked a vertex type that contains



used with VL_SetFGColorARGB(). We could have picked a vertex type that contains
color, like V_FIFO_KXY, but that would require the Vérité to unnecessarily
interpolate the color value.

 

Drawing Triangles
Now that we’ve chosen our vertex type, it’s time to draw our triangle. We’ll start out
by setting the coordinate values in each of the vertex structures.

 
void render_scene

( void )
{

static v_xy A = {
FLTOIFIX(100.0), FLTOIFIX(100.0) };

static v_xy B = {
FLTOIFIX(400.0), FLTOIFIX(100.0) };

static v_xy C = {
FLTOIFIX(250.0), FLTOIFIX(300.0) };

 
In order to convert the X and Y coordinates to the 16.16 fixed point value, we’re
using the macro FLTOIFIX() defined in htri.h. This macro simply converts a float
value to it’s 16.16 fixed point equivalent. These and other conversion macros have
been written to be readable and easy to understand. Other more efficient and faster
algorithms should be considered for real applications and can be found in the section
titled Optimizations.

#define FLTOIFIX(a) \
 ((v_u32)(((float)(a))*((float)(1<<16))))

 
 

The next thing to do is to set the default color value. We’ll need to do this since our
vertex type does not contain color. If we were also doing Z-buffering or alpha
blending we would have also thought about their default values as well. Since we’re
not, we only have to set the default color. Here we’re setting the default color within
the rendering routine to be more readable. However, it would have been more
efficient to have set it once within the initializations and not have set it again.

// set color to draw with
VL_SetFGColorARGB(&cmdbuffer,
FLTOARGB(255.0, 255.0, 0.0, 0.0));

 
This bit of code uses another macro we’ve defined in htri.h. FLTOARGB() takes
separate ARGB float values and returns a packed 32 bit format. Conversion macros
may differ from application to application depending on the input data ranges.

#define FLTOARGB(a, r, g, b) \

 (((v_u32)((float)(a)) << 24)  \
+ ((v_u32)((float)(r)) << 16) \

+ ((v_u32)((float)(g)) << 8) \
+  (v_u32)((float)(b)))

 
After all this setup, we’re finally ready to draw the triangle. The next command
VL_Triangle() puts the drawing commands on the command buffer. The arguments of
this function simply tell the what command buffer to add to, what kind of vertex
we’re using (V_FIFO_XY), and what the vertex data is.

// draw triangle
VL_Triangle(&cmdbuffer, V_FIFO_XY,
(v_u32 *)&A, (v_u32 *)&B, (v_u32 *)&C);

Here the vertex information is being supplied through pointers to the filled data



Here the vertex information is being supplied through pointers to the filled data
structures. Since we have many different kinds of vertex structures to choose from,
we’re casting the pointer to the generic RRedline pointer (v_u32 *). This pointer type
is used throughout RRedline to represent that different kinds of data can be passed to
those functions that use the pointer.

At this point we’re finished rendering the scene and would like to display the results
to the front buffer. That is achieved with redline_PageFlip(), our utility to flip the
front and back buffers.

// display back buffer
redline_PageFlip();


}

 
 

Shutting down the Vérité
When the application terminates or when an error occurs we need to shut down the
Vérité cleanly. This involves destroying the command buffers, destroying the front
and back buffer, and closing the handle to the Vérité itself. All this is done within the
function redline_Close() found in the file close.c. This function is called after the
main loop exits in main.c or by the error handler when an error occurs.

To destroy each of the command buffers in the ring we’ll use the function
V_DestroyCmdBuffer(). This function will wait until all issued commands on the
buffer are complete and then free the memory associated with the buffers.

void redline_Close

( void )
{

int i;
 

// free command buffers if they exist
if (cmdbuffer)
for (i=0; i<REDLINE_NUMCMDBUFS; i++)

V_DestroyCmdBuffer(cmdbufs[i]);
 
The last piece of the code will destroy the front and back buffers with a call to
VL_DestroySurface() and shut down the Vérité with a call to VL_CloseVerite(). At
this point, no further commands may be passed to the chip unless the application
starts over with a call to VL_OpenVerite().

// free drawing surface if it exists
if (redline_Display)
VL_DestroySurface(verite, redline_Display);

 
// close verite if exists
if (verite)
VL_CloseVerite(verite);

}

 
 

Modifications to Hello Triangle

At this point you should know the basics explained in hello triangle. You should
know about command buffers, surfaces, vertex types, and page flipping. Now we’re
going to extend this example to show you how to do some other operations. Included
in this section are the following modifications:

• Switching between full-screen mode and windowed mode (htri2)



• Switching between full-screen mode and windowed mode (htri2)

• Drawing a texture mapped triangle (htri3) 

• Z buffering and perspective correction (htri4) 

• Alpha blending (htri5)

• Specular extensions (htri6)

 

Modification One:  Switching Between Full Screen Mode and
Windowed Mode

The first modification to our program is one of the most useful modifications you can
make. By allowing your application run in a window, you can debug it a lot easier
than you could in full-screen mode. Your program’s specifications may also require
that your application run in a window making the modification not just useful but
necessary.

What we’re going to implement here is a modification to the initial Hello Triangle
that allows the user to switch between full-screen mode and windowed mode by
hitting the Alt-Enter key combination. Switching between modes may not be what
you require (most applications will be either full-screen or windowed but not both)
but we’ll structure the code so that you’ll be able to copy most of the routines without
modification. We’ll also need to re-organize some of the code from the original Hello
Triangle so that this will work efficiently. The code for this example can be found in
the sub-directory htri2.

 

Page Flipping in a Window
The main difference between a full-screen application and a windowed application is
how the page flipping routines work. To handle this difference we’ll rename the old
redline_PageFlip() to redline_PageFlipFullscreen() and create a new function
redline_PageFlipWindowed(). We’ll keep a new global function pointer
redline_PageFlip pointed to the one function we need given the current display state.
In that way, all our drawing applications need to do is continue to call our function
pointer redline_PageFlip() and not have to worry about the current mode.

Differences between these page flip routines explain the main difference between
full-screen and windowed applications. In the case of a full screen application all you
need to do is tell the Vérité that you need to swap front and back buffer pointers with
 VL_SwapDisplaySurface(). In the case of a windowed application you are sharing
the front buffer (the desktop) with other applications and can’t just swap memory
pointers. Instead, you’ll need to blit the entire back buffer to the window’s location
on the front buffer.

The position of the window, stored in the static variable redline_WindowPos, is set
within redline_SetWindowPos(). This routine is called whenever a  window move
message (WM_MOVE) or window resize message (WM_SIZE) is received in the
 window procedure in main.c. Its also called when the window is first created.

void redline_SetWindowPos

( HWND hWindow )
{

// get screen coordinates of window rectangle and store
GetClientRect(hWindow, (RECT*)&redline_WindowPos);
ClientToScreen(hWindow, (LPPOINT)&redline_WindowPos);
ClientToScreen(hWindow, (LPPOINT)&redline_WindowPos+1);

}



The blit itself is done within the function redline_PageFlipWindowed() with a call to
V_BltDisplayBuffer().

void redline_PageFlipWindowed

( void )
{

// issue current commands (before blitting)
redline_IssueCommands(verite, cmdbuffer);

 
// blit display to window (waits for commands to complete)
V_BltDisplayBuffer(verite, redline_Display->buffer_group, 0,
&redline_WindowPos, redline_Display->buffer_group, 1, NULL);

 
Notice that we are issuing the commands before doing the blit. The reason for this is
that the V_BltDisplayBuffer() does not go on the command buffer and requires that
all the required commands are issued before blitting. The blit function has a wait built
into it to insure that all previously issued commands are complete (you wouldn’t
want to blit an incomplete scene). V_BltDisplayBuffer() also handles all the clipping
problems that one might have with partially obscured windows and also stretches or
contracts the scene when windows are resized.

The last thing this function needs to do is to add a clear back buffer command to the
command buffer. This will clear the blitted back buffer preparing it for the next
scene. Sometimes it’s efficient to place a command buffer issue after the clear since
some programs will start CPU processing at the beginning of the scene and the clear
command deals with a lot of pixels. Issuing it as soon as possible insures that it gets
processed quickly.

 
// clear the display buffer
redline_ClearDisplay();

}

 

Initializing Buffers for a Windowed Application
The next modification we’ll have to make is to redline_Init(). There’s some code
contained in that function that we’ll need to remove and put into another function.
The purpose of this new function, redline_SetDisplay(), will be to set up the modes
and buffers required for a given display type. We’ve turned this into a separate
function so that it can be called each time the display type changes.

Within redline_Init(), you’ll notice that all the code that sets the display mode, sets
the display type, creates the front and back buffers, and sets the destination buffer
have been replaced with one call.

// set display type
redline_SetDisplay(V_WINDOWED_APP, 640, 480, 16, 60,

V_PIXFMT_565);

 
This new function can be found in the file utils.c. The first thing that needs to happen
in this function is to insure that if a back buffer already exists that all commands
going to that buffer are complete. This is in preparation of the destroying the buffer
and then re-creating it for the new mode. Otherwise, previous commands may be
written to a back-buffer that will be destroyed

void redline_SetDisplay

( v_u32 display_type,
  v_u32 width,
  v_u32 height,
  v_u32 bpp,
  v_u32 refresh_rate,
  v_u32 pixel_fmt )



  v_u32 pixel_fmt )
{

vl_error error;
 

// clear previous commands from buffer
redline_FlushAndComplete(verite, cmdbuffer);

 
This new function, redline_FlushAndComplete(), can be found in the file utils.c. It’s a
simple routine that issues all the remaining commands and insures they are complete
by locking the buffer. Locking the buffer causes the CPU to stall until the Vérité is
finished with all issued commands.

void redline_FlushAndComplete

( v_handle v,
  v_cmdbuffer c )

{

// issue the current command buffer
redline_IssueCommands(v, c);

 
// insure all commands have completed by locking surface
if (redline_Display)
{

V_LockBuffer(verite, redline_Display->buffer_group, 0);
V_UnlockBuffer(verite, redline_Display->buffer_group,

0);

}
}

 
The next line in redline_SetDisplay() tells the program which page flip routine to use
depending on the display type. That instead of calling redline_PageFlipFullscreen()
or redline_PageFlipWindowed() directly, routines will just call redline_PageFlip().

// set page flip function
redline_PageFlip = (display_type == V_FULLSCREEN_APP) ?

redline_PageFlipFullscreen : redline_PageFlipWindowed;
 
The next portion of code is useful only because this routine is being called multiple
times. If the front and back buffers have already been created then they need to be
destroyed and re-created when the display type changes simply because the front
buffer changes. This next section of code destroys the old surface if it exists. Later,
we’ll re-create the front and back buffers.

// free old surface?
if (redline_Display)

VL_DestroySurface(verite, redline_Display);
 
The next piece of code was taken directly from the original initialization routine of
the first Hello Triangle. The only difference is that the width, height, and refresh rate
are only being set if the display type is full-screen. If the program is running in a
windowed mode, the application will be sharing the front buffer with other
applications and cannot set those parameters.

// set display type
V_SetDisplayType(verite, display_type);
if (display_type == V_FULLSCREEN_APP)

V_SetDisplayMode(verite, width, height, bpp,
refresh_rate);

 
The last bit of code for redline_SetDisplay() creates the front and back buffers and
installs the back buffer as the drawing destination. This requires no changes from our
original code from the starting Hello Triangle.



// create new front and back buffer
VL_CreateSurface(verite, &redline_Display, V_SURFACE_PRIMARY,

2,pixel_fmt, width, height);

// install new buffer as draw destination
VL_InstallDstBuffer(&cmdbuffer, redline_Display);

}

 
 

Display switching routine
At this point all we need to do is provide the function that determines which display
type is currently in use and makes the appropriate calls to switch to the other one.
This is the function called when the Alt-Enter key combination is hit.

Detecting the current display type will be determined by looking at value returned
from V_GetDisplayType(). After storing the display type to change to, a call to our
function redline_SetDisplay() will be made.

void redline_SwitchDisplay

( HWND hWindow,
  v_u32 width,
  v_u32 height,
  v_u32 bpp,
  v_u32 refresh_rate,
  v_u32 pixel_fmt )

{

v_u32 display_type;
v_u32 error;

 
// calculate new type
display_type = (V_GetDisplayType(verite) == V_FULLSCREEN_APP) ?
  V_WINDOWED_APP : V_FULLSCREEN_APP;

 
// initialize new values
redline_SetDisplay(display_type, width, height, bpp,

refresh_rate, pixel_fmt);
 
At this point the only special case we need to handle is when we are changing from
full-screen to windowed mode. If that’s the case we’ll need to insure that the window
we’re displaying to is still visible. We’ll do this though a Windows call that places
the window into the upper left hand corner of the screen. After moving it we’ll also
need to update the stored window position with redline_SetWindowPos() so that the
page flipping blit will go to the proper location.

// need to position window?
if (display_type == V_WINDOWED_APP)
{

// make sure window is displayed
if (!SetWindowPos(hWindow, HWND_TOPMOST, 0, 0,
  width, height, SWP_NOMOVE|SWP_NOOWNERZORDER))
{

// error setting position
redline_ErrorBox("Unable to set window

position");

ExitProcess(1);
}

 
// store position of new window



// store position of new window
redline_SetWindowPos(hWindow);

}
}

 
 

De-Activating and Re-Activating the Application
When an application is running in a window, it ends up having to share many
resources with other windowed applications. It shares CPU cycles and system
memory and it also shares the Vérité and video memory. While the operating system
handles the first two, it is up to your application to deal with other applications
sharing the Vérité and its video memory.

This isn’t as difficult as it might seem. You won’t need to write a memory allocator or
try to figure out how to deal with multiple sets of command buffers. Instead, all you
need to do is detect when the application is de-activated, either through another
application taking over or having your application minimized, and detect when the
application is re-activated. When de-activated you just have to prevent command
buffers from being issued and when re-activated, you’ll need to restore your video
memory and pixel engine state.

In order to detect when the application is about to be deactivated we’ve added the
following code to our Windows message procedure.

case WM_ACTIVATEAPP:
// is application going to be de-activated?
if (!wParam)
{

// disallow drawing and reset command buffer
app_Active = FALSE;
redline_ResetCommandBuffer();

}
break;

 
If this message tells us that our application is going to be de-activated we do two
things. We first store FALSE for app_Active. This will prevent the render_scene()
function from being called in the main loop which effectively prevents the command
buffer from being issued while the application isn’t active. The second thing we do is
call the function redline_ResetCommandBuffer() to clear out any unissued commands
from the current buffer so that when the application becomes active, the command
buffer will start from scratch. All issued commands will be automatically completed
before the application allows a switch to occur.

void redline_ResetCommandBuffer

( void )
{

// reset current command buffer
if (cmdbuffer)
V_ResetCmdBuffer(cmdbuffer);

}

 
The second message we look for in our Windows procedure is WM_ACTIVATE. This
message will tell us if our application has become active and whether or not it is
minimized or not. We aren’t using the message WM_ACTIVATEAPP for this part
since it would tell us that the application is about to become active not that the
application has become active.

case WM_ACTIVATE:
// has application been activated and not minimized?
if ((LOWORD(wParam) != WA_INACTIVE) && !HIWORD(wParam))
{



{
// allow drawing and restore surfaces
app_Active = TRUE;
redline_RestoreSurfaces();

}
break;

 
If this message tells us that the application has become active and that the application
isn’t minimized it will do two things to re-activate the application. First, it will set the
app_Active flag to TRUE, allowing the render_scene() routine to run again. Second,
it will call the routine redline_RestoreSurfaces() used to restore the allocated surfaces
and restore the pixel engine state. This routine is found in utils.c.

void redline_RestoreSurfaces

( void )
{

// command buffers exist?
if (cmdbuffer)
{
// initialize and restore state
VL_ContextInit(&cmdbuffer);
redline_InitState();
}

 
// restore surfaces
if (redline_Display)
{
VL_RestoreSurface(verite, redline_Display);
VL_InstallDstBuffer(&cmdbuffer, redline_Display);
}

}

 
When an application regains focus, none of the Vérité’s pixel engine states or video
memory allocations are guaranteed to be the same as when the application lost focus.
This is especially true when the application loses focus to a full-screen MS-DOS box
(alt-enter a MS-DOS window). Because of this we need to restore the pixel engine
state and the video memory.

The pixel engine state consists of many things. It contains the source function, the
default values for the attributes, the foreground color, etc. If your application sets any
of these states at the beginning of the app and assumes that they won’t change then
you’ll need to restore them whenever the application regains focus. This is done first
with a call to VL_ContextInit() that restores all RRedline pixel engine states to their
default values and then calls redline_InitState() in init.c used to restore our
application’s state.

void redline_InitState

( void )
{

// when drawing, use vertex colors or global colors
VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_NOTEXTURE);

}

 
You’ll notice that for this application we just need to restore the source function state.
Other examples that follow will be a little more complicated. In addition, the
VL_SetSrcFunc() has been removed from redline_Init() and replaced with a call to
this new function redline_InitState(). This is to limit the state setting calls to one
function in our application.

The last thing that is done within redline_RestoreSurfaces() is to restore the video
memory. Specifically, restore the front and back buffers. This is done with a call to
VL_RestoreSurface(). All this call does is insure that the previously allocated surface



VL_RestoreSurface(). All this call does is insure that the previously allocated surface
exists in video memory and if not re-allocates it. Since a re-allocation is possible any
states that use the surface as a function argument must be re-set. This explains the
call to VL_InstallDstBuffer() that follows the restore surface call.

At this point all states should be restored and all video memory should be available
for use. Always remember that the active application should have complete control of
the Vérité and its memory and no control when not active.

 

Modification Two:  Drawing a Texture Mapped Triangle

The next modification we’ll implement will start making our example a little more
interesting. Most applications won’t just draw flat shaded triangles like in our first
two examples. Instead some will add to the detail by mapping a texture to the
triangle.

What we’re going to do for this example is to start with the windowed version of
Hello Triangle (htri2) and modify it to draw two texture mapped triangles one on top
of the other. We’ll create the textures, load them into memory, install each of them as
the texture we’d like to use, and then draw them by mapping vertices to texture U,V
coordinates. In addition one of the triangles will be wrapped (tiled) and the other will
be clamped. We’ll also add a feature to the program so that every time the ‘f’ key is
hit, the textures will toggle between point sampled and bilinear filtered. The code for
this example can be found in the sub-directory htri3.

 

Creating  and Loading the Textures
The first thing we need to do is create the textures we’d like to use. In your own
applications you’d probably read these in from a file of some kind. Here we’re just
going to create some checkerboard type textures where the “checker” section is of
different sizes and colors. This will be done by the routine locked_checkerboard()
found in the file texture.c.

static v_memory locked_checkerboard

( int width,
  int height,
  int section_width,
  int section_height,
  v_u16 color1,
  v_u16 color2 )

{

v_memory result;

int i, j;
v_u16 *ptr;

 
// allocate locked memory (16 bit texture)
result = V_AllocLockedMem(verite, width * height * 2);

 
// traverse through memory setting colors
ptr = (v_u16 *)V_GetMemoryObjectAddress(result);
for (i=height; --i>=0; )
for (j=width; --j>=0; )

if ((i/section_height)%2 == (j/section_width)%2)
*(ptr++) = color1;

else
*(ptr++) = color2;

 
// return locked memory



// return locked memory
return result;

}

 
Since we’re going to transfer the data to the Vérité and since we’d like this transfer to
happen asynchronously we’re going to have to insure that the memory exists in the
physical memory of the CPU and not virtual memory that may be swapped out to
disk. We’ll do this by placing the texture in locked memory that cannot be swapped.
This is done by allocating memory with V_AllocLockedMemory(). To get a pointer to
this memory object, we’ll use V_GetMemoryObjectAddress() and store the texture
data.

The next thing that needs to be done is to create a section of memory on the board
and load the locked texture memory into it. This will be done by passing the locked
memory to the function create_texture() also found in the file texture.c.

static v_surface *create_texture

( v_memory data,
  int width,
  int height )

{

v_surface *result;
 

// create surface
VL_CreateSurface(verite, &result, 0, 1,
V_PIXFMT_565, width, height);

// load data into texture

   VL_LoadBuffer(&cmdbuffer, result, 0, width * 2,

width, height, data, NULL);
 

// return loaded texture
return result;

}

 
The first RRedline call should be pretty familiar to you. It’s the exact same function
used to create the front and back buffers. In the same manner that we created that
surface we’ll just create a surface of a given width and height that contains one buffer
and uses a pixel format of V_PIXFMT_565. Later we’ll just use that surface as if it
was a texture. Its that simple.

The next call is used to load the buffer with our initialized locked memory that we
created with locked_checkerboard(). You just simply pass the memory pointer, width,
height, and number of bytes per texture line (16 bit format = 2 bytes) and this
function places the load command into the command buffer. Commands to use this
texture can then immediately follow even if they occur on the same command buffer.

However, it is important that you don’t free that locked memory right away, if you
did you may end up freeing it before the command buffer was issued or during the
actual memory access by the Vérité. To prevent that from occurring we’ll just free the
memory at the end of the application within our redline_Close() routine. Other more
complex applications could keep track of that memory along with the command
buffer pointers. As long as the command buffer that contains the load buffer
command is finished (V_QueryCmdBuffer() is not V_CMDBUFFER_INUSE) then
the locked memory can be freed or re-used.

Note that the call to VL_LoadBuffer() goes on the command buffer while the call to
VL_CreateSurface() does not. In this case this is a very important distinction. In fact
the call to VL_CreateSurface() locks the Vérité and forces it to catch up with the
CPU. This is one of the largest hindrances to Vérité performance. Ways around this
include creating all the surfaces required at the beginning of the program and re-using
them or allocating a large chunk of memory on the board and keeping track of



them or allocating a large chunk of memory on the board and keeping track of
memory management within the application itself. More details about these
techniques will be discussed in the Optimizations chapter.

The next function we’ll describe is called by redline_Init() in order to set up the
textures. It calls our routines to allocate, create, and initialize the two textures along
with setting up the surface clamping.

 
void redline_CreateTextures

( void )
{

// place two checkerboard patterns in locked memory
locked1 = locked_checkerboard(128, 256, 16, 32, 0x07E0,

0x001F);

locked2 = locked_checkerboard(200, 100, 10, 10, 0xF81F,
0x07FF);

 
// create texture surfaces for each of the patterns
checker1 = create_texture(locked1, 128, 256);
checker2 = create_texture(locked2, 200, 100);

 
// disable clamping for the first, enable for second
VL_SetSurfaceClamp(checker1, FALSE, FALSE);
VL_SetSurfaceClamp(checker2, TRUE, TRUE);

}

 
Within RRedline, the default behavior of the texture coordinates is that they fully
cover the texture when they range from [0, 1) with the U,V coordinate (0,0)
representing the first pixel in the texture. Coordinates outside that range have
different behaviors according to the texture’s clamping flag. If a texture is not
clamped the texture is wrapped (tiled) with the value before the decimal point
effectively being ignored. In other words, the texture pixel (texel) found at texture
coordinate (0.5, 0.5) would be the same at (1.5, 1.5) or (3.5, 6.5). When a texture is
clamped then the coordinate is forced to be within the ranges [0, 1) by clamping it
with maximum and minimum functions. For example, the coordinate (2.5, 0.5) would
result in the last texel in the column V=0.5 and the coordinate (-1.0, -1.0) would
result in the texel found at coordinate (0,0). Wrapping is not available for texture
dimensions that aren’t a power of two. Clamping is available for all valid texture
dimensions.

We’ll set up clamping and wrapping by modifying the flag found in the surface
structure with VL_SetSurfaceClamp(). Later when the texture gets installed the clamp
and wrap flag will be passed to the Vérité via the command buffer. Instead of calling
a function, the application could have modified the structure directly adding the
necessary flags to the clamp element.

 

Filtering the Textures
One last issue we’ll deal with is the choice of filtering. Here we’ve written a function
redline_SwitchFilter() that is called whenever the user hits a ‘f’ key. This function
will tell the Vérité to either display all textures as with point filtering or to pass them
through a bi-linear filter before displaying.

void redline_SwitchFilter

( void )
{

// switch active filter
if (redline_Filter == V_SRCFILTER_POINT)

redline_SetFilter(V_SRCFILTER_BILINEAR);
else

redline_SetFilter(V_SRCFILTER_POINT);



redline_SetFilter(V_SRCFILTER_POINT);
}

 

This function uses the function redline_SetFilter() to do the actual work.

void redline_SetFilter

( v_u32 filter )
{

// which filter to use?
redline_Filter = filter;
VL_SetSrcFilter(&cmdbuffer, redline_Filter);

 
// set filter offsets
if (redline_Filter == V_SRCFILTER_POINT)
{
// point offsets
VL_SetSOffset(&cmdbuffer, FLTOIFIX(0.0));
VL_SetTOffset(&cmdbuffer, FLTOIFIX(0.0));
}
else
{
// bilinear offsets
VL_SetSOffset(&cmdbuffer, FLTOIFIX(-0.5));
VL_SetTOffset(&cmdbuffer, FLTOIFIX(-0.5));
}

}

 
Here we’re just passing the filter state to the chip with a call to VL_SetSrcFilter(). In
order for this call to work properly we’ll need to change the origin offset. By default,
the coordinate (0,0) refers to the exact center of the first texel. While this might work
fine for point filtered applications, it won’t work as well for bi-linear filtered textures.
For those, the origin needs to be set to the upper left corner of the texel for the filter
function to operate properly. This shifting of origins is done with a call to
VL_SetSOffset() and VL_SetTOffset(). The S and T coordinates refer to texel
coordinates within the texture. Therefore, an offset of (-0.5, -0.5) refers to a shift of a
half a texel in both S and T.

 

Setting the Source Function
In our first Hello Triangle example we were displaying a flat shaded triangle. In order
to tell the Vérité that we were using the color information stored in the vertex, we had
set the source function to V_SRCFUNC_NOTEXTURE. However in this example
we’d like to ignore any color information stored at the vertex and display the color
contained in the texture map instead. We’ll do this by modifying the
VL_SetSrcFunc() found in redline_InitState().

// when drawing, use texture colors
VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_REPLACE);

 
By passing V_SRCFUNC_REPLACE as our source function we’ll accomplish our
goal. This mode tells the Vérité to display according to the texture’s colors instead of
the vertex colors. A complete discussion of the source function can be found in
Modification Four: Alpha Blending.

 

Rendering The Triangle
Now that we’ve got the texture set up all we need to do is draw with it. That involves
picking an appropriate vertex type, installing the texture we’d like to use, and then
drawing the triangle. Before we pick a vertex type, we’ll need to discuss the new



drawing the triangle. Before we pick a vertex type, we’ll need to discuss the new
attributes we’re going to use in further detail, namely the texture coordinates U and
V.

U, V

U and V are the texture coordinates used to determine the mapping between a
texture pixel (texel) and a specific vertex. U and V coordinates are 16.16 signed
fixed point values. Coordinates range from [0,1) for both U and V with the
coordinate (0,0) referring to the first pixel of the texture. Coordinates outside that
range either result in wrapping (repeating) of the texture or result in clamping.
Wrapping and clamping can be enabled in either the U or V direction
independently.

All the possibilities of texture coordinates can be explained by looking at the
equations used to determine what texture pixel is used for a given U,V
coordinate. Typically the UMultiplier, VMultiplier, UMask, and VMask are
automatically set when a texture is installed with VL_InstallTextureMap(). With
this function, both multipliers are set to the width and height of the texture while
the masks are set two different ways depending on whether or not clamping is
set. If clamping isn’t set, the masks will be set to the highest power of two minus
one that is greater than or equal to the width and height of the texture. If
clamping is set, the masks are set to the texture width and height minus one. The
resulting S and T coordinate from these equations is a texture coordinate that
ranges from 0 to texture width minus one for S and 0 to texture height minus one
for T. This identifies the mapped texture pixel for that coordinate.

Wrapping functions (use only with a width and height of a power of two)

S = ( U * UMultiplier + SOffset ) & UMask )
T = ( V * VMultiplier + TOffset ) & VMask )

 
Clamping functions:

S = MAX ( MIN( U * UMultiplier + SOffset, UMask ), 0)
T = MAX ( MIN( V * VMultiplier + TOffset, VMask ), 0)

 
With this information you can then change the behavior of U and V. For example,
if the UMultiplier were set to 1 with VL_SetUMuliplier() and VMultiplier were
set to 1 with VL_SetVMultiplier(), the input U and V coordinates would no longer
range from 0 to 1 but become texel coordinates instead.

Since U and V values are stored as 16.16 fixed point values and since the S and T
texel calculations are also done with 16.16 fixed point values, there is a limit
where the precision of the calculation is overcome. To remove this possibility, the
product of the maximum U and V value by the width and height of the texture
should not be greater than 211. For example, the maximum U and V for a 256 x
128 texture is 8 for U and 16 for V. We highly recommend that an application
keep their U and V texture coordinates as small as possible.

 

U,V coordinates

msb
31

lsb
0

16.16 fixed point X coordinate
16.16 fixed point Y coordinate

 

Since we’re obviously going to require these two attributes along with X and Y we’ll
pick the least capable vertex type from our vertex table. It just so happens that the



second type listed in the table is the most appropriate: V_FIFO_XYUV. Now we just
have to store the coordinates. This will be done in our re-write of render_scene()
found in the file render.c.

void render_scene

( void )
{

static v_xyuv tri1[] =
{

{
FLTOIFIX(100.0), FLTOIFIX(100.0),
FLTOIFIX(0.0), FLTOIFIX(0.0)

},
{

FLTOIFIX(500.0), FLTOIFIX(100.0),
FLTOIFIX(2.0), FLTOIFIX(0.0)

},
{

FLTOIFIX(100.0), FLTOIFIX(300.0),
FLTOIFIX(0.0), FLTOIFIX(2.0)

}
};
static v_xyuv tri2[] =
{

{
FLTOIFIX(200.0), FLTOIFIX(150.0),
FLTOIFIX(0.0), FLTOIFIX(0.0)

},
{

FLTOIFIX(600.0), FLTOIFIX(150.0),
FLTOIFIX(2.0), FLTOIFIX(0.0)

},
{

FLTOIFIX(200.0), FLTOIFIX(350.0),
FLTOIFIX(0.0), FLTOIFIX(2.0)

}
};

 
The only differences between this initialization and the previous Hello Triangle
example are that we’re storing two more pieces of information (U and V), that we’re
storing into a different structure (v_xyuv), and that we’re creating data for two
triangles. Notice that we’re using the same macro FLTOIFIX() to store the U,V 16.16
fixed point coordinates. Also note that some of the texture coordinates are outside the
[0,1) texture coordinate range. This is to show the differences between clamping and
wrapping.

With the coordinates prepared, its time to tell the Vérité what texture we’d like to use
when drawing our triangle. After that, all we need to do is draw it.

// use first checkerboard
VL_InstallTextureMap(&cmdbuffer, checker1);

 
// draw triangle
VL_Triangle(&cmdbuffer, V_FIFO_XYUV,
(v_u32 *)&(tri1[0]), (v_u32 *)&(tri1[1]),
(v_u32 *)&(tri1[2]));

 
// use second checkerboard
VL_InstallTextureMap(&cmdbuffer, checker2);



VL_InstallTextureMap(&cmdbuffer, checker2);
 

// draw triangle
VL_Triangle(&cmdbuffer, V_FIFO_XYUV,
(v_u32 *)&(tri2[0]), (v_u32 *)&(tri2[1]),
(v_u32 *)&(tri2[2]));

 
// display back buffer
redline_PageFlip();

}

 
As you can see, installing a texture map only requires passing the texture surface to
the function VL_InstallTextureMap(). In turn that call passes information like
clamping modes, source buffer, source width, source pixel format, etc. to the Vérité
through the command buffer. Making these calls immediately is also possible and can
be more efficient for your own applications. For example, if you can guarantee that
the pixel format doesn’t change it isn’t necessary to keep telling the Vérité what it is.
Reducing the amount of information passed to the chip will decrease the time
required for texture state setup and increase chip performance. More about this topic
can be found in the chapter titled Optimizations.

With the surface installed we call the same routine used to draw a triangle in the first
example VL_Triangle(). When both are drawn, you should see a clamped red and
white triangle drawn on top of a wrapped blue and green checkerboard triangle.
Remember to hit the ‘f’ key to see the difference between point filtered and bi-linear
filtering modes.

 

Freeing the Textures
The last modification we’ll require is to free up the locked memory and destroy the
texture surfaces we’ve created. We’ll do this in our existing redline_Close() routine
in close.c.

// free texture memory and surfaces
if (locked1)

V_FreeLockedMem(verite, locked1);
if (locked2)

V_FreeLockedMem(verite, locked2);
if (checker1)

VL_DestroySurface(verite, checker1);
if (checker2)

VL_DestroySurface(verite, checker2);
 
The checks being made are to insure that if an error occurs within the application,
this routine will free whatever locked memory and surfaces that were allocated at the
time the error occurred.

 

Restoring the Textures and Pixel Engine State
Just like we needed to restore the front and back buffer surface when the application
looses and re-gains focus we’ll also need to restore the texture surfaces. This will be
done by modifying the existing routine redline_RestoreSurfaces() in utils.c.

// restore and re-load textures

if (checker1)
{ 

VL_RestoreSurface(verite, checker1);
VL_LoadBuffer(&cmdbuffer, checker1, 0, checker1->width *

2,

checker1->width, checker1->height, locked1,



checker1->width, checker1->height, locked1,
NULL);

}
if (checker2)
{

VL_RestoreSurface(verite, checker2);
VL_LoadBuffer(&cmdbuffer, checker2, 0, checker2->width *

2,

checker2->width, checker2->height, locked2,
NULL);

}

Since textures are implemented as surfaces, we can use the same routine
VL_RestoreSurface() to insure that the memory still exists on the video board. In
addition, we’ll need to re-load the contents of the texture with VL_LoadBuffer().
Remember that locked1 and locked2 still contain the locked memory contents of the
texture. If they didn’t, we might have had to re-lock some memory and initialize it
before calling VL_LoadBuffer().

As far as the pixel engine state is concerned, all we need to do is insure that the
correct filtering options are specified by having a call to redline_SetFilter() within the
initialization routine for the pixel engine state redline_InitState()

void redline_InitState

( void )
{

// initially point sampled filter
redline_SetFilter(redline_Filter);

 
// when drawing, use texture colors
VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_REPLACE);

}

 

Modification Three:  Z buffering and Perspective Correction

One of the problems first faced when drawing a three dimensional scene is how to
insure that triangles in the back of the scene are drawn behind triangles in the front of
the scene. If this isn’t handled properly, you could have objects appear in front of
others when they should be behind them.

One solution to this is to sort your triangles and draw them according to the sorted
order. This solution requires a bit of programming along with some extra CPU cycles.
One simpler solution we’re going to describe here is how to use the Z-buffer to
determine the visibility of the triangles. By telling our chip to use a Z buffer with a
specific Z-comparison function, each triangle will appear correctly even though
polygons may be rendered in a random order by the application.

In addition to determining polygon order, the Z-value should also be used to correct
texture mapping so that it has the correct perspective. This is not directly done with
the Z attribute. Instead, this will involve adding another attribute Q to our vertex so
that the texture appears with perspective correction. Q will simply be a function of
our Z value.

This example will just use the previous texture mapped triangle example and add the
described functionality. The code for this example can be found in the sub-directory
htri4.

 

Creating and Using a Z-buffer
In order to create the Z-buffer all we need is to modify the arguments passed when
creating the front and back buffers. This is done in redline_SetDisplay() contained in



creating the front and back buffers. This is done in redline_SetDisplay() contained in
the file utils.c.

// create new front, back, and Z buffer
VL_CreateSurface(verite, &redline_Display,
V_SURFACE_PRIMARY | V_SURFACE_Z_BUFFER,
3, pixel_fmt, width, height);

 
The only changes we’ve made is to add the flag V_SURFACE_Z_BUFFER to the
surface’s buffer mask and to tell the routine to create three buffers instead of two. The
Z-buffer will automatically become the last buffer in that surface.

In the same way that we had to install the destination buffer after creating the back
buffer, we now have to install the Z-buffer after we’ve created it. This code is found
in redline_InitState() since these values are part of the pixel engine state.

// install and use Z-buffer
VL_InstallZBuffer(&cmdbuffer, redline_Display);


We also need to specify the Z-buffer modes the application plans to use. This code is
found in redline_InitState() since these values are part of the pixel engine state.

// Z buffer modes

VL_SetZBufWrMode(&cmdbuffer, V_ZBUFWRMODE_ENABLE);
VL_SetZBufMode(&cmdbuffer, V_ZBUFMODE_LT);

 
These commands enable writing to this buffer and set up the comparison function
used to determine if a pixel is going to be drawn. In this example we’ll use
V_ZBUFMODE_LT as our comparison function. This states that if the drawn pixel
contains a Z-value that is less than the current value found in the Z-buffer then draw
the new pixel. In other words, Z increases the further you go into the screen.

 

Clearing the Z-buffer
Before we render to the scene we should insure that the Z-values are initialized. We’ll
do this with the function redline_ClearZBuffer() found in the file utils.c.

void redline_ClearZBuffer

( void )
{

// clear the Z buffer of the display (fill with farthest value)
   VL_FillBuffer(&cmdbuffer, redline_Display, 2,

0, 0, redline_Display->width, redline_Display->height,
0xFFFF);

}

 
In the same way that we used VL_FillBuffer() to clear the back buffer we’ll use it
now to place a value into the Z-buffer. Note that the fill value used is no longer a
zero. If we were to store that value then any triangle that had a Z-value greater than
zero would not be drawn. In this example, this would result in neither one of the
triangles being drawn. To solve this problem we’re storing the largest value possible
in our Z-buffer 0xFFFF. This is the largest value possible when using unsigned 16.0
values.

 

Rendering the Triangle
Rendering the triangles will only require some slight changes to the rendering
routine. First, we’ve got to pick another vertex type that contains the attributes we
require.

Z



Z is the depth attribute for the vertex. It is used only for Z-buffering and not for
perspective correct texture mapping. In a vertex structure, Z is a 16.16 fixed point
value that ranges from 0 to 65535. Note that Z is interpolated internally as 21.11
so the low order 5 bits of the supplied Z are discarded. It is then stored in our 16
bit Z buffer as 16.0. Note that some applications store 1/Z in the buffer in order
to get more resolution at smaller values of Z. If this is the case, comparison
functions should be modified to scale the Z to the 0 to 65535 range.

Depth Value (Z)
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If the vertex does not contain a Z value the default value from VL_SetZ() will be
used.

Q 

Q is unsigned 0.24, and is in the range [0.0, 1.0).  Q is the scaled reciprocal of the
homogeneous w, or the reciprocal of Zeye.  Note that for multi-vertex primitives
(e.g., lines, triangles) you can scale all of the Q’s by the same amount (say, a
power of 2) without affecting the perspective correction.  To maximize accuracy,
the largest Q of a multi-vertex primitive should be in the range [0.5, 1.0).

Scaled Reciprocal of Homogenous W (Q)
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For this example we’ll require the new Z and Q attribute in addition to the X,Y
screen coordinate and the U,V texture coordinate. Referring back to the table of
vertices we find the obvious choice for our vertex type V_FIFO_XYZUVQ.

void render_scene

( void )
{

static v_xyzuvq tri1[] =
{

{
FLTOIFIX(100.0), FLTOIFIX(100.0), FLTOIFIX(2.0),
FLTOIFIX(0.0),   FLTOIFIX(0.0),  

FLTOQFIX(1/2.0),

},
{

FLTOIFIX(500.0), FLTOIFIX(100.0), FLTOIFIX(4.0),
FLTOIFIX(2.0),   FLTOIFIX(0.0),  

FLTOQFIX(1/4.0),

},
{

FLTOIFIX(100.0), FLTOIFIX(300.0), FLTOIFIX(2.0),
FLTOIFIX(0.0),   FLTOIFIX(2.0),  

FLTOQFIX(1/2.0),

}
};
static v_xyzuvq tri2[] =



static v_xyzuvq tri2[] =
{

{
FLTOIFIX(200.0), FLTOIFIX(150.0), FLTOIFIX(6.0),
FLTOIFIX(0.0),   FLTOIFIX(0.0),  

FLTOQFIX(1/3.0),

},
{

FLTOIFIX(600.0), FLTOIFIX(150.0), FLTOIFIX(8.0),
FLTOIFIX(2.0),   FLTOIFIX(0.0),  

FLTOQFIX(1/5.0),

},
{

FLTOIFIX(200.0), FLTOIFIX(350.0), FLTOIFIX(6.0),
FLTOIFIX(0.0),   FLTOIFIX(2.0),  

FLTOQFIX(1/3.0),

}
};

 
All we’ve done here is add Z and Q values to the vertices and use a new vertex
structure.  Since the first triangle contains Z values that are less than the second
triangle, it should be displayed in front of it even though it is drawn first. In addition
we’re using a different macro to store the value for Q

#define FLTOQFIX(a) ((v_u32)(((float)(a))*((float)((1<<24) - 1))))
 
A new macro is required since Q is not a 16.16 fixed point number but a 0.24 fixed
point number. This macro successfully stores a zero as the smallest 0.24 number
(0x00000000) and a one as the largest 0.24 fixed point value (0x00FFFFFF). Note
that we’re simply using the reciprocal of Z in order to calculate Q. Any similar
calculation should work fine for your applications as long as it falls within the proper
range.

The code to render the triangle remains unchanged except for the vertex type being
passed to VL_Triangle().

// use first checkerboard
VL_InstallTextureMap(&cmdbuffer, checker1);

 
// draw triangle
VL_Triangle(&cmdbuffer, V_FIFO_XYZUVQ,
(v_u32 *)&(tri1[0]), (v_u32 *)&(tri1[1]),
(v_u32 *)&(tri1[2]));

 
// use second checkerboard
VL_InstallTextureMap(&cmdbuffer, checker2);

 
// draw triangle
VL_Triangle(&cmdbuffer, V_FIFO_XYZUVQ,
(v_u32 *)&(tri2[0]), (v_u32 *)&(tri2[1]),
(v_u32 *)&(tri2[2]));

 
// display back buffer
redline_PageFlip();

}

 

Modification Four:  Alpha Blending

Some applications may require some more effects other than just drawing flat shaded,
gouraud shaded, or texture mapped triangles. They may wish to have polygons



gouraud shaded, or texture mapped triangles. They may wish to have polygons
blended together in order to get transparency effects or in order to use texture mapped
lighting. Either way, there are a lot of effects that can be accomplished with alpha
blending.

For this example we’re going to start with an older example, Modification Two:
Drawing a Texture Mapped Triangle (htri3) and add alpha blending. The textures we
create will contain alpha values that when rendered will give the effect that the red
and white texture mapped triangle is slightly transparent.

The code for this example will be included in the htri5 sub-directory.

 

Alpha Blending Basics
Before we start talking about the calls needed to enable alpha blending we need to
explain a little more about how the Vérité uses state settings to determine the final
pixel stored in into the destination buffer.

In the case where there is no alpha blending, the equations used to calculate the new
pixel values are simple:

new pixel color = src color
new pixel alpha = src alpha 

 
The new pixel alpha value is only stored if the destination pixel format contains
alpha, like when drawing to a V_PIXFMT_4444 pixel format. The src color and src
alpha are determined by the source function. The actual source values can be
determined by checking the following table of VL_SetSrcFunc() modes:

Source Function Mode Values Used

V_SRCFUNC_NOTEXTURE src color = color
src alpha = alpha

V_SRCFUNC_REPLACE src color = texture color
src alpha = texture alpha

V_SRCFUNC_DECAL src color = (1 - texture alpha) * color +
           texture alpha * texture color
src alpha = alpha

V_SRCFUNC_MODULATE src color = color * texture color
src alpha = alpha * texture alpha

 

The color and alpha values come from the vertex structure. If the vertex does not
contain these attributes then the default color and the default alpha will be used. The
texture color and texture alpha values always come from the installed texture. If the
texture’s format does not include alpha, a maximum alpha value of 255 will be used.
If the texture format does not include color, RGB color values of 255 (white) will be
used. Note that the standard color and alpha ranges of 0 to 255 are scaled to be from
0 to 1 for purposes of these equations.

Things start to become trickier when alpha blending is enabled. If it is, the new pixel
value equations become:

new pixel color = blend src function * src color +
blend dst funciton * dst color

new pixel alpha = blend src function * src alpha +
blend dst function * dst alpha

 
The values for src color and src alpha are still defined by VL_SetSrcFunc(). The dst
color and dst alpha are the existing values of the pixel being drawn to (i.e. old pixel
color and old pixel alpha). The new values blend src function and blend dst function



come from VL_SetBlendDstFunc() and VL_SetBlendSrcFunc():

VL_SetBlendDstFunc() Argument blend dst function

V_BLENDSRCCOLOR src color

V_BLENDSRCCOLORINV 1 - src color

V_BLENDSRCALPHA src alpha

V_BLENDSRCALPHAINV 1 - src alpha

V_BLENDDSTALPHA dst alpha

V_BLENDDSTALPHAINV 1 - dst alpha

V_BLEND0 0

V_BLEND1 1

 

VL_SetBlendSrcFunc() Argument blend src function

V_BLENDDSTCOLOR dst color

V_BLENDDSTCOLORINV 1 - dst color

V_BLENDSRCALPHA src alpha

V_BLENDSRCALPHAINV 1 - src alpha

V_BLENDDSTALPHA dst alpha

V_BLENDDSTALPHAINV 1 - dst alpha

V_BLEND0 0

V_BLEND1 1

V_BLENDSRCALPHASAT MIN(src alpha, 1 - dst alpha)

V_BLENDSRCALPHASATINV 1 - MIN(src alpha,
       1 - dst alpha)

 

In addition to these settings, the only other thing you can set for alpha blending is the
destination pixel. If you need to, you can ignore the current destination pixel value
and substitute one of your own. This is done by disabling destination pixel read with
VL_SetDstRdDisable() and by setting the destination pixel attributes with
VL_SetDstColorARGB() or VL_SetDstColorABGR(). This may be done in order to
incorporate a constant value into these blend equations such as specular color.

One thing to remember is how these equations interact with the Z-buffer. While the
Z-buffer determines when a pixel is rendered it does not determine what pixel it is
blended with. If the correct destination pixel hasn’t been drawn yet the blending
results will come out incorrect. Therefore, even if doing Z-buffering, you must first
render the base scene and then add alpha blended effects afterwards (like lighting,
etc.)



In the case of our example, all we’re going to do is enable alpha blending and blend
the pixel of the texture with the existing destination pixel according to the texture’s
alpha value. This will result in a slightly transparent texture mapped triangle for the
second triangle. The first triangle will remain unaffected since it contains the
maximum alpha value. These alpha blend settings are done in redline_Init() in the file
init.c.

// turn on alpha blending and set blend states

VL_SetBlendEnable(&cmdbuffer, V_BLEND_ENABLE);
VL_SetBlendSrcFunc(&cmdbuffer, V_BLENDSRCALPHA);
VL_SetBlendDstFunc(&cmdbuffer, V_BLENDSRCALPHAINV);

 
 

Textures with Alpha
The source function is still set to V_SRCFUNC_REPLACE telling use that our source
values come from the texture so we’ll need to store our alpha values in the texture
itself. To do this, we’ll modify the call create_texture() from texture.c to create the
texture so that the pixel format is 4444 (4 bits each of alpha, red, green, and blue)

// create surface

VL_CreateSurface(verite, &result, 0, 1,
V_PIXFMT_4444, width, height);

 
The colors stored in the checkerboard textures need to be different as well. That will
mean a change to the last argument of the locked_checkerboard() calls in
redline_CreateTextures() in the file texture.c.

// place two checkerboard patterns in locked memory

locked1 = locked_checkerboard(128, 256, 16, 32, 0xF0F0,
0xF00F);

locked2 = locked_checkerboard(200, 100, 10, 10, 0x7F00,
0x7FFF);

 
The first checkerboard is created with the maximum alpha value. This means that it
won’t be transparent at all. However, the next texture has approximately half alpha
resulting in the second triangle being about half transparent.

 

Rendering the Triangle
When rendering the triangle there is no change from the original code. We’ve already
set the necessary alpha modes and stored the alpha values in the texture itself. If we
wanted to store the alpha value in the vertex instead of the alpha we would have had
to choose a new vertex type that contains the alpha attribute.

A

A is the alpha attribute for each vertex. For all but one vertex type, alpha is stored
as a 16.16 fixed point value that ranges from 0 to 255. The only exception to this
rule is with the vertex type V_FIFO_KaSFXYZUVQ. It stores alpha in the eight
available bits of the compressed RGB color value K. In that case, alpha is an 8.0
fixed point value ranging from 0 to 255.

Alpha (A)
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If a vertex does not contain an alpha attribute the default value will be used.
Setting the default alpha can be done directly with VL_SetA() or along with the
color value with either VL_SetFGColorARGB() or VL_SetFGColorABGR().

 

 

Modification Five: Specular Extensions

When adding new functionality to RRedline, either through new functions or new
vertex types, we don’t just add them to the library and act like they’ve always been
there. RRedline dlls already exist and are available to users. To modify the library at
this point would result in programs failing with unidentifiable errors when they link
with older versions of the dlls that don’t contain the functions they require. To solve
this problem we provide a mechanism for programs to acquire function pointers if
certain extensions are found. This allows new features to be supported within
RRedline and still be compatible with older architectures.

One of the new features of the V2000 series of cards is that they support per-vertex
specular highlights. This feature, however, is not directly supported within the
hardware of the V1000 series of chips. What we’re going to show in this example is
how to detect what functionality exists within the current RRedline/chip combination
and how to implement specular highlights when the extension doesn’t exist on the
V1000.

This example is based on the Z-buffered texture mapped example Modification
Three:  Z buffering and Perspective Correction (htri4). The files for this example are
stored in the sub-directory htri6.

 

Specular Extensions for the V2000 series
On the V2000 series of cards specular is supported as a vertex attribute. It is therefore
possible to choose a vertex type that contains specular and store the specular color
values within each vertex. However, this extension is not supported on the V1000
series of cards. It is therefore important for the program to determine what chip is
being used and process the effect accordingly.

This detection is done through the use of extensions. By asking the card what
extensions are available, you’ll be able to determine what additional capabilities are
available or missing. You can then determine what needs to be done in order to get
specular functioning properly. This detection is being done within redline_Init() in
the file init.c.

char *exts;
 

….
 

// get and check extensions for specular
exts = VL_GetExtensions(verite);
specular_available = (v_u16)strstr(exts, " Specular ");

 
Each extension supported by the current RRedline/chip combination is contained in
the string returned from VL_GetExtensions(). Each extension is always begins and
ends with a space. Note that we’re looking for these spaces in our string search.
Otherwise our strstr() call would result in a match for any future extensions that



Otherwise our strstr() call would result in a match for any future extensions that
contain the string “Specular” like “SpecularX” or “Specular_Adaptations”.

Once we’ve determined that the specular extension does exist, we can make calls to
enable specular highlights. However, the function itself isn’t part of the library that
you link with when compiling your program. If it did then your program would fail if
it ran into a RRedline dll that didn’t contain the specular function. Instead, you need
to gain access to it via a function pointer returned by VL_GetExtensionFunction().

// get specular function

if (specular_available)
VL_SetSpecularEnable = (VL_SetSpecularEnable_Type)

VL_GetExtensionFunction("VL_SetSpecularEnable");
 

The global function pointer VL_SetSpecularEnable() is declared at the top of init.c.
Its type VL_SetSpecularEnable_Type is declared in the include file rlex.h. This
include file contains all the necessary declarations for all the available extensions.
This file should be included whenever extensions are used

VL_SetSpecularEnable_Type VL_SetSpecularEnable = NULL;
 

Now that we’ve got a pointer to this function, it’s time to call it so that specular is
enabled. The calls setting up the specular state are included in the function
redline_InitState() found in init.c since they are part of the pixel engine state and
need to be set if the application ever loses focus to another application.

// specular extensions available?

if (specular_available)
{

// enable specular on V2000 series
VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_REPLACE);
VL_SetSpecularEnable(&cmdbuffer, V_SPECULAR_ENABLE);

} else
{

…
}

 
In the same manner as alpha blending, specular must be enabled before the specular
attribute is used. Note that we’ve included a call to set the source function as well
since the V1000 method will need to store its specular value within the vertex
requiring a change to the source function mode.

 

Specular Alpha Settings for the V1000
On the V1000 series of cards, specular extensions are not available since that
hardware does not support per vertex specular types. However, if you wish to still be
able to do specular highlights on that chipset, it is possible by using the alpha value.

In order to determine what alpha modes are required, we should first take a look at
the input data and then determine how to get the proper equations. Our input consists
of three items:  our texture map, per vertex alpha value containing the specular value,
and the specular color.  The first thing to determine is the source function to be used.
Since we’re requiring that data come from the vertex and from the texture, we’ll need
to use either V_SRCFUNC_DECAL or V_SRCFUNC_MODULATE. The result
being that we want to have

src color = texture color
src alpha = vertex alpha
 

It turns out that we can get this result from either of the two listed source function
modes. For V_SRCFUNC_DECAL the equations are:



modes. For V_SRCFUNC_DECAL the equations are:

src color = (1 - texture alpha) * color +
               texture alpha * texture color

src alpha = alpha
 

Since the texture contains no alpha value, the default of 255 will be used for texture
alpha. Remembering that 255 is translated to 1 for the purpose of the source and
blending equations, the V_SRCFUNC_DECAL functions automatically become:

src color = 0 * color + 1 * texture color = texture color
src alpha = alpha

 
Which is exactly what we needed. If we wanted to use V_SRCFUNC_MODULATE
instead we would have started with these equations:

src color = color * texture color
src alpha = alpha * texture alpha
 

With the texture alpha still being 255, if the color value were white (translated to 1
for the purpose of the source and blending equations) then the modulate equations
would become:

src color = 1 * texture color = texture color
src alpha = alpha * 1 = alpha

 
Which is again the proper result. The only difference being that for this mode we
need to have each vertex have a white color or set the default color to white when the
vertex contains no color attribute. Since specular is normally implemented with a
color value, we’ll use this V_SRCFUNC_MODULATE version.

Now that we have our source worked out, we’ll need to set up the blend functions.
What we need is to have our specular value multiplied by the specular color and
added to our texture map pixel to get the final result. Knowing that our specular value
is stored as src alpha and the texture pixels are stored as src color, we can then write
the equation we need as:

new pixel color = src color + src alpha * constant specular
color

 
We’ll need to derive this function from the standard blend function. With a
destination pixel format of V_PIXFMT_565 we aren’t interested in the blend function
for new pixel alpha since it isn’t being stored.

new pixel color = blend src function * src color +
     blend dst funciton * dst color


We’ll use V_BLEND1 for the blend source function so that we’ll end up with just src
color for that part of the equation. We’ll also use V_BLENDSRCALPHA for the
blend destination function so that the src alpha is introduced in the second part of the
equation. The problem then becomes how to store the specular color as the dst color
value.

One of the tricks you can use for alpha blending is to tell the Vérité to ignore the
existing destination pixel and replace it with a value of your own. This is a good way
to introduce constants into your blend equations. In this case, we’ll do this by
disabling the destination read and storing our constant specular color as the
destination color. The blend equations then become:

new pixel color = 1 * src color + src alpha * specular
color

 



 
Which is again precisely what we need.

All these settings are done within redline_InitState() if specular extensions don’t
exist.

// specular extensions available?

if (specular_available)
{

…
} else
{
// use specular alpha blending on V1000 series
VL_SetSrcFunc(&cmdbuffer, V_SRCFUNC_MODULATE);
VL_SetBlendEnable(&cmdbuffer, V_BLEND_ENABLE);
VL_SetBlendSrcFunc(&cmdbuffer, V_BLEND1);
VL_SetBlendDstFunc(&cmdbuffer, V_BLENDSRCALPHA);
VL_SetDstRdDisable(&cmdbuffer, V_DSTRD_DISABLE);
}

 
 

Rendering with Specular
With the appropriate V1000 and V2000 states set all we have to do now is render the
triangles. Each version will render triangles in a slightly different manner. The V1000
will implement specular by using a vertex type that contains an alpha attribute. The
V2000 will implement the effect by using a specular vertex type.

We’ll start first with the vertices of the triangles for the V1000 version. For that
version we’ll need a vertex type that contains alpha along with K, X, Y,  Z, U, V, and
Q. The smallest vertex type fitting that description is the type V_FIFO_KAXYZUVQ
which contains exactly what we need.

void render_scene

( void )
{

static v_kaxyzuvq tri1[] =
{
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(255.0),
FLTOIFIX(100.0),  FLTOIFIX(100.0),  FLTOIFIX(2.0),
FLTOIFIX(0.0),    FLTOIFIX(0.0),    FLTOQFIX(1/2.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(0.0),
FLTOIFIX(500.0),  FLTOIFIX(100.0),  FLTOIFIX(4.0),
FLTOIFIX(2.0),    FLTOIFIX(0.0),    FLTOQFIX(1/4.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(200.0),
FLTOIFIX(100.0),  FLTOIFIX(300.0),  FLTOIFIX(2.0),
FLTOIFIX(0.0),    FLTOIFIX(2.0),    FLTOQFIX(1/2.0),

}
};
static v_kaxyzuvq tri2[] =
{
{



{
FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(255.0),
FLTOIFIX(200.0),  FLTOIFIX(150.0),  FLTOIFIX(6.0),
FLTOIFIX(0.0),    FLTOIFIX(0.0),    FLTOQFIX(1/3.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(0.0),
FLTOIFIX(600.0),  FLTOIFIX(150.0),  FLTOIFIX(8.0),
FLTOIFIX(2.0),    FLTOIFIX(0.0),    FLTOQFIX(1/5.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOIFIX(200.0),
FLTOIFIX(200.0),  FLTOIFIX(350.0),  FLTOIFIX(6.0),
FLTOIFIX(0.0),    FLTOIFIX(2.0),    FLTOQFIX(1/3.0),

}
};


 

For the V2000 series we’ll need a vertex type that contains the new specular attribute

S

S is a special vertex attribute that stands for specular color. This attribute is only
supported on those chips that allow specular extensions. The V1000 series of
chips does not support those extensions. Specular color is stored in the same
format as packed RGB with each 8.0 fixed point RGB value stored in a specific
location of a 32 bit word.

Specular Color (S)

msb
31

lsb
0

- R G B
 

If a vertex does not contain a specular value the default specular color, set with
VL_SetSpecularColorRGB() or VL_SetSpecularColorBGR() will be used. Note
that both of these functions are extension functions for specular and do not exist
on the V1000 series of cards.

 

In addition to the specular attribute we’ll need a vertex type that contains X, Y, Z, U,
V, and Q. We find that the smallest vertex type containing these attributes contains an
extra K attribute which will be initialized to white. The vertex type used is
V_FIFO_KSXYZUVQ.

static v_ksxyzuvq tri1b[] =
{
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 255.0, 0.0, 0.0),
FLTOIFIX(100.0),  FLTOIFIX(100.0),  FLTOIFIX(2.0),
FLTOIFIX(0.0),    FLTOIFIX(0.0),    FLTOQFIX(1/2.0),

},
{



FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 0.0, 0.0, 0.0),
FLTOIFIX(500.0),  FLTOIFIX(100.0),  FLTOIFIX(4.0),
FLTOIFIX(2.0),    FLTOIFIX(0.0),    FLTOQFIX(1/4.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 200.0, 0.0, 0.0),
FLTOIFIX(100.0),  FLTOIFIX(300.0),  FLTOIFIX(2.0),
FLTOIFIX(0.0),    FLTOIFIX(2.0),    FLTOQFIX(1/2.0),

}
};
static v_ksxyzuvq tri2b[] =
{
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 0.0, 0.0, 255.0),
FLTOIFIX(200.0),  FLTOIFIX(150.0),  FLTOIFIX(6.0),
FLTOIFIX(0.0),    FLTOIFIX(0.0),    FLTOQFIX(1/3.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 0.0, 0.0, 0.0),
FLTOIFIX(600.0),  FLTOIFIX(150.0),  FLTOIFIX(8.0),
FLTOIFIX(2.0),    FLTOIFIX(0.0),    FLTOQFIX(1/5.0),

},
{

FLTOARGB(255.0, 255.0, 255.0, 255.0),
FLTOARGB(0.0, 0.0, 0.0, 200.0),
FLTOIFIX(200.0),  FLTOIFIX(350.0),  FLTOIFIX(6.0),
FLTOIFIX(0.0),    FLTOIFIX(2.0),    FLTOQFIX(1/3.0),

}
};


All we have to do now is install the texture we’re going to use and then render the
triangle. When specular extensions are available, the triangle will simply be rendered
with a call to VL_Triangle(). When they aren’t available, the specular color is set with
VL_DstColorARGB() and the triangle is then drawn with VL_Triangle().

// use first checkerboard
VL_InstallTextureMap(&cmdbuffer, checker1);

 
// specular not available?
if (!specular_available)
{
// choose specular color and draw triangle
VL_SetDstColorARGB(&cmdbuffer,
FLTOARGB(255.0, 255.0, 0.0, 0.0));
VL_Triangle(&cmdbuffer, V_FIFO_KAXYZUVQ,

(v_u32 *)&(tri1[0]), (v_u32 *)&(tri1[1]),
(v_u32 *)&(tri1[2]));

} else
{
// draw triangle with specular vertex type
VL_Triangle(&cmdbuffer, V_FIFO_KSXYZUVQ,

(v_u32 *)&(tri1b[0]), (v_u32 *)&(tri1b[1]),
(v_u32 *)&(tri1b[2]));
}



}
 

// use second checkerboard
VL_InstallTextureMap(&cmdbuffer, checker2);

 
// specular vertex not available?
if (!specular_available)
{
// choose specular color and draw triangle
VL_SetDstColorARGB(&cmdbuffer,

FLTOARGB(255.0, 0.0, 0.0, 255.0));
VL_Triangle(&cmdbuffer, V_FIFO_KAXYZUVQ,

(v_u32 *)&(tri2[0]), (v_u32 *)&(tri2[1]),
(v_u32 *)&(tri2[2]));

} else
{
// draw triangle with specular vertex type
VL_Triangle(&cmdbuffer, V_FIFO_KSXYZUVQ,

(v_u32 *)&(tri2b[0]), (v_u32 *)&(tri2b[1]),
(v_u32 *)&(tri2b[2]));

}
 

// display back buffer
redline_PageFlip();

}

 

 

Attributes not covered in examples

In our current examples the following attributes were not covered

F

F is the fog attribute for the vertex. Most of the time it is a 16.16 fixed point
value ranging from 0 (full fog) to 255 (no fog). In the vertex type
V_FIFO_KaSFXYZUVQ the fog value is stored in the free 8 bits of the specular
attribute as an 8.0 fixed point value ranging from 0 to 255.

Fog Alpha (F)

msb
31

lsb
0

16.16 fixed point F fog factor

Specular Color (S) with Fog Alpha (F)

msb
31

lsb
0

F R G B
 

If the vertex does not contain a fog value the default value from VL_SetF() will
be used.

Optimizations

Now that you know how to program RRedline so that it works it is know important
for you to know how to get it to work fast. Following are a list of several



for you to know how to get it to work fast. Following are a list of several
enhancements that you may be able to use for you own application. Some require that
you only change the functions called while others require more effort. In either case,
I’d recommend that you add these optimizations after you get your RRedline
application running. The reason being that some of these optimizations, if not done
correctly, can result in the Vérité locking up in such a way that it will be difficult to
track down. However, if applied one at a time these optimizations can result in
greater performance and a higher frame rate for your application. One nice thing to
note is that some of these optimizations can be implemented within other APIs as
well including Direct3D and OpenGL.

Note that some of the optimizations discussed in this document are most useful on
the V1000 and may have only minor impact on the V2000.

 

Add drawing primitive data to the command list directly
You learned in the first part of the programming guide that the RRedline method for
drawing a primitive is to convert your application’s data format to the RRedline data
format as you fill up an array of RRedline vertex structures. You then call a VL_
function (like VL_Triangle) providing the vertex data through the function’s
arguments. However, we’ve found that that isn’t the most efficient method for
handling this procedure. In fact, by creating your own version of VL_Triangle() you
can get some quick performance increases.

In this example we’ll do this for VL_Triangle(). However, all the other primitive
rendering functions such as VL_Trifan(), VL_Tristrip(), etc. will have similar versions
as well. Details on the command buffer structure for each of those primitives can be
found in the reference guide and used to modify the described source code. Here is
the source for VL_Triangle (minus error checking).

vl_error VL_Triangle

( v_cmdbuffer *cmdbuffer,
  v_u32 v_type,
  v_u32 *v1,
  v_u32 *v2,
  v_u32 *v3 )

{

/* Compute number of bytes in vertex list */
v_u32       lcnt = ((VL_VertexSize(v_type)) + 3) >> 2;
v_u32       *cmdlist_ptr;

 
/* Allocate space on the command buffer for the command and

data */

cmdlist_ptr = V_AddToCmdList(cmdbuffer, (3*lcnt+1));
 

/* Write vertex count & command */
*(cmdlist_ptr++) = ((v_type << 16) | V_FIFO_TRIANGLE);

 
/* Copy each vertex into the command buffer */
memcpy(cmdlist_ptr, v1, (lcnt << 2));
cmdlist_ptr += lcnt;
memcpy(cmdlist_ptr, v2, (lcnt << 2));
cmdlist_ptr += lcnt;
memcpy(cmdlist_ptr, v3, (lcnt << 2));

}

 
As you can see, all this function needs to do is determine how much space is required
on the command buffer (in 32 bit words), place the FIFO primitive drawing
command along with the vertex type in the command buffer, and then copy each
vertex into the command buffer. For your application, there are a few key places
where this function can be modified to work better with you application.



where this function can be modified to work better with you application.

You can avoid putting your data in RRedline vertex types and extra  memcpy() calls
by calling V_AddToCmdList() within your own VL_Triangle() routine and placing
your data directly into the command list. This procedure also does not require that
any RRedline vertex structure be created. In the following example, an imaginary
application’s data is converted to the IXYUVQ vertex type at the same time it is
placed in the command buffer.

vl_error VL_AppTriangle

( v_cmdbuffer *cmdbuffer,
  app_vertex *v1,
  app_vertex *v2,
  app_vertex *v3 )

{

/* Compute number of bytes in vertex list */
v_u32 lcnt = ((VL_VertexSize(V_FIFO_IXYUVQ)) + 3) >> 2;
v_u32 *cmdlist_ptr;

 
/* Allocate space on the command buffer for the command and

data */

cmdlist_ptr = V_AddToCmdList(cmdbuffer, (3*lcnt+1));
 

/* Write vertex count & command */
*(cmdlist_ptr++) = (V_FIFO_IXYUVQ << 16) | V_FIFO_TRIANGLE;

 
/* Copy each vertex into the command buffer */
cmdlist_ptr[0] = v1->light << 16; /* I */
cmdlist_ptr[1] = FLTOIFIX(v1->screen_x); /* X */
cmdlist_ptr[2] = FLTOIFIX(v1->screen_y); /* Y */
cmdlist_ptr[3] = (v1->tex & 0xFF00) << 8; /* U */
cmdlist_ptr[4] = (v1->tex & 0xFF) << 16; /* V */
cmdlist_ptr[5] = FLTOQFIX(1.0 / v1->z); /* Q */
cmdlist_ptr += 6;

 
cmdlist_ptr[0] = v2->light << 16;
cmdlist_ptr[1] = FLTOIFIX(v2->screen_x);
cmdlist_ptr[2] = FLTOIFIX(v2->screen_y);
cmdlist_ptr[3] = (v2->tex & 0xFF00) << 8;
cmdlist_ptr[4] = (v2->tex & 0xFF) << 16;
cmdlist_ptr[5] = FLTOQFIX(1.0 / v2->z);
cmdlist_ptr += 6;

 
cmdlist_ptr[0] = v3->light << 16;
cmdlist_ptr[1] = FLTOIFIX(v3->screen_x);
cmdlist_ptr[2] = FLTOIFIX(v3->screen_y);
cmdlist_ptr[3] = (v3->tex & 0xFF00) << 8;
cmdlist_ptr[4] = (v3->tex & 0xFF) << 16;
cmdlist_ptr[5] = FLTOQFIX(1.0 / v3->z);

}

 
For other primitives, the FIFO primitive command will change and there may be
another word needed in the command buffer in order to store a count such as with
triangle fans and strips. When storing other vertex types you just need to remember
that the attributes are added to the command list in the order listed in the vertex type
(order for V_FIFO_IXYUVQ is I, X, Y, U, V, then Q).

Note that we recommend doing this optimization (and all other command list
management) later in the optimization process, as it is easy to generate errors that
will crash the graphics system.



will crash the graphics system.

 

Change the 3D engine's internal data formats to RRedline's formats
To avoid conversion steps when storing vertex information, consider changing your
application’s internal data format to match RRedline’s. This may not be possible for
X and Y coordinates that change a lot but may be possible for attributes such as
texture coordinates that don’t change during the course of a program.

 

Use fast float to integer
Some C compilers generate bad code for something as simple as

int_var = (int)float_var;

 
So it is recommended that when doing the float-to-fixed point conversion of your data
that you use some alternate method. One possible method is this, which uses the bit
arrangement of double precision floating point numbers to do quick conversions:

typedef union {

unsigned int i[2];
double f;

} ftoi;

 
ftoi converter_16_16 = { 0, 0x42380000 };
ftoi converter_8_24 = { 0, 0x41B80000 };
ftoi converter_0_32 = { 0, 0x41380000 };
ftoi result;

 
#define FLTO16_16(n) (result.f = (n) + converter_16_16.f, \

result.i[0])
#define FLTO8_24(n) (result.f = (n) + converter_8_24.f, \

result.i[0])
#define FLTO0_32(n) (result.f = (n) + converter_0_32.f, \

result.i[0])
 
#define FLTOIFIX(i) (FLTO16_16(i))
#define FLTOQFIX(q) (FLTO8_24(q) - 1)
#define FLTOZFIX(z) (FLTO0_32(z-0.000000001))

 
FLTOIFIX() creates a 16.16 fixed point number for most Vérité attributes.

FLTOQFIX() creates a 0.24 fixed point number (input must be <= 1) for Q.

FLTOZFIX() creates a 16.16 fixed point number taking 0 <= Z <= 1 and mapping it
to 0 <= Z < 65536 for the Vérité Z buffer.

Note that this technique won’t work if you have set the floating point control word to
perform low-precision math.

 

Maintain application state records
To avoid calling VL_Set functions unnecessarily, you can wrap them in your own
“smart” state function. For example, this function could replace VL_SetSrcFunc() :

void VL_AppSetSrcFunc(v_u32 srcfunc)
{

static v_u32 lastfunc = -1;
if (srcfunc == lastfunc)
return;

 



 
VL_SetSrcFunc(&cmdbuffer, srcfunc);
lastfunc = srcfunc;

}

 
All VL_Set functions call V_AddToCmdList(). While fast, calling the function
hundreds of extra times per frame can add up to a performance decrease. Note that
the extra bus traffic for the state commands or the time the Vérité spent changing
state values are secondary effects on performance— in fact, they are probably hard to
measure at all.

Another approach is to track drawing states in a higher level “context” sense.  For
example, if your application draws four different kinds of things, consider a method
like:

typedef enum {

STATE_FIRSTTHING,
STATE_SECONDTHING,
STATE_THIRDTHING,
STATE_FOURTHTHING

} statetype;

 
void SetState(statetype state)
{

static statetype laststate;
if (state == laststate)
return;

 
switch (state)
{
case STATE_FIRSTTHING:

/* set first thing’s state */
break;

case STATE_SECONDTHING:
/* set second thing’s state */
break;

case STATE_THIRDTHING:
/* set third thing’s state */
break;

case STATE_FOURTHTHING:
/* set fourth thing’s state */
break;

}
 

laststate = state;
}

 
Now one check can determine if any VL_Set functions need be called at all.

 

Implement your own texture caching algorithm
One of the best ways to increase performance is to optimize your texture caching
algorithm for your application. This can be done by changing your RRedline surface
creation calls to lower level implementations, managing the video memory yourself,
and preventing locks between the Vérité and the CPU.  Preventing locks caused by
VL_CreateSurface() is especially important since it can eat up a lot of the available
performance.

However, this technique is only useful if the amount of textures required for your
application exceeds the amount of memory available on the board. Currently Vérité
boards contain 4 or 8 megabytes of general purpose memory that is used for



boards contain 4 or 8 megabytes of general purpose memory that is used for
microcode, display buffers, Z-buffers, and texture memory. In order to determine if
this optimization can help your application you should calculate how much texture
memory you have to work with and see if your textures will fit.

To calculate the amount of video memory available, you must sum all the other
pieces and subtract from the memory available on the board. For example, lets say
that I have an application running on a 4 megabyte board in full-screen mode at
640x480 with 16 bits of color, front and back buffers, and no Z-buffer. To calculate
the amount of memory available for textures you would use the following
calculation:

4 megs memory on board
- 640 x 480 x 2 x 2 bytes memory for front and back buffers (16
bit)

- 128 K memory for microcode (fixed)
= 2,768 K available memory (enough for about 86 128 x 128 16 bit

textures)

 
In windowed mode you don’t have a front buffer but you do have the original screen
setting to account for. Let’s say that your screen is set to 1024 x 768 with 16 bits of
color, your application is running at 640 x 480 with 16 bits of color, you have a back
buffer, and you have a Z-buffer. The calculation would then become:

4 megs memory on board
- 1024 x 768 x 2 bytes memory for screen setting (16 bit)
- 640 x 480 x 2 bytes memory for back buffer (16 bit)
- 640 x 480 x 2 bytes memory for Z-buffer (16 bit values)
- 128 K memory for microcode (fixed)
= 1,232 K available memory

(enough for about 38 128 x 128 16 bit textures)
 
Even though these formulas are accurate, it is a lot better to use a general purpose
algorithm within your application to determine the amount of memory available.
Future chipsets may have a lot more memory available that you’ll want to use. The
algorithm we recommend involves iteratively allocating texture memory on the
board. When the algorithm succeeds in allocating, the memory is freed and the
amount is increased. When the algorithm fails in allocating, the amount is decreased.
This is continued until the amount of available memory is determined.

Following is some code taken from our framework example (frame example
directory). This example covers a lot of advanced topics such as command buffer
management, locked memory management, and texture caching. In this section we’ll
only talk about its texture caching mechanism.

#define CACHE_BUFFER_WIDTH 256

 
…

 
v_u32 min_height, max_height, mid_height;
v_buffer_group buffer;
v_u32 size;

 
…

 
VeriteErrorHandler = V_GetErrorHandler();

 
if (V_RegisterErrorHandler(CreateSurfaceCache_ErrorHandler)

!= V_SUCCESS)
{

DoError(VF_ERROR_V_REGISTER_ERROR_HANDLER);
return;

}



}

 
min_height = 1;
max_height = 4 * 1024 * 1024 / (CACHE_BUFFER_WIDTH * 2);

 
while (V_CreateBufferGroup(frame->verite, &buffer, &size,

0, 1, V_PIXFMT_565, CACHE_BUFFER_WIDTH, max_height) ==
V_SUCCESS)
{

V_DestroyBufferGroup(frame->verite, buffer);
min_height = max_height;
max_height *= 2;

}

 
while (max_height - min_height > 1)
{

mid_height = (min_height + max_height) / 2;
 

if (V_CreateBufferGroup(frame->verite, &buffer, &size,
0, 1, V_PIXFMT_565, CACHE_BUFFER_WIDTH,
mid_height) == V_SUCCESS)

{
V_DestroyBufferGroup(frame->verite, buffer);
min_height = mid_height;

} else
{

max_height = mid_height;
}

}

 
if (V_RegisterErrorHandler(VeriteErrorHandler) != V_SUCCESS) {

DoError(VF_ERROR_V_REGISTER_ERROR_HANDLER);
return;

}

 
Note that the first thing we’ve done is installed a new error handler. This is to prevent
the V_CreateBufferGroup() calls from calling your real error handler and cause a
program termination when they’re just trying to test memory allocations. All this new
error handler needs to do is return the error status given to it (i.e the error returned
when V_CreateBufferGroup() fails to allocate). At the end of the algorithm, the
previous error handler is restored.

Also notice that we used a fixed width of 256 when allocating the buffer. The reason
for this is to insure that the width of our text surface never exceeds the width of the
primary surface (one of the surface restrictions). This will mean that the final size
determined (max_height) will be need to be multiplied by 256 to get the number of
bytes available. Also note that this routine should be run after the front, back, and Z-
buffer are allocated so that you can determine the amount of texture memory only.

If you find that your textures will fit then all you need to do is allocate all of them at
the very beginning using VL_CreateSurface() and operate normally. However, if you
find that they cannot all fit at once it is best that you implement your own texture
caching algorithm. This algorithm will need to allocate one large chunk of memory
from the board and then break it up according to the application’s requirements. The
code found in the example frame directory works by allocating a huge chunk and
starting to allocate textures at the beginning of that heap. When the end of the heap is
reached, the memory at the beginning of the heap is freed and re-used. Textures that
are booted out of the heap are marked as such and re-loaded back into the heap when
needed.

To do your own allocation scheme you need to use a few RRedline functions. First
you should use V_CreateBufferGroup() to allocate your heap of memory. You then
can use V_GetBufferAddress() to get a video memory pointer to that allocated buffer.



can use V_GetBufferAddress() to get a video memory pointer to that allocated buffer.
To use that heap, you first need to determine how much room the texture will use.
Normally, you would think that the memory you need to store a texture would be
pixel width * pixel size * pixel height. However, the Vérité may need to pad the
texture with some extra memory. To determine the actual size, you need to make the
following calls (code taken from frame):

pixel_size = V_PIXEL_SIZE(pixel_fmt);
V_ASSERT(pixel_size != -1);

 
if (!pixel_size)

linebytes = (width + 1) / 2;
else

linebytes = width * pixel_size;
linebytes = (linebytes + 0x3) & ~0x3;

 
…

 
surface->vid_stride =

V_Stride(frame->verite, linebytes);
surface->vid_linebytes =

V_Linebytes(frame->verite, surface->vid_stride);
surface->vid_size = surface->vid_linebytes * surface->height;

 
The first piece of code computes how many bytes per line the texture takes on the
CPU side (linebytes). Note that this value is rounded up to be 32 bit aligned. Next
that linebytes value is passes to V_Stride() to get a stride index capable of storing that
texture width. However, the value returned isn’t that useful so we’ll need to convert it
back into a linebytes value. We’ll do that by passing the stride to V_Linebytes(). That
will determine how many bytes per line are required for the texture in video memory.
That final linebytes value multiplied by the texture height is how much memory that
texture needs to take in your allocated heap.

Once you’ve determined where that texture can go in your heap, you can then load
the texture asynchronously (without locking the Vérité) with a call to
VL_MemWriteRect().

Use VL_Lookup() on slower CPUs
If your application uses 8 bit texture maps, it will have to convert them to 16 bit
(A)RGB for use on the Vérité. On fast CPUs, this table lookup process is quite fast.
 If the CPU is bogged down with other tasks or is slow enough that it make sense to
have the Vérité do some extra work, the VL_Lookup() function may be better.

 

Use triangle fans and strips when possible
In general, using triangle fans and strips instead of just triangles results in better
performance on our chip. Unlike other chips that end up breaking triangle fans and
strips into triangles before rendering, the Vérité chip actually understands those
formats. By using triangle fans and strips less information is passed to into the
command buffer and thorough the bus and less work is required by the chip itself
since calculations from the previous triangle are used for the next one.

 

Avoid surface locks
Surface locks require that all DMA transfer and rendering operations be complete. In
other words, when you lock a surface, you stall the CPU until the Vérité completes
all issued command buffers (command buffers with commands in them that haven’t
been issued will not be automatically issued when you lock). While all right for
occasional operations like screenshots, this is not something you want to do every
frame, as it will slow your application’s framerate. If you must lock do as much work
as possible beforehand.

 



 

Change textures in system memory and redownload rather than
modifying video memory directly
Reading and writing from the Vérité board memory requires a surface lock to be
performed (see above for the reasons not to do that…)  A better idea is to modify the
texture in system memory and re-download it to the same spot in video memory.

 

Choose the best vertex type (especially for the V1000 series)
The right vertex type can improve performance, sometimes dramatically. On the
V1000, this is especially true, as the vertex type will impact triangle setup, scanline
setup, and pixel drawing. On the V2000, only triangle setup is affected, so overall
performance will probably be degraded only if you are drawing small triangles (since
setup is a major part of small triangles, but a small part of large triangles).

A simple version of how to calculate rendering times:

Chip Triangle Setup Scanline Setup Pixel Drawing

V1000 ~20 cycles / attribute ~2 cycles / attribute 1 cycle / 2 attributes

V2000 ~10 cycles / attribute 1 cycle 1 cycle

 

Note that texture minification, Z buffering, and alpha blending will increase memory
bandwidth requirements and slow performance on both chips. The pixel rate numbers
above are at peak rates.

 

Check attribute value consistency and remove them from vertex type
One optimization to try is to check for attribute consistency before choosing a vertex
type and sending the primitive to the Vérité. Check to see if the value for a given
attribute is the same for all of the primitives vertices. If the values are consistent, you
can use a VL_Set call for that attribute and remove it from the vertex type. For
example, if you are using vertex attribute fog, after determining that all of a
primitive’s fog values are the same, you would call:

VL_SetF(&cmdbuffer, fog_value);
 
and choose a vertex type without F in it. On the V1000 this saves you setup time and
0-1 cycles per pixel (i.e., one cycle if including F gave you an odd number of vertex
attributes and zero cycles if it gave you an even number of vertex attributes). On the
V2000, you save setup time.

One possible further step. If your application generally does colored vertex lighting
(which would require RGB or K to be in the vertex type), you can check to see if the
R, G, and B values are equal to each other. If they are, you can use the attribute I
(intensity) instead. On the V1000 this will save you setup time and 1 cycle per pixel.
 On the V2000, you will save setup time.

 

Avoid blending and Z buffering unless absolutely necessary
Z buffering and alpha blending increase memory bandwidth requirements and slow
performance on the Vérité. Therefore, enable alpha blending and Z buffering only
when necessary.

Note that leaving blending on and setting alpha to 1.0 (255) is not the same as
disabling blending. Disabling alpha blending must be done by calling



VL_SetBlendEnable() with V_BLEND_DISABLE.

If you are not Z buffering at all, disable both the Z compare and Z write with:

VL_SetZBufMode(&cmdbuffer, V_ZBUFMODE_ALWAYS);
VL_SetZBufWrMode(&cmdbuffer, V_ZBUFWRMODE_DISABLE);

 
If you can, disable one or the other. For example, if you are rendering a light map on
top of a textured polygon you have just drawn, you do not need Z buffer writing to be
on (the textured polygon took care of updating the Z buffer). So disable the Z write.
 Another example:  If you are drawing large polygons in the background (a sky, for
example), and you know you’re drawing it first, you do not need the Z buffer. Clear
the Z buffer, disable Z buffering, and draw the background polygons with the Z
buffer write enabled.

 

Z Buffer tricks
Clearing the Z buffer is faster than drawing Z buffered polygons.  So if you are
drawing distant polygons that contain a constant Z value (like a sky background, for
example), clear the Z buffer with VL_FillBuffer(), then draw the polygons without Z
buffering.

If you have sorted the world polygons, but require the Z buffer for drawing more
complex objects within the world, draw the world polygons with the Z write enabled,
but Z compare disabled. Then enable the Z compare when you draw the objects in the
world.

If your application is fully Z buffered, it may be worthwhile to do a coarse, object
level sort and draw the scene front to back. This will bias the Z compare towards
failure and reduce memory bandwidth requirements.

On the V1000, you can improve performance by interleaving the scanlines of the
display and Z buffers. When you call VL_CreateSurface() to create the display, add
V_SURFACE_INTERLEAVED to the buffer mask parameter. If the total size of one
scanline from each buffer will fit within 2K or 4K (the Vérité uses 4K memory
pages), the buffers will be interleaved. You can check to see if the buffers were
successfully interleaved by checking if the V_SURFACE_INTERLEAVED bit is set in
your v_surface structure’s buffer_mask. If you have interleaved buffers, make sure to
set the CRT controller to properly display the surface:

V_SetDisplayLinebytes(verite, 
V_GetBufferLinebytes(display->buffer_group, 0));

Note that you cannot interleave buffers in a windowed display. Also note that
interleaving may require extra video memory for alignment purposes.

 

Don't lock lots of system memory
Although memory must be locked in order to transfer to the Vérité, locking too much
memory can be a tremendous drag on overall system performance, since it will
interfere with Windows’ Virtual Memory Manager. Lock only what you need to.
Also, note that command buffers use locked memory, so allocating too much
command buffer space can adversely affect performance.

Some applications store locked memory pointers with the command buffer itself. In
other words, when a command requires a piece of locked memory (such as a texture
download) the locked memory is allocated, the command is added to the buffer, and
the pointer to locked memory is associated with that buffer (ring of locked buffers).
When that buffer becomes available (V_QueryCmdBuffer() does not return
V_CMDBUFFER_INUSE) then the locked memory can be freed. This code is
typically implemented within the command buffer callback.



typically implemented within the command buffer callback.

 

Use 2D blits rather than polygons if that's what's necessary
The Vérité has a fast blitter with transparency capability. So for 2D overlay graphics
(a cockpit, for example), use blit operations rather than textured polygons.

The VL_MemWriteSprite() function is a compressed, host-to-video memory blit.
 This can be very useful for cockpit overlays, or any 2D blit operation that has a lot of
transparent space in it.  It is very fast, and you keep the compressed data in host
memory, freeing up precious texture space.

 

Refresh rate
Once you get your application running quickly, changes in performance will be
harder to measure because of the framerate interacting with the screen refresh rate. If
your application is capable of rendering at 24 frames per second and is running the
screen refresh at 60Hz, you will only get 20fps (1 of every three screen refreshes).  If
you then increase your engine’s speed to be able to render 29fps, you will still get
only get 20fps on screen (since you haven’t made it to 1 or every two screen
refreshes).

When doing optimizations, therefore, it is useful to remove the call to
VL_WaitForDisplaySwitch() from your full screen page flipping routine allowing
your application to avoid synching with the monitor refresh. While tearing may
occur, you will be able to measure the real rendering capability of your engine,
without interference from the screen refresh rate. This new rate will tell you how
close you are to getting to the next interval.

You can also try different screen refresh rates when you call V_SetDisplayMode().
Sometimes, increasing the refresh rate will increase your framerate by changing the
interference pattern. In other cases, however, you might lose performance, since some
small memory bandwidth is lost to the CRT controller refresh. You can get the refresh
rate set my the user by sending -1 to V_SetDisplayMode() for the refresh rate.

Try copy double buffering. The simplest way to do this is:

// set source state
VL_InstallTextureMap(&cmdbuffer, display);

// InstallTex uses front buffer as source, though, so set
// to the back buffer
VL_SetSrcBase(&cmdbuffer,

V_GetBufferAddress(display->buffer_group, 1));

// destination state is probably set to display’s back buffer, so
chat
// change to front buffer
VL_SetDstBase(&cmdbuffer,

V_GetBufferAddress(display->buffer_group, 0));
VL_BitBlt(&cmdbuffer, 

0, 0, // source position
(v_u16)display->width, (v_u16)display->height, // source size

0, 0); // destination
pos

// restore destination to back buffer
VL_SetDstBase(&cmdbuffer,

V_GetBufferAddress(display->buffer_group, 1));

Note that this will produce some image tearing. It might be wise to offer it as a user
setting.

If you have enough video memory, try triple buffering. You can then page flip
without interacting with the screen refresh rate. Note that when triple buffering you



without interacting with the screen refresh rate. Note that when triple buffering you
will want to change the order of the swap and wait functions. The wait will be for the
previous swap, ensuring that you can safely render to the next buffer. In other words,
when double buffering, the order is as so:

render frame 0
display frame 0   (VL_SwapDisplaySurface)

wait for frame 0  (VL_WaitForDisplaySwitch)

Now you know that frame 0 is being displayed, so it is safe to operate on frame 1.

render frame 1
display frame 1   (VL_SwapDisplaySurface)

wait for frame 1  (VL_WaitForDisplaySwitch)

When triple buffering however, it is:

render frame 0
wait for frame 2  (VL_WaitForDisplaySwitch)

display frame 0   (VL_SwapDisplaySurface)

Frame 2 has been displayed, so frame 1 is safe to render.

wait for frame 0  (VL_WaitForDisplaySwitch)
display frame 1   (VL_SwapDisplaySurface)
 
Frame 0 has been displayed, so frame 2 is safe to render.

wait for frame 1  (VL_WaitForDisplaySwitch)

display frame 2   (VL_SwapDisplaySurface)
 
VL_SwapDisplaySurface() does not currently support triple buffering, so your page
flip function will look something like:

// When you call VL_InstallDstBuffer, the destination will
first be 

// set to buffer 1 (that function assumes double buffering)
int destbuffer = 1;

VL_WaitForDisplaySwitch(&cmdbuffer);
VL_SetDisplayBase(&cmdbuffer,

V_GetBufferAddress(display->buffer_group, destbuffer));

destbuffer = (destbuffer + 1) % 3;

VL_SetDstBase(&cmdbuffer, 
V_GetBufferAddress(display->buffer_group, destbuffer));

 
Note that unlike the standard double-buffered system, in which the back buffer is
always buffer number 1 and the front buffer is number 0, when triple buffering, the
“back” buffer number is now held in the variable “destbuffer” (in this example case).

 

Use time between swap and wait
When double buffering, you cannot perform any RRedline drawing operations until
after the VL_WaitForDisplaySwitch() call. You can however, use the time before
vertical retrace to do non-screen related operations. For example, you could clear the
Z-buffer, set any of the drawing states, or even download textures.

 

For arbitrary host-to-verite blits 4-byte-aligned destination addresses go



For arbitrary host-to-verite blits 4-byte-aligned destination addresses go
way faster
If you are using VL_MemWriteRect() to draw 2D things to the screen, note that if the
destination address is not 32-bit aligned, performance will drop. Try to ensure that all
VL_MemWriteRect() calls have 32-bit aligned destination addresses. Note that
VL_CreateSurface() and V_CreateBufferGroup() allocate buffers at 32-bit aligned
addresses. Therefore VL_MemWriteRect() calls to these buffers’ base addresses and
VL_LoadBuffer, which calls VL_MemWriteRect(), will run at full performance.

 

Keep the Vérité busy
To maximize performance, try to ensure that the Vérité is always rendering. One way
to get it started at the beginning of a frame is to issue a command buffer with some
big operation in it immediately. For example, if you have background polygons to
draw, put them in a command buffer and issue the buffer explicitly. Then go ahead
and process the more complex part of your scene. This will get the Vérité working on
drawing a lot of pixels, and give the CPU time to prepare more polygons and texture
maps.

Note also that very large command buffers will take a long time to fill.  It is therefore
better, generally, to have more smaller command buffers than a few very large ones.

 

Avoid VL_InstallTextureMap() (calls ~12 other functions!)
VL_InstallTextureMap() is a very useful function that will set all necessary state for
drawing with the specified texture map. The downside is that is sets all necessary
state, even if certain states aren’t changing from one texture map to another. Below is
the source for VL_InstallTextureMap() including two functions required to calculate
the U and V masks. You may be able to call only a subset of these functions, or create
some other optimized texture map installer. A complete description of what each
function does can be found in the reference guide.

/* convert width/height to mask; if power of 2, subtract 1. Else
  subtract 1 from next higher power of 2 */
static v_u16 get_tile_mask

( v_u32 wh )
{
   v_u32 i;

 
   if (! (wh & (wh-1))) return (v_u16)wh-1;
   for (i = 0; wh >>= 1; ++i) ;
   return (v_u16)((1<<(i+1)) - 1);
}

 
/* when clamping, just set mask to width/height-1 */
static v_u16 get_clamp_mask

( v_u32 wh )
{
   return (v_u16)(wh-1);
}

 
vl_error V_DLLEXPORT VL_InstallTextureMap

( v_cmdbuffer *cmdbuffer,
 v_surface *texture_surf )

{

 
  v_u16 umask, vmask;

 
  V_ASSERT(texture_surf != NULL);

 
  /* Get u/v mask */
  if (texture_surf->clamp & V_SURFACE_UCLAMP) {
     umask = get_clamp_mask(texture_surf->width);
     VL_SetUClamp(cmdbuffer, !0);
  } else {



     umask = get_tile_mask(texture_surf->width);
     VL_SetUClamp(cmdbuffer, 0);
  }
  if (texture_surf->clamp & V_SURFACE_VCLAMP) {
     vmask = get_clamp_mask(texture_surf->height);
     VL_SetVClamp(cmdbuffer, !0);
  } else {
     vmask = get_tile_mask(texture_surf->height);
     VL_SetVClamp(cmdbuffer, 0);
  }

 
  /* Set SrcBase, SrcStride, Vmask, Umask, SrcWidth, SrcHeight */
  VL_SetCurrentTexture(cmdbuffer,

(v_u32)V_GetBufferAddress(texture_surf->buffer_group,0),
V_GetBufferStride(texture_surf->buffer_group,0),
vmask, umask,
texture_surf->width<<16,
texture_surf->height<<16);

 
  if (texture_surf->palette)

VL_SetTexturePalette(cmdbuffer, texture_surf->start_index, 
texture_surf->num_entries,  

texture_surf->palette, 
texture_surf->pixel_fmt);

 
  VL_SetSrcFmt(cmdbuffer, texture_surf->pixel_fmt);

 
  VL_SetSrcColorNoPad(cmdbuffer, (texture_surf->color_pad == 0));

 
  VL_SetChromaKey(cmdbuffer, (texture_surf->chromakey != 0));

 
  /* Set the YUV2RGB bit to match the texture */
  if(texture_surf->pixel_fmt == V_PIXFMT_Y0CRY1CB)
      VL_SetYUV2RGB(cmdbuffer, V_YUV2RGB_ENABLE);
  else
      VL_SetYUV2RGB(cmdbuffer, V_YUV2RGB_DISABLE);

 
  VL_SetSrcBGR(cmdbuffer, (texture_surf->bgr != 0));

 
  /* Chromakey color */
  VL_SetChromaColor(cmdbuffer, texture_surf->chroma_color,
                    texture_surf->pixel_fmt);

 
  /* Chromakey Mask */
  VL_SetChromaMask(cmdbuffer, texture_surf->chroma_mask,
                   texture_surf->pixel_fmt);

 
  return VL_SUCCESS;
}

 

 

Use VL_TriangleFill() for flat shaded triangles
On the V1000, VL_TriangleFill() is the fastest way to draw flat shaded triangles,
using an optimized path through the pixel engine. On the V2000, setup is performed
a little faster.

 

Use VL_Particles() for dots/stars
The VL_Particles() primitive is the fastest way to draw solid colored dots and
rectangles.

 

Different V1K/V2K techniques
You may want to consider different optimizations depending on which Vérité you are



You may want to consider different optimizations depending on which Vérité you are
using. The high pixel rate of the V2000 means that Z buffering is very useful. The
V1000, however, can struggle with Z buffering, so polygon sorting might make more
sense. With a Z buffer, however, you lose some texture memory, so on the V2000 you
might want to explore ways to speed up your texture caching.

Determining which system you are on can be done by looking for a specific extension
returned from VL_GetExtensions(). If that returned string contains “V1K_Verite”
then you are on a V1000 series card. If it contains “V2K_Verite” then you are on a
V2000 series card. It may be a good idea to just check for just one of these (like for
the V1000 extension) and do something else if that string isn’t found. Then you’ll be
able to have optimized paths for future chip generations as well and not just for these
two.

 

Try an infinitely fast renderer to measure the application’s “speed of
light”
When benchmarking your application, try replacing V_IssueCmdBufferAsync() with
V_ResetCmdBuffer(). This will simply ignore the command buffer, which simulates
an “infinitely fast” bus and renderer. In this way, you can see how close to “perfect”
asynchronous rendering you are. If your frame rate doesn’t increase at all, the Vérité
is probably not very busy, and you should further optimize your host-side code (or
somehow give the Vérité more to do). If the frame rate only slightly increases, your
engine is probably achieving very good rendering overlap.  If the frame rate does
increase dramatically, however, you should consider ways to optimize the work load
on the Vérité or move more work towards the CPU.

Note that the speed of the CPU will significantly impact the results of this test. Try it
on a few different speed processors to get a good sense of what is actually happening.

 

Use VL_Rectangle() for sprites
If sprites require only scaling (no rotation), the VL_Rectangle() or VL_Square()
primitives are the fastest way to draw them. Both these primitives map a texture
exactly to their extents, requiring only one vertex to describe them. In fact, all vertex
attributes are ignored; only X and Y are used. Any drawing attributes that are needed
must be set explicitly. So, for example, if you are Z buffering the sprite, call
VL_SetZ() with the appropriate value before calling VL_Rectangle().

 

Use VL_Lookup() for 2D stuff (Quake console/menus)
The VL_Lookup() function will convert 8 bit data to 16 bit data by using a texture
map that contains the palette. Normally, this routine is used to expand texture maps
from 8 to 16 bits as they are transferred from host to video memory. VL_Lookup()
can draw to any destination, however, even the display. So, for example, if you have
8 bit deep fonts or other graphics and need to draw text to the screen, use
VL_Lookup(). They will draw reasonably fast (currently about 3 cycles per pixel) and
will not require any texture memory. Note that no scaling or rotation is possible with
VL_Lookup().

 

Use mipmapping
Mipmapping can help improve performance in two ways. First, less texture space is
required, since only very close objects will be using the largest mipmaps. Second, the
Vérité gets closest to its peak rendering rate when it is magnifying texture maps. You
will therefore increase the pixel rendering rate if you are able to choose a mipmap
that will be at least slightly magnified when drawn.

 



 

Collect things into locked memory and use V_AddToDMAList()
It is sometimes useful to collect commands into locked memory that is not part of a
command buffer, and point the command buffer at it when necessary through the
funcion V_AddToDMAList(). For example, in VHexen2 and Quake 2, when
antialiasing is enabled, the VL_AAEdge() commands are not placed on the command
buffer when the edges are calculated since they need to be run at the end of the frame.
Instead they are stored in locked memory as the polygons are being drawn. When the
entire frame is done and ready to be antialiased, the game simply calls
V_AddToDMAList(). This technique can both save the extra memory copy from an
edge cache into the command buffer, as well as saving cycles in the polygon loops by
storing the vertices to the edge list at the same time as to the command buffer.

This technique might apply any time you have a large group of “pre-cooked”
commands or data, such as state sets, VL_MemWriteSprite() calls, and so on.
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